Unaccounted Microplastics in the Outlet of Wastewater Treatment Plants—Challenges and Opportunities
Abstract
:1. Introduction
2. Methods
3. Impact of MPs
4. Distribution and Fate of MPs in Soil and Water
5. MPs Removal Strategies in WWTPs
6. Unaccounted MPs—A Mass Balance Error
7. Challenges in Accounting for the MPs
7.1. Sample Collection
7.2. Pretreatment and Separation
7.3. Filtration
7.4. Detection
7.5. Other Potential Challenges
8. Opportunities to Improve the Outcome of Analytical Methods of MPs
8.1. Account for Transport of MPs from Water to Air
8.2. Optimization of Techniques for Characterizing Ultra-Small MPs
8.3. Application of AI for Sorting of Plastics
8.4. Mimicking Laboratory Testing to Natural Conditions
8.5. Models to Understand the Fragmentation of MPs
9. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrady, A.L.; Neal, M.A. Applications and societal benefits of plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1977–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filiciotto, L.; Rothenberg, G. Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem 2021, 14, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Tsiamis, D.A.; Torres, M.; Castaldi, M.J. Role of plastics in decoupling municipal solid waste and economic growth in the U.S. Waste Manag. 2018, 77, 147–155. [Google Scholar] [CrossRef]
- Borrelle, S.B.; Ringma, J.; Law, K.L.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A.; et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef]
- Duis, K.; Coors, A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 2016, 28, 2. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, B.K.; Pramanik, S.K.; Monira, S. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Chemosphere 2021, 282, 131053. [Google Scholar] [CrossRef]
- Zhang, K.; Hamidian, A.H.; Tubić, A.; Zhang, Y.; Fang, J.K.H.; Wu, C.; Lam, P.K.S. Understanding plastic degradation and microplastic formation in the environment: A review. Environ. Pollut. 2021, 274, 116554. [Google Scholar] [CrossRef]
- Hamid, F.S.; Bhatti, M.S.; Anuar, N.; Anuar, N.; Mohan, P.; Periathamby, A. Worldwide distribution and abundance of microplastic: How dire is the situation? Waste Manag. Res. 2018, 36, 873–897. [Google Scholar] [CrossRef]
- An, L.; Liu, Q.; Deng, Y.; Wu, W.; Gao, Y.; Ling, W. Sources of Microplastic in the Environment. In Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges; He, D., Luo, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 143–159. [Google Scholar]
- Van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N.; Hardesty, B.D.; Van Franeker, J.A.; Eriksen, M.; Siegel, D.; Galgani, F.; Law, K.L. A global inventory of small floating plastic debris. Environ. Res. Lett. 2015, 10, 124006. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Iyare, P.U.; Ouki, S.K.; Bond, T. Microplastics removal in wastewater treatment plants: A critical review. Environ. Sci. Water Res. Technol. 2020, 6, 2664–2675. [Google Scholar] [CrossRef]
- Koutnik, V.S.; Alkidim, S.; Leonard, J.; DePrima, F.; Cao, S.Q.; Hoek, E.M.V.; Mohanty, S.K. Unaccounted Microplastics in Wastewater Sludge: Where Do They Go? ACS ES T Water 2021, 1, 1086–1097. [Google Scholar] [CrossRef]
- Conley, K.; Clum, A.; Deepe, J.; Lane, H.; Beckingham, B. Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Res. X 2019, 3, 100030. [Google Scholar] [CrossRef]
- Di Bella, G.; Corsino, S.; De Marines, F.; Lopresti, F.; La Carrubba, V.; Torregrossa, M.; Viviani, G. Occurrence of Microplastics in Waste Sludge of Wastewater Treatment Plants: Comparison between Membrane Bioreactor (MBR) and Conventional Activated Sludge (CAS) Technologies. Membranes 2022, 12, 371. [Google Scholar] [CrossRef]
- Gatidou, G.; Arvaniti, O.S.; Stasinakis, A.S. Review on the occurrence and fate of microplastics in Sewage Treatment Plants. J. Hazard. Mater. 2019, 367, 504–512. [Google Scholar] [CrossRef]
- Lv, X.M.; Dong, Q.; Zuo, Z.Q.; Liu, Y.C.; Huang, X.; Wu, W.M. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. J. Clean. Prod. 2019, 225, 579–586. [Google Scholar] [CrossRef]
