Practical Online Characterization of the Properties of Hydrocracking Bottom Oil via Near-Infrared Spectroscopy
Abstract
:1. Introduction
1.1. Background
1.2. Previous Research
1.3. Motivation and Main Contributions
2. Experimental Section
2.1. HBO Sample Collection
2.2. Laboratory Analysis of HBO Properties
2.3. Online NIR Detection System and HBO Spectra Collection
2.4. Preprocessing and Analysis of the Spectral Data
2.4.1. WT for NIR Spectrum Preprocessing
2.4.2. PCA and Hotelling’s T2 Test
2.4.3. Selection of Characteristic Variables
2.5. Development and Evaluation of Prediction Models
2.5.1. KPLS
2.5.2. Significance Test on Model Accuracy
2.6. Real-Time Optimization of Ethylene Cracking Process Integrated with Online NIR Measurement System
3. Results and Discussions
3.1. Sample Statistics
3.2. Spectral Features of HBO Samples and Spectroscopic Techniques
3.3. NIR Model Development for Predicting HBO Properties
3.4. Accuracy of Online Detection of HBO Properties
3.4.1. Implementation of Online NIR Detection
3.4.2. Online Detection Accuracy of Three Run Periods
3.5. Effects of Online NIR Measurement System Assisted Online Cracking Depth Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronyms and Parameters | |
ANN | artificial neural network |
ASTM | American Society for Testing and Materials |
Bureau of Mines correlation index | |
DWT | discrete wavelet transform |
GC | gas chromatograph |
GC-MS | gas chromatograph-mass spectrometry |
HBO | hydrocracking bottom oil |
HCR | hydrocracking unit |
LVs | latent variables |
MARE | the mean absolute relative error |
MLR | multiple linear regression |
MMN | min-max normalization |
MS | mass spectrometry |
MSC | multiplicative scattering correction |
NIR | near-infrared |
PCA | principal component analysis |
PCR | principal component regression |
PC-1 | the first PC |
PC-2 | the second PC |
PCs | principal components |
PLS | partial least squares regression |
PIONA | paraffins, isoparaffins, naphthenes, olefins, and aromatics |
RMSECV | root mean squared error of cross validations |
RMSEP | the root mean squared error of prediction set |
SNV | standard normalized vector |
SNV-MASL | SNV-minus a straight line |
WT | wavelet transform |
specific gravity at 15.6 °C (g/cm3) | |
E | residual matrix |
F1,f,α | critical value derived from the Fisher distribution |
i | a given sample |
j | dimension |
kernel function | |
deflation of kernel function | |
k | integer value |
m | row of samples |
Ni | sample size |
n | number of calibration/prediction set samples |
loading vector | |
Si | standard deviation of each sample |
sij | independent normally distributed samples |
mean of each sample | |
pooled variance | |
T | average boiling point (°C) |
T | score matrix |
ti | score vector |
critical value derived from the samples’ t-distribution | |
U | score matrix |
X | spectral data matrix |
the NIR spectral peak height data matrix | |
X (t) | the function transferred by WT |
oil samples | |
NIR absorbance at the i-th wavelength | |
i | mean of each sample |
the corresponding property matrix | |
oil samples | |
the j-th estimated property | |
predicted value | |
experimental value | |
the average of the response variable | |
ψ | mother function |
a nonlinear transformation | |
kernel parameter |
References
- Al-Jamimi, H.A.; BinMakhashen, G.M.; Deb, K.; Saleh, T.A. Multiobjective optimization and analysis of petroleum refinery catalytic processes, A review. Fuel 2021, 288, 119678. [Google Scholar] [CrossRef]
