A Model for the Flow Distribution in Dual Cell Density Monoliths
Abstract
:1. Introduction
2. Computational Model
2.1. Description of the Domain
2.2. Flow Model
2.3. Grid Independence and Model Validation
3. Results and Discussion
3.1. Effect of the Core Size
3.2. Effect of the Relative Permeability
3.3. Model Development
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Cross-sectional area, m |
Cross-sectional area of the core, m | |
Cross-sectional area of the ring, m | |
C | Channel cross-section shape factor |
Channel hydraulic diameter, m | |
Fraction of flow through the core | |
L | Monolith length, m |
p | Pressure, Pa |
Pressure drop through the core, Pa | |
Pressure drop through the ring, Pa | |
R | Monolith or tube radius, m |
Core radius, m | |
Channel Reynolds number, = | |
Inlet Reynolds number, | |
u | Velocity Magnitude, m/s |
Velocity vector, m/s | |
Inlet velocity, m/s | |
Channel velocity, m/s | |
Core velocity, m/s | |
Ring velocity, m/s | |
Apparent permeability vector, | |
, | Core apparent permeability, |
, | Ring apparent permeability, |
Core fractional size | |
Substrate void fraction | |
Density, | |
Molecular viscosity, Pa·s |
References
- Dincer, I. Comprehensive Energy Systems; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Nauman, E.B. Chemical Reactor Design, Optimization, and Scaleup; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Silveston, P.; Hudgins, R.R.; Renken, A. Periodic operation of catalytic reactors—Introduction and overview. Catal. Today 1995, 25, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, M.; Gao, Z.; Qin, X.; Xu, Y.; Wang, Z.; Zhou, W.; Ma, D. Importance of species heterogeneity in supported metal catalysts. J. Am. Chem. Soc. 2022, 144, 5108–5115. [Google Scholar] [CrossRef]
- Ould-Chikh, S.; Pavan, S.; Fecant, A.; Trela, E.; Verdon, C.; Gallard, A.; Crozet, N.; Loubet, J.; Hemati, M.; Rouleau, L. Hierarchical porous catalyst support: Shaping, mechanical strength and catalytic performances. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2010; Volume 175, pp. 193–200. [Google Scholar]
- De, S.; Dokania, A.; Ramirez, A.; Gascon, J. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catal. 2020, 10, 14147–14185. [Google Scholar] [CrossRef]
- Omojola, T.; van Veen, A.C. Mechanistic insights into the conversion of dimethyl ether over ZSM-5 catalysts: A combined temperature-programmed surface reaction and microkinetic modelling study. Chem. Eng. Sci. 2021, 239, 116620. [Google Scholar] [CrossRef]
- Chen, J.; Li, T. Effect of catalytic washcoat shape and properties on mass transfer characteristics of microstructured steam-methanol reformers for hydrogen production. Int. J. Hydrogen Energy 2022, 47, 16375–16397. [Google Scholar] [CrossRef]
- Liu, W.; Wen, J.; Gong, J.; Liu, G.; Zhong, C.; Pan, J. Parametric study of methane catalytic combustion in a micro-channel reactor: Effects of porous washcoat properties. Fuel 2021, 290, 120099. [Google Scholar] [CrossRef]
- Jeyakumar, N.; Arumugam, C.; Narayanasamy, B.; Rajkumar, R. Effect of wash coat layers on the conversion efficiency of a catalytic converter in the SI engine. Int. J. Ambient. Energy 2022, 43, 1598–1606. [Google Scholar] [CrossRef]