- Gies, E.A.; LeNoble, J.L.; Noel, M.; Etemadifar, A.; Bishay, F.; Hall, E.R.; Ross, P.S. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar. Pollut. Bull. 2018, 133, 553–561. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y. Treatment characteristics of microplastics at biological sewage treatment facilities in Korea. Mar. Pollut. Bull. 2018, 137, 1–8. [Google Scholar] [CrossRef]
- Lv, L.; Yan, X.; Feng, L.; Jiang, S.; Lu, Z.; Xie, H.; Sun, S.; Chen, J.; Li, C. Challenge for the detection of microplastics in the environment. Water Environ. Res. 2021, 93, 5–15. [Google Scholar] [CrossRef]
- Bui, X.T.; Vo, T.D.H.; Nguyen, P.T.; Nguyen, V.T.; Dao, T.S.; Nguyen, P.D. Microplastics pollution in wastewater: Characteristics, occurrence and removal technologies. Environ. Technol. Innov. 2020, 19, 101013. [Google Scholar] [CrossRef]
- Hanif, M.A.; Ibrahim, N.; Dahalan, F.A.; Md Ali, U.F.; Hasan, M.; Jalil, A.A. Microplastics and nanoplastics: Recent literature studies and patents on their removal from aqueous environment. Sci. Total Environ. 2022, 810, 152115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, D.; Zhang, Z. A Critical Review on Artificial Intelligence—Based Microplastics Imaging Technology: Recent Advances, Hot-Spots and Challenges. Int. J. Environ. Res. Public Health 2023, 20, 1150. [Google Scholar] [CrossRef] [PubMed]
- Hufnagl, B.; Stibi, M.; Martirosyan, H.; Wilczek, U.; Möller, J.N.; Löder, M.G.J.; Laforsch, C.; Lohninger, H. Computer-Assisted Analysis of Microplastics in Environmental Samples Based on μFTIR Imaging in Combination with Machine Learning. Environ. Sci. Technol. Lett. 2022, 9, 90–95. [Google Scholar] [CrossRef]
- Da Silva, V.H.; Murphy, F.; Amigo, J.M.; Stedmon, C.; Strand, J. Classification and Quantification of Microplastics (<100 μm) Using a Focal Plane Array–Fourier Transform Infrared Imaging System and Machine Learning. Anal. Chem. 2020, 92, 13724–13733. [Google Scholar] [CrossRef]
- Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.; Agrawal, A.; Billinge, S.J.L.; et al. Recent advances and applications of deep learning methods in materials science. NPJ Comput. Mater. 2022, 8, 59. [Google Scholar] [CrossRef]
- Chen, J.M.; Tan, M.G.; Nemmar, A.; Song, W.M.; Dong, M.; Zhang, G.L.; Li, Y. Quantification of extrapulmonary translocation of intratracheal-instilled particles in vivo in rats: Effect of lipopolysaccharide. Toxicology 2006, 222, 195–201. [Google Scholar] [CrossRef]
- Besseling, E.; Wang, B.; Lurling, M.; Koelmans, A.A. Nanoplastic Affects Growth of S. obliquus and Reproduction of D. magna. Environ. Sci. Technol. 2014, 48, 14065. [Google Scholar] [CrossRef]
- Kwak, J.I.; An, Y.J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. J. Hazard. Mater. 2021, 402, 124034. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Baulch, S.; Perry, C. Evaluating the impacts of marine debris on cetaceans. Mar. Pollut. Bull. 2014, 80, 210–221. [Google Scholar] [CrossRef]
- Seth, C.K.; Shriwastav, A. Contamination of Indian sea salts with microplastics and a potential prevention strategy. Environ. Sci. Pollut. Res. 2018, 25, 30122–30131. [Google Scholar] [CrossRef]
- Wiesheu, A.C.; Anger, P.M.; Baumann, T.; Niessner, R.; Ivleva, N.P. Raman microspectroscopic analysis of fibers in beverages. Anal. Methods 2016, 8, 5722–5725. [Google Scholar] [CrossRef] [Green Version]
- Madhumitha, C.T.; Karmegam, N.; Biruntha, M.; Arun, A.; Al Kheraif, A.A.; Kim, W.; Kumar, P. Extraction, identification, and environmental risk assessment of microplastics in commercial toothpaste. Chemosphere 2022, 296, 133976. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Wilson, M.R.; MacNee, W.; Stone, V.; Donaldson, K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharm. 2001, 175, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.F.; Zhang, Y.; Lemos, B.; Ren, H.Q. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017, 7, srep46687. [Google Scholar] [CrossRef] [Green Version]
- Yee, M.S.L.; Hii, L.W.; Looi, C.K.; Lim, W.M.; Wong, S.F.; Kok, Y.Y.; Tan, B.K.; Wong, C.Y.; Leong, C.O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Yang, X.M.; Gertsen, H.; Peters, P.; Salanki, T.; Geissen, V. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total Environ. 2018, 616, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Arkatkar, A.; Arutchelvi, J.; Bhaduri, S.; Uppara, P.V.; Doble, M. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int. Biodeter. Biodegr. 2009, 63, 106–111. [Google Scholar] [CrossRef]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.-B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.-T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef]