- Gu, H.; Li, J.; Mu, P.; Zhu, Q. Improving the Operational Efficiency of Ethylene Cracking Integrated with Refining by Molecular Management. Ind. Eng. Chem. Res. 2020, 59, 13160–13174. [Google Scholar] [CrossRef]
- Browning, B.; Alvarez, P.; Jansen, T.; Lacroix, M.; Geantet, C.; Tayakout-Fayolle, M. A Review of Thermal Cracking, Hydrocracking, and Slurry Phase Hydroconversion Kinetic Parameters in Lumped Models for Upgrading Heavy Oils. Energy Fuels 2021, 35, 15360–15380. [Google Scholar] [CrossRef]
- Liu, J.; Fang, X.; Yang, T. Novel Ebullated Bed Residue Hydrocracking Process. Energy Fuels 2017, 31, 6568–6579. [Google Scholar] [CrossRef]
- Alawani, N.A.; Muller, H.; Panda, S.K.; Al-Hajji, A.A.; Koseoglu, O.R. Evaluation of Polycyclic Aromatic Hydrocarbon Removal from Hydrocracking Recycle Streams. Energy Fuels 2020, 34, 179–187. [Google Scholar] [CrossRef]
- Upreti, N.; Pakala, H.; Surasani, V.K.; Dinda, S. Modeling of thermal cracking reaction of kerosene range hydrocarbons. Mater. Today Proc. 2022, 59, 430–436. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, G.; Liu, D.; Zhang, Y.; Zhao, L.; Gao, J.; Xu, C.; Meng, Q.; Gao, X. The advance in catalytic pyrolysis of naphtha technology using ZSM-5 as catalyst. Appl. Catal. A Gen. 2021, 628, 118399. [Google Scholar] [CrossRef]
- Fakhroleslam, M.; Sadrameli, S.M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review III, Process modeling and simulation. Fuel 2019, 252, 553–566. [Google Scholar] [CrossRef]
- Meng, D.; Shao, C.; Zhu, L. Two-level comprehensive energy-efficiency quantitative diagnosis scheme for ethylene-cracking furnace with multi-working-condition of fault and exception operation. Energy 2022, 239, 121835. [Google Scholar] [CrossRef]
- Moro, M.K.; dos Santos, F.D.; Folli, G.S.; Romão, W.; Filgueiras, P.R. A review of chemometrics models to predict crude oil properties from nuclear magnetic resonance and infrared spectroscopy. Fuel 2021, 303, 121283. [Google Scholar] [CrossRef]
- Jurinjak Tušek, A.; Jurina, T.; Čulo, I.; Valinger, D.; Gajdoš Kljusurić, J.; Benković, M. Application of NIRs coupled with PLS and ANN modelling to predict average droplet size in oil-in-water emulsions prepared with different microfluidic devices. Spectrochim. Acta Part A 2022, 270, 120860. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Du, W.; Long, J. Near-Infrared Wavelength-Selection Method Based on Joint Mutual Information and Weighted Bootstrap Sampling. IEEE Trans. Ind. Inform. 2020, 16, 5884–5894. [Google Scholar] [CrossRef]
- He, K.; Zhong, M.; Du, W. Weighted incremental minimax probability machine-based method for quality prediction in gasoline blending process. Chemom. Intell. Lab. Syst. 2020, 196, 103909. [Google Scholar] [CrossRef]
- Zhao, N.F.; Xu, Q.S.; Tang, M.L.; Wang, H. Variable Screening for Near Infrared (NIR) Spectroscopy Data Based on Ridge Partial Least Squares Regression. Comb. Chem. High Throughput Screen. 2020, 23, 740–756. [Google Scholar] [CrossRef]
- Du, C.; Sun, L.; Bai, H.; Liu, Y.; Yang, J.; Wang, X. Quantitative detection of azodicarbonamide in wheat flour by near-infrared spectroscopy based on two-step feature selection. Chemom. Intell. Lab. Syst. 2021, 219, 104445. [Google Scholar] [CrossRef]
- Varghese, G.; Saeed, K.; Rutt, K.J. Determination of the oxidative stability of biodiesel fuels by near-infrared spectroscopy. Fuel 2021, 290, 120015. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S.; Hu, C.; Zhan, S.; Kong, D.; Wang, J. Rapid and accurate determination of diesel multiple properties through NIR data analysis assisted by machine learning. Spectrochim. Acta Part A 2022, 277, 121261. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.D.; Santos, L.P.; Cunha, P.H.P.; Borghi, F.T.; Romão, W.; de Castro, E.V.R.; de Oliveira, E.C.; Filgueiras, P.R. Discrimination of oils and fuels using a portable NIR spectrometer. Fuel 2021, 283, 118854. [Google Scholar] [CrossRef]