- Bolton, G.; Hooper, C.; Mann, R.; Stitt, E. Flow distribution and velocity measurement in a radial flow fixed bed reactor using electrical resistance tomography. Chem. Eng. Sci. 2004, 59, 1989–1997. [Google Scholar] [CrossRef]
- Mei, D.; Liang, L.; Qian, M.; Lou, X. Modeling and analysis of flow distribution in an A-type microchannel reactor. Int. J. Hydrogen Energy 2013, 38, 15488–15499. [Google Scholar] [CrossRef]
- Cornejo, I.; Nikrityuk, P.; Hayes, R.E. Heat and mass transfer inside of a monolith honeycomb: From channel to full size reactor scale. Catal. Today 2020, 383, 110–122. [Google Scholar] [CrossRef]
- Avila, P.; Montes, M.; Miró, E.E. Monolithic reactors for environmental applications: A review on preparation technologies. Chem. Eng. J. 2005, 109, 11–36. [Google Scholar] [CrossRef]
- Gokalp, B. Using the three-way catalyst monolith reactor for reducing exhaust emissions. J. Renew. Sustain. Energy 2012, 4, 043114. [Google Scholar] [CrossRef]
- Montebelli, A.; Visconti, C.G.; Groppi, G.; Tronconi, E.; Kohler, S. Optimization of compact multitubular fixed-bed reactors for the methanol synthesis loaded with highly conductive structured catalysts. Chem. Eng. J. 2014, 255, 257–265. [Google Scholar] [CrossRef]
- Kreutzer, M.T.; Kapteijn, F.; Moulijn, J.A. Shouldn’t catalysts shape up?: Structured reactors in general and gas–liquid monolith reactors in particular. Catal. Today 2006, 111, 111–118. [Google Scholar] [CrossRef]
- Benjamin, S.; Clarkson, R.; Haimad, N.a.; Girgis, N. An experimental and predictive study of the flow field in axisymmetric automotive exhaust catalyst systems. J. Fuels Lubr. 1996, 105, 1008–1019. [Google Scholar]
- Boger, T.; Heibel, A.K. Heat transfer in conductive monolith structures. Chem. Eng. Sci. 2005, 60, 1823–1835. [Google Scholar] [CrossRef]
- Inbamrung, P.; Sornchamni, T.; Prapainainar, C.; Tungkamani, S.; Narataruksa, P.; Jovanovic, G.N. Modeling of a square channel monolith reactor for methane steam reforming. Energy 2018, 152, 383–400. [Google Scholar] [CrossRef]
- Dai, C.; Lei, Z.; Zhang, J.; Li, Y.; Chen, B. Monolith catalysts for the alkylation of benzene with propylene. Chem. Eng. Sci. 2013, 100, 342–351. [Google Scholar] [CrossRef]
- Lei, Z.; Wen, C.; Zhang, J.; Chen, B. Selective catalytic reduction for NO removal: Comparison of transfer and reaction performances among monolith catalysts. Ind. Eng. Chem. Res. 2011, 50, 5942–5951. [Google Scholar] [CrossRef]
- Kang, H.K.; Woo, S.G.; Kim, J.H.; Lee, S.R.; Lee, D.G.; Yu, J.S. Three-dimensional monolithic corrugated graphene/Ni foam for highly stable and efficient Li metal electrode. J. Power Sources 2019, 413, 467–475. [Google Scholar] [CrossRef]
- Leung, D.; Hayes, R.; Kolaczkowski, S. Diffusion limitation effects in the washcoat of a catalytic monolith reactor. Can. J. Chem. Eng. 1996, 74, 94–103. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Harold, M.P.; Balakotaiah, V. Mass-transfer coefficients in washcoated monoliths. AIChE J. 2004, 50, 2939–2955. [Google Scholar] [CrossRef]
- Zamaro, J.M.; Ulla, M.A.; Miró, E.E. Zeolite washcoating onto cordierite honeycomb reactors for environmental applications. Chem. Eng. J. 2005, 106, 25–33. [Google Scholar] [CrossRef]