- Zhu, F.; Zhu, C.; Wang, C.; Gu, C. Occurrence and Ecological Impacts of Microplastics in Soil Systems: A Review. Bull. Environ. Contam. Toxicol. 2019, 102, 741–749. [Google Scholar] [CrossRef]
- Bao, M.; Xiang, X.; Huang, J.; Kong, L.; Wu, J.; Cheng, S. Microplastics in the Atmosphere and Water Bodies of Coastal Agglomerations: A Mini-Review. Int. J. Environ. Res. Public Health 2023, 20, 2466. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, K.; Zhang, T.; Xu, Y.; Chen, R.; Xue, S.; Liu, M.; Tang, D.; Yang, X.; Giessen, V. Irrigation-facilitated low-density polyethylene microplastic vertical transport along soil profile: An empirical model developed by column experiment. Ecotoxicol. Environ. Saf. 2022, 247, 114232. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.L.; Kang, S.C.; Wang, Z.Q.; Wu, C.X. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci. Total Environ. 2021, 780, 146546. [Google Scholar] [CrossRef]
- Alirezazadeh, M.; Nematollahi, M.J.; Keshavarzi, B.; Rezaei, M.; Moore, F.; Busquets, R. Microplastics in Abiotic Compartments of a Hypersaline Lacustrine Ecosystem. Environ. Toxicol. Chem. 2023, 42, 19–32. [Google Scholar] [CrossRef]
- Gola, D.; Kumar Tyagi, P.; Arya, A.; Chauhan, N.; Agarwal, M.; Singh, S.K.; Gola, S. The impact of microplastics on marine environment: A review. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100552. [Google Scholar] [CrossRef]
- Alfaro-Núñez, A.; Astorga, D.; Cáceres-Farías, L.; Bastidas, L.; Soto Villegas, C.; Macay, K.; Christensen, J.H. Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos. Sci. Rep. 2021, 11, 6424. [Google Scholar] [CrossRef]
- Yang, H.; Chen, G.; Wang, J. Microplastics in the Marine Environment: Sources, Fates, Impacts and Microbial Degradation. Toxics 2021, 9, 41. [Google Scholar] [CrossRef]
- Bellasi, A.; Binda, G.; Pozzi, A.; Galafassi, S.; Volta, P.; Bettinetti, R. Microplastic Contamination in Freshwater Environments: A Review, Focusing on Interactions with Sediments and Benthic Organisms. Environments 2020, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Szymańska, M.; Obolewski, K. Microplastics as contaminants in freshwater environments: A multidisciplinary review. Ecohydrol. Hydrobiol. 2020, 20, 333–345. [Google Scholar] [CrossRef]
- Wagner, M.; Scherer, C.; Alvarez-Muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 2014, 26, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenaker, P.L.; Baldwin, A.K.; Corsi, S.R.; Mason, S.A.; Reneau, P.C.; Scott, J.W. Vertical distribution of microplastics in the water column and surficial sediment from the Milwaukee River Basin to Lake Michigan. Environ. Sci. Technol. 2019, 53, 12227–12237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widespread Plastic Pollution Found in Great Lakes Tributaries. Available online: https://www.usgs.gov/news/widespread-plastic-pollution-found-great-lakes-tributaries (accessed on 22 June 2021).
- Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 2013, 77, 177–182. [Google Scholar] [CrossRef]
- Phillips, M.B.; Bonner, T.H. Occurrence and amount of microplastic ingested by fishes in watersheds of the Gulf of Mexico. Mar. Pollut. Bull. 2015, 100, 264–269. [Google Scholar] [CrossRef]
- Hurt, R.; O’Reilly, C.M.; Perry, W.L. Microplastic prevalence in two fish species in two US reservoirs. Limnol. Oceanogr. Lett. 2020, 5, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Mason, S.A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, K.; Barnes, J.; Fink, P.; Papazissimos, D.; Rogers, D.L. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 2016, 218, 1045–1054. [Google Scholar] [CrossRef]
- Ricciardi, M.; Pironti, C.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. Microplastics in the Aquatic Environment: Occurrence, Persistence, Analysis, and Human Exposure. Water 2021, 13, 973. [Google Scholar] [CrossRef]