- Joshi, N.B.; Mullins, O.C.; Jamaluddin, A.; Creek, J.; McFadden, J. Asphaltene Precipitation from Live Crude Oil. Energy Fuels 2001, 15, 979–986. [Google Scholar] [CrossRef]
- Barreira, F.R.; Reis, L.G.; Nunes, R.d.C.P.; Filipakis, S.D.; Lucas, E.F. Asphaltenes Precipitation Onset, Influence of the Addition of a Second Crude Oil or Its Asphaltenes Fractions (C3I and C5I). Energy Fuels 2018, 32, 10391–10397. [Google Scholar] [CrossRef]
- Wang, K.; He, K.; Du, W.; Long, J. Novel adaptive sample space expansion approach of NIR model for in-situ measurement of gasoline octane number in online gasoline blending processes. Chem. Eng. Sci. 2021, 242, 116672. [Google Scholar] [CrossRef]
- Yu, H.; Du, W.; Lang, Z.Q.; Wang, K.; Long, J. A Novel Integrated Approach to Characterization of Petroleum Naphtha Properties From Near-Infrared Spectroscopy. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Long, J.; Wang, K.; Yang, M.; Zhong, W. Rapid crude oil analysis using near-infrared reflectance spectroscopy. Pet. Sci. Technol. 2019, 37, 354–360. [Google Scholar] [CrossRef]
- Giovenzana, V.; Beghi, R.; Tugnolo, A.; Brancadoro, L.; Guidetti, R. Comparison of two immersion probes coupled with visible/near infrared spectroscopy to assess the must infection at the grape receiving area. Comput. Electron. Agric. 2018, 146, 86–92. [Google Scholar] [CrossRef]
- Li, J.; Chu, X. Rapid Determination of Physical and Chemical Parameters of Reformed Gasoline by Near-Infrared (NIR) Spectroscopy Combined with the Monte Carlo Virtual Spectrum Identification Method. Energy Fuels 2018, 32, 12013–12020. [Google Scholar] [CrossRef]
- Long, J.; Jiang, S.; He, R.; Zhao, L. Diesel blending under property uncertainty: A data-driven robust optimization approach. Fuel 2021, 306, 121647. [Google Scholar] [CrossRef]
- Leal, A.L.; Silva, A.M.S.; Ribeiro, J.C.; Martins, F.G. Using Spectroscopy and Support Vector Regression to Predict Gasoline Characteristics, A Comparison of 1H NMR and NIR. Energy Fuels 2020, 34, 12173–12181. [Google Scholar] [CrossRef]
- Zhao, N.; Ma, L.; Wang, K.; Zhang, F.; Li, M.; Liu, X.; Zhu, M.; Lu, Y.; Song, X.; Yan, H.; et al. NIR robustness model of variable selection investigation of critical quality attributes coupled with different simulate noises by prediction capability and reproducibility. Spectrochim. Acta Part A 2022, 267, 120522. [Google Scholar] [CrossRef]
- Shi, H.; Yu, P. Comparison of grating-based near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy based on spectral preprocessing and wavelength selection for the determination of crude protein and moisture content in wheat. Food Control 2017, 82, 57–65. [Google Scholar] [CrossRef]
- Dotto, A.C.; Dalmolin, R.S.D.; Grunwald, S.; ten Caten, A.; Pereira Filho, W. Two preprocessing techniques to reduce model covariables in soil property predictions by Vis-NIR spectroscopy. Soil Tillage Res. 2017, 172, 59–68. [Google Scholar] [CrossRef]
- Chu, X.-L.; Xu, Y.-P.; Tian, S.-B.; Wang, J.; Lu, W.-Z. Rapid identification and assay of crude oils based on moving-window correlation coefficient and near infrared spectral library. Chemom. Intell. Lab. Syst. 2011, 107, 44–49. [Google Scholar] [CrossRef]