- Walander, M.; Sjöblom, J.; Creaser, D.; Agri, B.; Löfgren, N.; Tamm, S.; Edvardsson, J. Modelling of mass transfer resistances in non-uniformly washcoated monolith reactors. Emiss. Control. Sci. Technol. 2021, 7, 153–162. [Google Scholar] [CrossRef]
- Wu, P.; Li, X.; Ji, S.; Lang, B.; Habimana, F.; Li, C. Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts. Catal. Today 2009, 146, 82–86. [Google Scholar] [CrossRef]
- Arab, S.; Commenge, J.M.; Portha, J.F.; Falk, L. Methanol synthesis from CO2 and H2 in multi-tubular fixed-bed reactor and multi-tubular reactor filled with monoliths. Chem. Eng. Res. Des. 2014, 92, 2598–2608. [Google Scholar] [CrossRef]
- Hosseini, S.; Moghaddas, H.; Soltani, S.M.; Kheawhom, S. Technological applications of honeycomb monoliths in environmental processes: A review. Process Saf. Environ. Prot. 2020, 133, 286–300. [Google Scholar] [CrossRef]
- Salamon, E.; Cornejo, I.; Mmbaga, J.P.; Kołodziej, A.; Lojewska, J.; Hayes, R.E. Investigations of a three channel autogenous reactor for lean methane combustion. Chem. Eng. Process.-Process Intensif. 2020, 153, 107956. [Google Scholar] [CrossRef]
- Hayes, R.E.; Cornejo, I. Multi-scale modelling of monolith reactors: A 30-year perspective from 1990 to 2020. Can. J. Chem. Eng. 2021, 99, 2589–2606. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Shirjana, S.; Hossain, M.M.; Heo, I.; Mok, Y.S. Effective generation of atmospheric pressure plasma in a sandwich-type honeycomb monolith reactor by humidity control. Chem. Eng. J. 2020, 401, 125970. [Google Scholar] [CrossRef]
- Hayes, R.E.; Fadic, A.; Mmbaga, J.; Najafi, A. CFD modelling of the automotive catalytic converter. Catal. Today 2012, 188, 94–105. [Google Scholar] [CrossRef]
- Cornejo, I.; Nikrityuk, P.; Hayes, R.E. The influence of channel geometry on the pressure drop in automotive catalytic converters: Model development and validation. Chem. Eng. Sci. 2020, 212, 115317. [Google Scholar] [CrossRef]
- Tsinoglou, D.N.; Koltsakis, G.C.; Missirlis, D.K.; Yakinthos, K.J. Transient modelling of flow distribution in automotive catalytic converters. Appl. Math. Model. 2004, 28, 775–794. [Google Scholar] [CrossRef]
- Negri, M.; Wilhelm, M.; Hendrich, C.; Wingborg, N.; Gediminas, L.; Adelöw, L.; Maleix, C.; Chabernaud, P.; Brahmi, R.; Beauchet, R.; et al. New technologies for ammonium dinitramide based monopropellant thrusters—The project RHEFORM. Acta Astronaut. 2018, 143, 105–117. [Google Scholar] [CrossRef]
- Schwentenwein, M.; Homa, J. Additive manufacturing of dense alumina ceramics. Int. J. Appl. Ceram. Technol. 2015, 12, 1–7. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Rezaei, F.; Rownaghi, A. Catalytic cracking of n-hexane for producing light olefins on 3D-printed monoliths of MFI and FAU zeolites. Chem. Eng. J. 2018, 333, 545–553. [Google Scholar] [CrossRef]
- Couck, S.; Cousin-Saint-Remi, J.; Van der Perre, S.; Baron, G.V.; Minas, C.; Ruch, P.; Denayer, J.F. 3D-printed SAPO-34 monoliths for gas separation. Microporous Mesoporous Mater. 2018, 255, 185–191. [Google Scholar] [CrossRef]
- López, P.; Quintanilla, A.; Salazar-Aguilar, A.D.; Vega-Díaz, S.M.; Díaz-Herrezuelo, I.; Belmonte, M.; Casas, J.A. Monolithic Stirrer Reactors for the Sustainable Production of Dihydroxybenzenes over 3D Printed Fe/γ-Al2O3 Monoliths: Kinetic Modeling and CFD Simulation. Catalysts 2022, 12, 112. [Google Scholar] [CrossRef]