- Vermaire, J.C.; Pomeroy, C.; Herczegh, S.M.; Haggart, O.; Murphy, M. Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets 2017, 2, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zhang, B.; Gu, C.; Shen, C.; Yin, S.; Aamir, M.; Li, F. Are we underestimating the sources of microplastic pollution in terrestrial environment? J. Hazard. Mater. 2020, 400, 123228. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Zou, M.; Jia, Z.; Zhou, S. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. Sci. Total Environ. 2020, 748, 141368. [Google Scholar] [CrossRef]
- He, D.; Luo, Y. Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges; Springer Nature: Cham, Switzerland, 2020; Volume 95. [Google Scholar]
- De Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [Green Version]
- Khoshmanesh, M.; Sanati, A.M.; Ramavandi, B. Co-occurrence of microplastics and organic/inorganic contaminants in organisms living in aquatic ecosystems: A review. Mar. Pollut. Bull. 2023, 187, 114563. [Google Scholar] [CrossRef]
- Priya, A.; Anusha, G.; Thanigaivel, S.; Karthick, A.; Mohanavel, V.; Velmurugan, P.; Balasubramanian, B.; Ravichandran, M.; Kamyab, H.; Kirpichnikova, I.M.; et al. Removing microplastics from wastewater using leading-edge treatment technologies: A solution to microplastic pollution—A review. Bioproc. Biosyst. Eng. 2022, 46, 309–321. [Google Scholar] [CrossRef]
- Esfandiari, A.; Mowla, D. Investigation of microplastic removal from greywater by coagulation and dissolved air flotation. Process. Saf. Environ. 2021, 151, 341–354. [Google Scholar] [CrossRef]
- Bayo, J.; López-Castellanos, J.; Olmos, S. Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Mar. Pollut. Bull. 2020, 156, 111211. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Akarsu, C.; Kumbur, H.; Kideys, A.E. Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Sci. Technol. 2021, 84, 1648–1662. [Google Scholar] [CrossRef]
- Poerio, T.; Piacentini, E.; Mazzei, R. Membrane Processes for Microplastic Removal. Molecules 2019, 24, 4148. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.Y.; Wang, Q.G.; Li, J.; Li, Q.S.; Xu, H.; Ye, Q.; Wang, Y.Q.; Shu, S.H.; Zhang, J. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism. Sci. Total Environ. 2021, 752, 141837. [Google Scholar] [CrossRef]
- Cherniak, S.L.; Almuhtaram, H.; McKie, M.J.; Hermabessiere, L.; Yuan, C.Q.; Rochman, C.M.; Andrews, R.C. Conventional and biological treatment for the removal of microplastics from drinking water. Chemosphere 2022, 288, 132587. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, C.; Huang, Q.X.; Chi, Y.; Yan, J.H. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars. J. Hazard. Mater. 2021, 419, 126486. [Google Scholar] [CrossRef] [PubMed]
- Hamzah, S.; Ying, L.Y.; Azmi, A.A.A.; Razali, N.A.; Hairom, N.H.H.; Mohamad, N.A.; Harun, M.H.C. Synthesis, characterisation and evaluation on the performance of ferrofluid for microplastic removal from synthetic and actual wastewater. J. Environ. Chem. Eng. 2021, 9, 105894. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Li, Y.L.; Liu, Y.Y.; Zhou, Z.; Hu, W.J.; Lin, L.F.; Wu, Z.C. Effects of microplastics accumulation on performance of membrane bioreactor for wastewater treatment. Chemosphere 2022, 287, 131968. [Google Scholar] [CrossRef]
- Dey, T.K.; Uddin, M.E.; Jamal, M. Detection and removal of microplastics in wastewater: Evolution and impact. Environ. Sci. Pollut. Res. 2021, 28, 16925–16947. [Google Scholar] [CrossRef]
- Othman, A.R.; Abu Hasan, H.; Muhamad, M.H.; Ismail, N.I.; Abdullah, S.R.S. Microbial degradation of microplastics by enzymatic processes: A review. Environ. Chem. Lett. 2021, 19, 3057–3073. [Google Scholar] [CrossRef]
- Ren, P.; Dou, M.; Wang, C.; Li, G.; Jia, R. Abundance and removal characteristics of microplastics at a wastewater treatment plant in Zhengzhou. Environ. Sci. Pollut. Res. 2020, 27, 36295–36305. [Google Scholar] [CrossRef]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef]
- Sutton, R.; Mason, S.A.; Stanek, S.K.; Willis-Norton, E.; Wren, I.F.; Box, C. Microplastic contamination in the san francisco bay, California, USA. Mar. Pollut. Bull. 2016, 109, 230–235. [Google Scholar] [CrossRef]
- Crossman, J.; Hurley, R.R.; Futter, M.; Nizzetto, L. Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Sci. Total Environ. 2020, 724, 138334. [Google Scholar] [CrossRef]