- Cai, C.-B.; Xu, L.; Han, Q.-J.; Wu, H.-L.; Nie, J.-F.; Fu, H.-Y.; Yu, R.-Q. Combining the least correlation design, wavelet packet transform and correlation coefficient test to reduce the size of calibration set for NIR quantitative analysis in multi-component systems. Talanta 2010, 81, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhou, W.; Ying, D.; Xiang, B.; Li, P. Generalized two-dimensional correlation NIR spectroscopy analysis of the structures on n-propanol and n-butanol. J. Mol. Struct 2019, 1181, 436–443. [Google Scholar] [CrossRef]
- Cruz-Tirado, J.P.; Oliveira, M.; de Jesus Filho, M.; Godoy, H.T.; Amigo, J.M.; Barbin, D.F. Shelf life estimation and kinetic degradation modeling of chia seeds (Salvia hispanica) using principal component analysis based on NIR-hyperspectral imaging. Food Control 2021, 123, 107777. [Google Scholar] [CrossRef]
- Bobba, S.; Zinfollino, N.; Fissore, D. Application of Near-Infrared Spectroscopy to statistical control in freeze-drying processes. Eur. J. Pharm. Biopharm. 2021, 168, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Fearn, T. Hierarchical mixture of linear regressions for multivariate spectroscopic calibration: An application for NIR calibration. Chemom. Intell. Lab. Syst. 2018, 174, 1–14. [Google Scholar] [CrossRef]
- Reda, R.; Saffaj, T.; Derrouz, H.; Itqiq, S.E.; Bouzida, I.; Saidi, O.; Lakssir, B.; El Hadrami, E.M. Comparing CalReg performance with other multivariate methods for estimating selected soil properties from Moroccan agricultural regions using NIR spectroscopy. Chemom. Intell. Lab. Syst. 2021, 211, 104277. [Google Scholar] [CrossRef]
- Franzoi, M.; Ghetti, M.; Di Monte, L.; De Marchi, M. Investigation of weight loss in mozzarella cheese using NIR predicted chemical composition and multivariate analysis. J. Food Compos. Anal. 2021, 102, 104002. [Google Scholar] [CrossRef]
- Lei, T.; Sun, D.-W. A novel NIR spectral calibration method: Sparse coefficients wavelength selection and regression (SCWR). Anal. Chim. Acta 2020, 1110, 169–180. [Google Scholar] [CrossRef]
- Fung Shek, C.; Betenbaugh, M. Taking the pulse of bioprocesses: At-line and in-line monitoring of mammalian cell cultures. Curr. Opin. Biotechnol. 2021, 71, 191–197. [Google Scholar] [CrossRef]
- Labbé, N.; Lee, S.-H.; Cho, H.-W.; Jeong, M.K.; André, N. Enhanced discrimination and calibration of biomass NIR spectral data using non-linear kernel methods. Bioresour. Technol. 2008, 99, 8445–8452. [Google Scholar] [CrossRef] [PubMed]
- Binetti, G.; Del Coco, L.; Ragone, R.; Zelasco, S.; Perri, E.; Montemurro, C.; Valentini, R.; Naso, D.; Fanizzi, F.P.; Schena, F.P. Cultivar classification of Apulian olive oils: Use of artificial neural networks for comparing NMR, NIR and merceological data. Food Chem. 2017, 219, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Li, X.; Shen, Y.; Wu, X.; Ju, F.; Li, Y.; Wu, G.; Ai, B.; Xu, B.; Ling, H. Novel design of lubricant-type vacuum distillation process for lube base oils production from hydrocracking tail oil. Chin. J. Chem. Eng. 2022, 45, 121–132. [Google Scholar] [CrossRef]
- Campos, M.I.; Antolin, G.; Debán, L.; Pardo, R. Assessing the influence of temperature on NIRS prediction models for the determination of sodium content in dry-cured ham slices. Food Chem. 2018, 257, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Gu, J.; Su, Y.; Zhao, L.; Zhou, Y.; Peng, J. Real-time screening of hepatotoxins in natural medicine by peroxynitrite responsive lanthanide-based NIR-II luminescent probes. Chem. Eng. J. 2022, 433, 133263. [Google Scholar] [CrossRef]
- Standard Test Method for Hydrocarbon Types Analysis of Gas-Oil Saturates Fractions by High Ionizing Voltage Mass Spectrometry. Available online: https//docin.com/p-1271811601.html (accessed on 27 August 2015).