- Lommerts, B.; Graaf, G.; Beenackers, A. Mathematical modeling of internal mass transport limitations in methanol synthesis. CHemical Eng. Sci. 2000, 55, 5589–5598. [Google Scholar] [CrossRef]
- Ghosh, S.; Sebastian, J.; Olsson, L.; Creaser, D. Experimental and kinetic modeling studies of methanol synthesis from CO2 hydrogenation using In2O3 catalyst. Chem. Eng. J. 2021, 416, 129120. [Google Scholar] [CrossRef]
- Meloni, E.; Martino, M.; Iervolino, G.; Ruocco, C.; Renda, S.; Festa, G.; Palma, V. The Route from Green H2 Production through Bioethanol Reforming to CO2 Catalytic Conversion: A Review. Energies 2022, 15, 2383. [Google Scholar] [CrossRef]
- Di Stasi, C.; Renda, S.; Greco, G.; González, B.; Palma, V.; Manyà, J.J. Wheat-Straw-Derived Activated Biochar as a Renewable Support of Ni-CeO2 Catalysts for CO2 Methanation. Sustainability 2021, 13, 8939. [Google Scholar] [CrossRef]
- Huynh, H.L.; Tucho, W.M.; Shen, Q.; Yu, Z. Bed packing configuration and hot-spot utilization for low-temperature CO2 methanation on monolithic reactor. Chem. Eng. J. 2022, 428, 131106. [Google Scholar] [CrossRef]
- Busse, C.; Freund, H.; Schwieger, W. Intensification of heat transfer in catalytic reactors by additively manufactured periodic open cellular structures (POCS). Chem. Eng. Process.-Process Intensif. 2018, 124, 199–214. [Google Scholar] [CrossRef]
- Portela, R.; Marinkovic, J.M.; Logemann, M.; Schörner, M.; Zahrtman, N.; Eray, E.; Haumann, M.; García-Suárez, E.J.; Wessling, M.; Ávila, P.; et al. Monolithic SiC supports with tailored hierarchical porosity for molecularly selective membranes and supported liquid-phase catalysis. Catal. Today 2022, 383, 44–54. [Google Scholar] [CrossRef]
- Tronconi, E.; Groppi, G. ‘High conductivity’monolith catalysts for gas/solid exothermic reactions. Chem. Eng. Technol. 2002, 25, 743–750. [Google Scholar]
- Sanz, O.; Velasco, I.; Reyero, I.; Legorburu, I.; Arzamendi, G.; Gandía, L.M.; Montes, M. Effect of the thermal conductivity of metallic monoliths on methanol steam reforming. Catal. Today 2016, 273, 131–139. [Google Scholar] [CrossRef]
- Kim, J.Y.; Son, S. Improving Flow Efficiency of a Catalytic Converter Using the Concept of Radially Variable Cell Density-Part I; SAE Technical Paper; Report Number 1999-01-0769; SAE International: Warrendale, PA, USA, 1999. [Google Scholar]
- Cornejo, I.; Garreton, G.; Hayes, R.E. On the use of dual cell density monoliths. Catalysts 2021, 11, 1075. [Google Scholar] [CrossRef]
- Renda, S.; Di Stasi, C.; Manyà, J.J.; Palma, V. Biochar as support in catalytic CO2 methanation: Enhancing effect of CeO2 addition. J. CO2 Util. 2021, 53, 101740. [Google Scholar] [CrossRef]
- ANSYS Fluent Theory Guide v2022R2; ANSYS Inc.: Canonsburg, PA, USA, 2022.
- White, F.M. Fluid Mechanics; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Wilcox, D.C. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 1988, 26, 1299–1310. [Google Scholar] [CrossRef]
- Menter, F. Improved Two-Equation K-ω Turbulence Models for Aerodynamic Flows; NASA Technical Memorandum; ID 19930013620; NASA: Washington, DC, USA, 1992.