- Dyachenko, A.; Mitchell, J.; Arsem, N. Extraction and identification of microplastic particles from secondary wastewater treatment plant (WWTP) effluent. Anal. Methods 2017, 9, 1412–1418. [Google Scholar] [CrossRef]
- Fortin, S.; Song, B.; Burbage, C. Quantifying and identifying microplastics in the effluent of advanced wastewater treatment systems using Raman microspectroscopy. Mar. Pollut. Bull. 2019, 149, 110579. [Google Scholar] [CrossRef]
- Michielssen, M.R.; Michielssen, E.R.; Ni, J.; Duhaime, M.B. Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environ. Sci. Water Res. Technol. 2016, 2, 1064–1073. [Google Scholar] [CrossRef] [Green Version]
- Yonkos, L.T.; Friedel, E.A.; Perez-Reyes, A.C.; Ghosal, S.; Arthur, C.D. Microplastics in four estuarine rivers in the Chesapeake Bay, USA. Environ. Sci. Technol. 2014, 48, 14195–14202. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Halden, R.U.; Kannan, K. Polyethylene terephthalate and polycarbonate microplastics in sewage sludge collected from the United States. Environ. Sci. Technol. Lett. 2019, 6, 650–655. [Google Scholar] [CrossRef]
- Ma, B.W.; Xue, W.J.; Ding, Y.Y.; Hu, C.Z.; Liu, H.J.; Qu, J.H. Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. J. Environ. Sci. 2019, 78, 267–275. [Google Scholar] [CrossRef]
- Lares, M.; Ncibi, M.C.; Sillanpaa, M.; Sillanpaa, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 2018, 133, 236–246. [Google Scholar] [CrossRef]
- Magni, S.; Binelli, A.; Pittura, L.; Avio, C.G.; Della Torre, C.; Parenti, C.C.; Gorbi, S.; Regoli, F. The fate of microplastics in an Italian Wastewater Treatment Plant. Sci. Total Environ. 2019, 652, 602–610. [Google Scholar] [CrossRef]
- Raju, S.; Carbery, M.; Kuttykattil, A.; Senthirajah, K.; Lundmark, A.; Rogers, Z.; Scb, S.; Evans, G.; Palanisami, T. Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant. Water Res. 2020, 173, 115549. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Setälä, O.; Heinonen, M.; Koistinen, A. How well is microlitter purified from wastewater?—A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Res. 2017, 109, 164–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, F.; Kochleus, C.; Bänsch-Baltruschat, B.; Brennholt, N.; Reifferscheid, G. Sampling techniques and preparation methods for microplastic analyses in the aquatic environment—A review. TrAC Trends Anal. Chem. 2019, 113, 84–92. [Google Scholar] [CrossRef]
- Thomas, D.; Schütze, B.; Heinze, W.M.; Steinmetz, Z. Sample Preparation Techniques for the Analysis of Microplastics in Soil—A Review. Sustainability 2020, 12, 9074. [Google Scholar] [CrossRef]
- Tagg, A.S.; Sapp, M.; Harrison, J.P.; Sinclair, C.J.; Bradley, E.; Ju-Nam, Y.; Ojeda, J.J. Microplastic Monitoring at Different Stages in a Wastewater Treatment Plant Using Reflectance Micro-FTIR Imaging. Front. Environ. Sci. 2020, 8, 145. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Zhao, X.; Gu, X.; Ji, R. Separation and identification of microplastics from soil and sewage sludge. Environ. Pollut. 2019, 254, 113076. [Google Scholar] [CrossRef]
- Maw, M.M.; Boontanon, N.; Fujii, S.; Boontanon, S.K. Rapid and efficient removal of organic matter from sewage sludge for extraction of microplastics. Sci. Total Environ. 2022, 853, 158642. [Google Scholar] [CrossRef]
- Bretas Alvim, C.; Valiente, S.N.; Bes-Piá, M.A.; Mendoza-Roca, J.A. Methodology for removing microplastics and other anthropogenic microparticles from sludge dewatering system. J. Environ. Manag. 2022, 314, 115010. [Google Scholar] [CrossRef]
- Blair, R.M.; Waldron, S.; Gauchotte-Lindsay, C. Average daily flow of microplastics through a tertiary wastewater treatment plant over a ten-month period. Water Res. 2019, 163, 114909. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Q.; Ruan, Y.; Wu, R.; Chen, L.; Zhang, K.; Lam, P.K.S. Intra-day microplastic variations in wastewater: A case study of a sewage treatment plant in Hong Kong. Mar. Pollut. Bull. 2020, 160, 111535. [Google Scholar] [CrossRef]
- Wolff, S.; Kerpen, J.; Prediger, J.; Barkmann, L.; Müller, L. Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Res. X 2019, 2, 100014. [Google Scholar] [CrossRef]