- Zhang, K.; Tan, Z.; Chen, C.; Sun, X.S.; Wang, D. Rapid Prediction of Camelina Seed Oil Content Using Near-Infrared Spectroscopy. Energy Fuels 2017, 31, 5629–5634. [Google Scholar] [CrossRef]
- Abasi, S.; Minaei, S.; Jamshidi, B.; Fathi, D.; Khoshtaghaza, M.H. Rapid measurement of apple quality parameters using wavelet de-noising transform with Vis/NIR analysis. Sci. Hortic. 2019, 252, 7–13. [Google Scholar] [CrossRef]
- Jamei, M.; Ahmadianfar, I.; Chu, X.; Yaseen, Z.M. Prediction of surface water total dissolved solids using hybridized wavelet-multigene genetic programming: New approach. J. Hydrol. 2020, 589, 125335. [Google Scholar] [CrossRef]
- Zucatelli, P.J.; Nascimento, E.G.S.; Santos, A.Á.B.; Arce, A.M.G.; Moreira, D.M. An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay. Energy 2021, 230, 120842. [Google Scholar] [CrossRef]
- Long, J.; Li, T.; Yang, M.; Hu, G.; Zhong, W. Hybrid Strategy Integrating Variable Selection and a Neural Network for Fluid Catalytic Cracking Modeling. Ind. Eng. Chem. Res. 2019, 58, 247–258. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Glazko, G.V.; Emmert-Streib, F. Unite and conquer: Univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics 2009, 25, 2348–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, Z.; Mashhadi-Hossainali, M. Application of the T2-Hotelling test for investigating ionospheric anomalies before large earthquakes. J. Atmos. Sol. Terr. Phys. 2019, 185, 7–21. [Google Scholar] [CrossRef]
- Hosani, E.A.; Meribout, M.; Al-Durra, A.; Al-Wahedi, K.; Teniou, S. A New Optical-Based Device for Online Black Powder Detection in Gas Pipelines. IEEE Trans. Instrum. Meas. 2014, 63, 2238–2252. [Google Scholar] [CrossRef]
- Haghi, R.K.; Yang, J.; Tohidi, B. Fourier Transform Near-Infrared (FTNIR) Spectroscopy and Partial Least-Squares (PLS) Algorithm for Monitoring Compositional Changes in Hydrocarbon Gases under In Situ Pressure. Energy Fuels 2017, 31, 10245–10259. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, Z.; Liu, F. Developing new products with kernel partial least squares model inversion. Comput. Chem. Eng. 2021, 155, 107537. [Google Scholar] [CrossRef]
- Rohani, A.; Taki, M.; Abdollahpour, M. A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part I). Renew. Energy 2018, 115, 411–422. [Google Scholar] [CrossRef]
- Toscano, G.; Rinnan, Å.; Pizzi, A.; Mancini, M. The Use of Near-Infrared (NIR) Spectroscopy and Principal Component Analysis (PCA) To Discriminate Bark and Wood of the Most Common Species of the Pellet Sector. Energy Fuels 2017, 31, 2814–2821. [Google Scholar] [CrossRef]
- Heidari, P.; Rezaei, M.; Sahebi, M.; Khadivi, A. Phenotypic variability of Pyrus boissieriana Buhse: Implications for conservation and breeding. Sci. Hortic. 2019, 247, 1–8. [Google Scholar] [CrossRef]
- Jamshidi, B.; Mohajerani, E.; Farazmand, H.; Mahmoudi, A.; Hemmati, A. Pattern recognition-based optical technique for non-destructive detection of Ectomyelois ceratoniae infestation in pomegranates during hidden activity of the larvae. Spectrochim. Acta Part A 2019, 206, 552–557. [Google Scholar] [CrossRef]
Properties | Range of Full Set | Mean | |||
---|---|---|---|---|---|
Full Set | Calibration on Subset | Prediction on Subset | |||
Density (kg/m3) | 821.5–839.8 | 832.2 | 832.4 | 832.2 | |
9.0–16.7 | 13.1 | 13.3 | 13.1 | ||
PIONA (Volume%) | Paraffins | 21.9–30.28 | 26.2 | 26.4 | 26.2 |
Isoparaffins | 22.6–28.45 | 26.8 | 26.5 | 26.8 | |
Olefins | <0.5 | <0.1 | <0.1 | <0.1 | |
Naphthenes | 41.2–53.9 | 46.1 | 46.3 | 46.1 | |
Aromatics | 0–2.23 | 0.8 | 0.8 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, J.; Xu, T.; Fan, C. Practical Online Characterization of the Properties of Hydrocracking Bottom Oil via Near-Infrared Spectroscopy. Processes 2023, 11, 829. https://doi.org/10.3390/pr11030829
Long J, Xu T, Fan C. Practical Online Characterization of the Properties of Hydrocracking Bottom Oil via Near-Infrared Spectroscopy. Processes. 2023; 11(3):829. https://doi.org/10.3390/pr11030829
Chicago/Turabian StyleLong, Jian, Tiantian Xu, and Chen Fan. 2023. "Practical Online Characterization of the Properties of Hydrocracking Bottom Oil via Near-Infrared Spectroscopy" Processes 11, no. 3: 829. https://doi.org/10.3390/pr11030829
APA StyleLong, J., Xu, T., & Fan, C. (2023). Practical Online Characterization of the Properties of Hydrocracking Bottom Oil via Near-Infrared Spectroscopy. Processes, 11(3), 829. https://doi.org/10.3390/pr11030829