- Menter, F. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Mesquida, I.M.V.; Cornejo, I.; Nikrityuk, P.; Greiner, R.; Votsmeier, M.; Hayes, R.E. Towards a fully predictive multi-scale pressure drop model for a wall-flow filter. Chem. Eng. Res. Des. 2020, 164, 261–280. [Google Scholar] [CrossRef]
- Cornejo, I.; Nikrityuk, P.; Hayes, R.E. Turbulence decay inside the channels of an automotive catalytic converter monolith. Emiss. Control. Sci. Technol. 2017, 3, 302–309. [Google Scholar] [CrossRef]
- Hettel, M.; Daymo, E.; Schmidt, T.; Deutschmann, O. CFD-Modeling of fluid domains with embedded monoliths with emphasis on automotive converters. Chem. Eng. Process.-Process Intensif. 2020, 147, 107728. [Google Scholar] [CrossRef]
- Bertrand, F.; Devals, C.; Vidal, D.; de Préval, C.S.; Hayes, R.E. Towards the simulation of the catalytic monolith converter using discrete channel-scale models. Catal. Today 2012, 188, 80–86. [Google Scholar] [CrossRef]
- Cornejo, I.; Nikrityuk, P.; Hayes, R.E. Pressure correction for automotive catalytic converters: A multi-zone permeability approach. Chem. Eng. Res. Des. 2019, 147, 232–243. [Google Scholar] [CrossRef]
- Whitaker, S. Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Media 1986, 1, 3–25. [Google Scholar] [CrossRef]
- Cornejo, I.; Hayes, R.E.; Nikrityuk, P. A new approach for the modeling of turbulent flows in automotive catalytic converters. Chem. Eng. Res. Des. 2018, 140, 308–319. [Google Scholar] [CrossRef]
- Cornejo, I.; Nikrityuk, P.; Lange, C.; Hayes, R.E. Influence of upstream turbulence on the pressure drop inside a monolith. Chem. Eng. Process.-Process Intensif. 2020, 147, 107735. [Google Scholar] [CrossRef]
- Cornejo, I.; Nikrityuk, P.; Hayes, R.E. Turbulence generation after a monolith in automotive catalytic converters. Chem. Eng. Sci. 2018, 187, 107–116. [Google Scholar] [CrossRef]
- Cornejo, I.; Nikrityuk, P.; Hayes, R.E. Effect of substrate geometry and flow condition on the turbulence generation after a monolith. Can. J. Chem. Eng. 2020, 98, 947–956. [Google Scholar] [CrossRef]
- Al-Nassri, S.; Unny, T. Developing laminar flow in the inlet length of a smooth pipe. Appl. Sci. Res. 1981, 36, 313–332. [Google Scholar] [CrossRef]
- Cornejo, I. A Model for Correcting the Pressure Drop between Two Monoliths. Catalysts 2021, 11, 1314. [Google Scholar] [CrossRef]
- Shah, R. A correlation for laminar hydrodynamic entry length solutions for circular and noncircular ducts. J. Fluids Eng. 1978, 100, 177–179. [Google Scholar] [CrossRef]
- Benjamin, S.; Zhao, H.; Arias-Garcia, A. Predicting the flow field inside a close-coupled catalyst—The effect of entrance losses. PRoceedings Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2003, 217, 283–288. [Google Scholar] [CrossRef]
- ANSYS Fluent User’s Guide Release 2022R2; ANSYS Inc.: Canonsburg, PA, USA, 2022.
- Azzoni, M.E.; Franchi, F.S.; Usberti, N.; Nasello, N.D.; Castoldi, L.; Nova, I.; Tronconi, E. Dual-layer AdSCR monolith catalysts: A new solution for NOx emissions control in cold start applications. Appl. Catal. B Environ. 2022, 315, 121544. [Google Scholar] [CrossRef]