- Radford, F.; Zapata-Restrepo, L.M.; Horton, A.A.; Hudson, M.D.; Shaw, P.J.; Williams, I.D. Developing a systematic method for extraction of microplastics in soils. Anal. Methods 2021, 13, 1695–1705. [Google Scholar] [CrossRef]
- Mbachu, O.; Jenkins, G.; Pratt, C.; Kaparaju, P. Enzymatic purification of microplastics in soil. Methodsx 2021, 8, 101254. [Google Scholar] [CrossRef]
- Prata, J.C.; Sequeira, I.F.; Monteiro, S.S.; Silva, A.L.P.; da Costa, J.P.; Dias-Pereira, P.; Fernandes, A.J.S.; da Costa, F.M.; Duarte, A.C.; Rocha-Santos, T. Preparation of biological samples for microplastic identification by Nile Red. Sci. Total Environ. 2021, 783, 147065. [Google Scholar] [CrossRef]
- Nabi, I.; Bacha, A.U.R.; Zhang, L.W. A review on microplastics separation techniques from environmental media. J. Clean. Prod. 2022, 337, 130458. [Google Scholar] [CrossRef]
- Nava, V.; Leoni, B. Comparison of Different Procedures for Separating Microplastics from Sediments. Water 2021, 13, 2854. [Google Scholar] [CrossRef]
- Crichton, E.M.; Noël, M.; Gies, E.A.; Ross, P.S. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments. Anal. Methods 2017, 9, 1419–1428. [Google Scholar] [CrossRef]
- Chen, G.L.; Fu, Z.L.; Yang, H.R.; Wang, J. An overview of analytical methods for detecting microplastics in the atmosphere. TrAC Trends Anal. Chem. 2020, 130, 115981. [Google Scholar] [CrossRef]
- Sun, J.; Dai, X.H.; Wang, Q.L.; van Loosdrecht, M.C.M.; Ni, B.J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Res. 2019, 152, 21–37. [Google Scholar] [CrossRef]
- Ivleva, N.P. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem. Rev. 2021, 121, 11886–11936. [Google Scholar] [CrossRef]
- Turan, N.B.; Erkan, H.S.; Engin, G.O. Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process. Saf. Environ. 2021, 146, 77–84. [Google Scholar] [CrossRef]
- Sobhani, Z.; Al Amin, M.; Naidu, R.; Megharaj, M.; Fang, C. Identification and visualisation of microplastics by Raman mapping. Anal. Chim. Acta 2019, 1077, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.F.; Wang, J. Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis. TrAC Trends Anal. Chem. 2018, 108, 195–202. [Google Scholar] [CrossRef]
- Löder, M.G.J.; Kuczera, M.; Mintenig, S.; Lorenz, C.; Gerdts, G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ. Chem. 2015, 12, 563–581. [Google Scholar] [CrossRef]
- Sunta, U.; Trebse, P.; Kralj, M.B. Simply Applicable Method for Microplastics Determination in Environmental Samples. Molecules 2021, 26, 1840. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Cho, S.H.; Kim, K.H.; Kwon, E.E. Progress in quantitative analysis of microplastics in the environment: A review. Chem. Eng. J. 2021, 422, 130154. [Google Scholar] [CrossRef]
- Hassan, P.A.; Rana, S.; Verma, G. Making Sense of Brownian Motion: Colloid Characterization by Dynamic Light Scattering. Langmuir 2015, 31, 3–12. [Google Scholar] [CrossRef]
- Hotze, E.M.; Phenrat, T.; Lowry, G.V. Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. J. Environ. Qual. 2010, 39, 1909–1924. [Google Scholar] [CrossRef] [Green Version]
- Engler, R.E. The Complex Interaction between Marine Debris and Toxic Chemicals in the Ocean. Environ. Sci. Technol. 2012, 46, 12302–12315. [Google Scholar] [CrossRef]
- Masry, M.; Rossignol, S.; Temime Roussel, B.; Bourgogne, D.; Bussière, P.-O.; R’mili, B.; Wong-Wah-Chung, P. Experimental evidence of plastic particles transfer at the water-air interface through bubble bursting. Environ. Pollut. 2021, 280, 116949. [Google Scholar] [CrossRef]
- Tang, K.H.D.; Hadibarata, T. Microplastics removal through water treatment plants: Its feasibility, efficiency, future prospects and enhancement by proper waste management. Environ. Chall. 2021, 5, 100264. [Google Scholar] [CrossRef]
- Wagner, S.; Reemtsma, T. Things we know and don’t know about nanoplastic in the environment. Nat. Nanotechnol. 2019, 14, 300–301. [Google Scholar] [CrossRef]
- Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. [Google Scholar] [CrossRef] [Green Version]
- THINKCYTE. Machine Vision-Based Cell Sorting. Available online: https://thinkcyte.com/science/ (accessed on 23 February 2023).
- Cleanrobotics. Smart bins for smarter recycling. Available online: https://cleanrobotics.com/trashbot/ (accessed on 23 February 2023).
- Phuong, N.N.; Zalouk-Vergnoux, A.; Poirier, L.; Kamari, A.; Châtel, A.; Mouneyrac, C.; Lagarde, F. Is there any consistency between the microplastics found in the field and those used in laboratory experiments? Environ. Pollut. 2016, 211, 111–123. [Google Scholar] [CrossRef]
- Ter Halle, A.; Ladirat, L.; Gendre, X.; Goudouneche, D.; Pusineri, C.; Routaboul, C.; Tenailleau, C.; Duployer, B.; Perez, E. Understanding the Fragmentation Pattern of Marine Plastic Debris. Environ. Sci. Technol. 2016, 50, 5668–5675. [Google Scholar] [CrossRef] [Green Version]
- Englman, R. Fragments of matter from a maximum-entropy viewpoint. J. Phys. Condens. Matter 1991, 3, 1019. [Google Scholar] [CrossRef]
- Buser, A.M.; MacLeod, M.; Scheringer, M.; Mackay, D.; Bonnell, M.; Russell, M.H.; DePinto, J.V.; Hungerbühler, K. Good modeling practice guidelines for applying multimedia models in chemical assessments. Integr. Environ. Assess. Manag. 2012, 8, 703–708. [Google Scholar] [CrossRef]
Study | MPs in Influent (p/day) | MPs in Effluent (p/day) | MPs in Sludge (p/day) | Error in Mass Balance | % unaccounted | Ref. |
---|---|---|---|---|---|---|
WWTP, Los Angeles, CA, USA. | 1,510,000,000 | 930,000 | 1,090,000,000 | 419,070,000 | 28% | [82] |
WWTP, Vancouver, British Columbia, Canada. | 14,040,000,000 | 230,000,000 | 3,506,849,315 | 10,303,150,685 | 73% | [19] |
WWTP, Mikkeli, South Savo, Finland. | 626,428,761 | 3,328,421 | 460,000,000 | 163,100,340 | 26% | [91] |
WWTP, Mikkeli, South Savo, Finland. | 645,483,628 | 3,328,421 | 460,000,000 | 182,155,207 | 28% | [91] |
WWTP, Mikkeli, South Savo, Finland. | 676,447,788 | 4,740,478 | 460,000,000 | 211,707,309 | 31% | [91] |
WWTP, Mikkeli, South Savo, Finland. | 1,343,368,142 | 31,620,000 | 460,000,000 | 851,748,142 | 63% | [91] |
WWTP, Republic of Korea. | 234,821,918 | 3,945,205 | 149,712,329 | 90,164,384 | 38% | [20] |
WWTP, Republic of Korea. | 399,315,069 | 18,904,110 | 143,315,069 | 237,095,890 | 59% | [20] |
WWTP, Republic of Korea. | 123,780,822 | 2,000,000 | 32,301,370 | 89,479,452 | 72% | [20] |
WWTP, Republic of Korea. | 1,097,260,274 | 10,493,151 | 589,315,069 | 497,452,055 | 45% | [20] |
WWTP, Republic of Korea. | 1,074,575,342 | 7,095,890 | 444,602,740 | 622,876,712 | 58% | [20] |
WWTP, Republic of Korea. | 481,945,206 | 6,328,767 | 266,547,945 | 209,068,493 | 43% | [20] |
WWTP, Wuxi, Jiangsu, China. | 33,600,000 | 3,500,000 | 290,000 | 29,810,000 | 89% | [18] |
WWTP, Wuxi, Jiangsu, China. | 33,600,000 | 6,500,000 | 1,650,000 | 25,450,000 | 76% | [18] |
WWTP, Hunter Region, NSW, Australia. | 566,400,000 | 111,724,800 | 12,165,580 | 442,509,620 | 78% | [93] |
WWTP, Zhengzhou, Henan, China. | 4,800,000,000 | 870,000,000 | 315,000,000 | 3,615,000,000 | 75% | [81] |
WWTP, Helsinki, Uusimaa, Finland. | 193,649,400,000 | 197,000,000 | 151,000,000,000 | 42,452,400,000 | 22% | [94] |
Process | Goal | Methods | Influencing Factors & Recommendations | Ref |
---|---|---|---|---|
Sampling | Collect samples to analyze their MP content. | Net, trawl, pump, tweezer, spoon, shovel, box corer, grab sampler. | Sampling technique: A composite or pooled sampling of several collections at different times, locations, and depths yield a more accurate analysis of MPs than individual sampling. Sample volume: Analysis of larger sample volumes decreases the error in MPs estimation. Material: Stainless steel tools are preferred over plastic to avoid possible contamination. Sample composition: Apart from MPs, the property and composition of the soil sample needs to be characterized to enable interstudy comparisons, since these factors would influence MP recovery. Drying: In case of soil sample, drying the sample is recommended for easy and reliable analysis of MPs. However, drying >40 ℃ for longer durations is not recommended as it can fragment the MPs and change their chemical composition, both of which can affect MP detection. | [14,21,95,96,97], |
Sieving | Isolate the bigger (>1 mm) /easily accessible MPs from the sample before further processing for smaller MPs. | Sieves of different pore sizes. | Pore size: Use sieves of various pore sizes starting from a larger size (≈500 µm) and gradually going to a smaller size (≈1 µm); Material: Stainless steel tools are preferred over plastic to avoid possible contamination. | [14,96,97,98] |