- Joshi, S.Y.; Harold, M.P.; Balakotaiah, V. Overall mass transfer coefficients and controlling regimes in catalytic monoliths. Chem. Eng. Sci. 2010, 65, 1729–1747. [Google Scholar] [CrossRef]
- Clarkson, R.J. A Theoretical and Experimental Study of Automotive Catalytic Converters. Ph.D. Thesis, Coventry University, Coventry, UK, 1997. [Google Scholar]
- Quadri, S. The Effect of Oblique Entry into An Automotive Catalyst on the Flow Distribution within the Monolith. Ph.D. Thesis, Coventry University Coventry, Coventry, UK, 2008. [Google Scholar]
- Agrawal, G.; Kaisare, N.S.; Pushpavanam, S.; Ramanathan, K. Modeling the effect of flow mal-distribution on the performance of a catalytic converter. Chem. Eng. Sci. 2012, 71, 310–320. [Google Scholar] [CrossRef]
N | % Core Size | N | % Core Size | ||||
---|---|---|---|---|---|---|---|
1 | 3000 | 1.00 | 50 | 37 | 9000 | 2.15 | 50 |
2 | 3000 | 1.09 | 50 | 38 | 9000 | 2.45 | 50 |
3 | 3000 | 1.18 | 50 | 39 | 9000 | 2.78 | 50 |
4 | 3000 | 1.29 | 50 | 40 | 9000 | 3.18 | 50 |
5 | 3000 | 1.42 | 50 | 41 | 9000 | 3.66 | 50 |
6 | 3000 | 1.56 | 50 | 42 | 9000 | 4.22 | 50 |
7 | 3000 | 1.73 | 50 | 43 | 3000 | 2.45 | 0 |
8 | 3000 | 1.92 | 50 | 44 | 3000 | 2.45 | 10 |
9 | 3000 | 2.15 | 50 | 45 | 3000 | 2.45 | 20 |
10 | 3000 | 2.45 | 50 | 46 | 3000 | 2.45 | 30 |
11 | 3000 | 2.78 | 50 | 47 | 3000 | 2.45 | 40 |
12 | 3000 | 3.18 | 50 | 48 | 3000 | 2.45 | 60 |
13 | 3000 | 3.66 | 50 | 49 | 3000 | 2.45 | 70 |
14 | 3000 | 4.22 | 50 | 50 | 3000 | 2.45 | 80 |
15 | 6000 | 1.00 | 50 | 51 | 3000 | 2.45 | 90 |
16 | 6000 | 1.09 | 50 | 52 | 3000 | 2.45 | 100 |
17 | 6000 | 1.18 | 50 | 53 | 6000 | 2.45 | 0 |
18 | 6000 | 1.29 | 50 | 54 | 6000 | 2.45 | 10 |
19 | 6000 | 1.42 | 50 | 55 | 6000 | 2.45 | 20 |
20 | 6000 | 1.56 | 50 | 56 | 6000 | 2.45 | 30 |
21 | 6000 | 1.73 | 50 | 57 | 6000 | 2.45 | 40 |
22 | 6000 | 1.92 | 50 | 58 | 6000 | 2.45 | 60 |
23 | 6000 | 2.15 | 50 | 59 | 6000 | 2.45 | 70 |
24 | 6000 | 2.45 | 50 | 60 | 6000 | 2.45 | 80 |
25 | 6000 | 2.78 | 50 | 61 | 6000 | 2.45 | 90 |
26 | 6000 | 3.18 | 50 | 62 | 6000 | 2.45 | 100 |
27 | 6000 | 3.66 | 50 | 63 | 9000 | 2.45 | 0 |
28 | 6000 | 4.22 | 50 | 64 | 9000 | 2.45 | 10 |
29 | 9000 | 1.00 | 50 | 65 | 9000 | 2.45 | 20 |
30 | 9000 | 1.09 | 50 | 66 | 9000 | 2.45 | 30 |
31 | 9000 | 1.18 | 50 | 67 | 9000 | 2.45 | 40 |
32 | 9000 | 1.29 | 50 | 68 | 9000 | 2.45 | 60 |
33 | 9000 | 1.42 | 50 | 69 | 9000 | 2.45 | 70 |
34 | 9000 | 1.56 | 50 | 70 | 9000 | 2.45 | 80 |
35 | 9000 | 1.73 | 50 | 71 | 9000 | 2.45 | 90 |
36 | 9000 | 1.92 | 50 | 72 | 9000 | 2.45 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinao, C.; Cornejo, I. A Model for the Flow Distribution in Dual Cell Density Monoliths. Processes 2023, 11, 827. https://doi.org/10.3390/pr11030827
Reinao C, Cornejo I. A Model for the Flow Distribution in Dual Cell Density Monoliths. Processes. 2023; 11(3):827. https://doi.org/10.3390/pr11030827
Chicago/Turabian StyleReinao, Consuelo, and Iván Cornejo. 2023. "A Model for the Flow Distribution in Dual Cell Density Monoliths" Processes 11, no. 3: 827. https://doi.org/10.3390/pr11030827
APA StyleReinao, C., & Cornejo, I. (2023). A Model for the Flow Distribution in Dual Cell Density Monoliths. Processes, 11(3), 827. https://doi.org/10.3390/pr11030827