Pre-oxidation or Purification | Break down the organic debris in the sample to increase the efficiency of extraction and detection of MPs. | Treatment with hydrogen peroxide, Fenton’s reagent, acid, alkali, enzymes. | Choice of the method: Fenton’s reagent can facilitate more efficient degradation of organics and estimation of MPs than traditional peroxide treatment; acid/alkali digestion is very aggressive, and enzymatic digestion is efficient but expensive and complex. Reaction parameters: Reagent concentration, treatment time, and temperature need to be optimized to achieve maximum digestion of organic debris with the least effect on the physical and chemical properties of MPs. Sample composition: In case of soil samples, due to the complexity and heterogeneity of organic matter, the treatment methodology should be adapted and standardized following the examination of the composition and properties of soil. | [21,96,98,99,100] |
Separation | Extract the MPs from the sample matrix into a salt solution. | Density separation (separation of low-density MPs using high-density solutions such as NaCl, NaI, ZnCl2, sodium polytungstate. | Choice of the salt solution: NaI or ZnCl2 result in superior extraction efficiency of MPs than NaCl. Pre-oxidation step: Performing a pre-oxidation step before the density separation is recommended as it releases tightly-bound small MPs from organic matter which would otherwise not be extracted. | [21,98,100] |
Filtration and Sieving | Filter out the extracted MPs in the salt solution. | Vacuum filtration using membrane filters made of quartz, glass fiber, PTFE, or nylon. | Choice of the membrane filter: Use of quartz and glass membranes needs to be scrutinized, as they tend to leak inherent fibers and cause interference in MPs detection. Nylon is superior to hydrophobic PTFE in terms of ease of filtration. Pore size: Membranes with small pore size improve the efficiency of MP estimation, as most of the unaccounted MPs in sludge are <50 µm. Smaller pore size can lead to organic/mineral clogging of membranes. To mitigate this, solutions can be passed through stainless steel sieves first to remove organic matter, followed by membrane filtration. | [21,98,100] |
Post-digestion oxidation | Remove any residual organic matter from the pre-oxidation and filtration steps to further reduce their interference in MPs detection. | A mixture of peroxide and acid | Choice of reagents: Post-digestion oxidation, being a second round of oxidation, can lead to chemical and physical changes to MPs, thereby interfering with their estimation. Though it is not universally followed, it would help the MPs’ analysis if the reagents and their concentration are optimized to positively influence MP estimation. | [98] |
Detection | Identify and characterize the MPs physically and chemically. | Visual identification (naked eye or microscope), GC/MS, FTIR, Raman Spectroscopy. | Choice of technique: Visual identification alone can lead to inaccurate estimation due to inter-person variability and false classification, especially for smaller MPs. Hence, it needs to be supported with characterization by analytical instruments. | [14,21] |
Quantification | To measure the concentration of MPs in the sample to understand the extent of pollution in a particular environment | Manual counting, image analysis softwares. | Choice of method: Image analysis capable of high throughput and automatic quantification are rapid, more accurate, and convenient than manual analysis. Choice of Units: Reporting in units of the number of particles rather than weight can result in over- or under-estimation due to possible fragmentation or aggregation of particles along the process flow. This can lead to data being inconsistent within and between studies. | [14,21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gangula, A.; Chhetri, T.; Atty, M.; Shanks, B.; Kannan, R.; Upendran, A.; Afrasiabi, Z. Unaccounted Microplastics in the Outlet of Wastewater Treatment Plants—Challenges and Opportunities. Processes 2023, 11, 810. https://doi.org/10.3390/pr11030810
Gangula A, Chhetri T, Atty M, Shanks B, Kannan R, Upendran A, Afrasiabi Z. Unaccounted Microplastics in the Outlet of Wastewater Treatment Plants—Challenges and Opportunities. Processes. 2023; 11(3):810. https://doi.org/10.3390/pr11030810
Chicago/Turabian StyleGangula, Abilash, Tilak Chhetri, Manal Atty, Bruce Shanks, Raghuraman Kannan, Anandhi Upendran, and Zahra Afrasiabi. 2023. "Unaccounted Microplastics in the Outlet of Wastewater Treatment Plants—Challenges and Opportunities" Processes 11, no. 3: 810. https://doi.org/10.3390/pr11030810
APA StyleGangula, A., Chhetri, T., Atty, M., Shanks, B., Kannan, R., Upendran, A., & Afrasiabi, Z. (2023). Unaccounted Microplastics in the Outlet of Wastewater Treatment Plants—Challenges and Opportunities. Processes, 11(3), 810. https://doi.org/10.3390/pr11030810