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Abstract: Providing real-time information on the chemical properties of hydrocracking bottom oil
(HBO) as the feedstock for ethylene cracker while minimizing processing time, is important to
improve the real-time optimization of ethylene production. In this study, a novel approach for esti-
mating the properties of HBO samples was developed on the basis of near-infrared (NIR) spectra. The
main noise and extreme samples in the spectral data were removed by combining discrete wavelet
transform with principal component analysis and Hotelling’s T2 test. Kernel partial least squares
(KPLS) regression was utilized to account for the nonlinearities between NIR data and the chemical
properties of HBO. Compared with the principal component regression, partial least squares regres-
sion, and artificial neural network, the KPLS model had a better performance of obtaining acceptable
values of root mean square error of prediction (RMSEP) and mean absolute relative error (MARE).
All RMSEP and MARE values of density, Bureau of Mines correlation index, paraffins, isoparaffins,
and naphthenes were less than 1.0 and 3.0, respectively. The accuracy of the industrial NIR online
measurement system during consecutive running periods in predicting the chemical properties of
HBO was satisfactory. The yield of high value-added products increased by 0.26 percentage points
and coil outlet temperature decreased by 0.25 ◦C, which promoted economic benefits of the ethylene
cracking process and boosted industrial reform from automation to digitization and intelligence.

Keywords: hydrocracking bottom oil; near-infrared; kernel partial least squares; online measurement;
ethylene cracking

1. Introduction
1.1. Background

Ethylene is an important organic compound in the petrochemical industry, and its
production substantially dwarfs that of other petrochemical products [1]. Ethylene produc-
tion plays a pivotal role in petrochemical production, and the extent of this trade is often
regarded as a significant indicator of a country’s level of industrialization [2]. Thermal
cracking, as the primary force in the ethylene production process, utilizes cracking furnaces
as major units to decompose feedstock into small molecules from a wide range of feedstock,
such as ethane, propane, butane liquefied petroleum gas, naphtha, and hydrocracking
bottom oil (HBO) [3,4].

HBO is obtained from the hydrocracking reaction unit (HCR), which is an essential
process that converts heavy oil fractions with catalysts and excess hydrogen into a variety
of valuable products [5]. Recently, the cost of feedstock accounts for over 90% of the
total expense of ethylene production. The choice of ethylene feedstock largely depends
on the availability of the raw material and profitability. Thus, HBO has become one of
the preferred feedstocks due to its ability to produce high yields of ethylene, propylene,
and butadiene.
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Usually, the mass fraction of paraffins, isoparaffins, olefins, naphthenes, and aromatics
(PIONA) is used to characterize the cracking performance of ethylene feedstock. In the
cracking process, paraffins yield the highest amount of ethylene; isoparaffins readily form
propylene in the cracking reaction; naphthenes tend to produce aromatic hydrocarbons;
olefins generate acetylene and coke; and aromatics are prone to form heavy aromatic hy-
drocarbons [6,7]. Therefore, the properties of HBO, encompassing PIONA, density, boiling
range, and the Bureau of Mines correlation indexes (BMCI), which change according to the
properties of crude oil, processing technologies, and operating conditions, are crucial to the
various operations involved in ethylene cracking, such as modeling, simulation, control,
and optimization, especially in real-time monitoring and optimization [8].

1.2. Previous Research

These parameters can be assessed via standard procedures such as gas chromatograph-
mass spectrometry; however, they tend to be time-consuming and costly. Nowadays,
intelligent reformation of ethylene industries is of wide concern [9]. Fast and accurate
property information of feedstock will improve aforementioned intelligence in the ethylene
cracking process, leading to benefits for enterprises [10]. Therefore, real-time information
on the chemical properties of HBO should be provided while minimizing the analysis and
processing time to obtain a considerable amount of high-quality products.

Near infrared (NIR) spectroscopy has been proven to be highly valuable in predicting
product quality as it can obtain information about multiple kinds of chemical bonds (e.g.,
C–H, O–H, or N–H) in molecules [11]. Thus, the application of this technique in the online
detection of sample quality has received increasing attention due to its speed, low cost,
and minimal sample preparation requirements [12–14]. It is extensively employed for
predicting qualitative and quantitative properties of the products in various industries,
such as agricultural, food, and pharmaceutical industries [15]. Optimal models on the
basis of NIR spectroscopy have been developed to predict the quality of various types of
materials, such as biorefinery feedstocks [16], tomatoes, and alternative fuels [17].

Recent studies have employed chemometric calibration modeling techniques com-
bined with NIR spectroscopy to identify some of the most important properties of petroleum
and its distillates [18], such as crude oil [19,20], gasoline [21], diesel, and naphtha [22]. By
utilizing this technique, especially with a flexible NIR fiber probe [23,24], many critical
parameters of petroleum and its products can be rapidly predicted. These predictions can
be utilized to support rapid laboratory analysis of samples or online monitoring, control-
ling, and optimization of refinery processes, such as crude distillation, catalytic cracking,
naphtha cracking, and gasoline and diesel blending [25–27].

The construction of high-quality quantitative models is challenging due to the large
amounts of variables, noise, and overlapping bands [28]. To address this issue, some
methods have been applied to accurately predict oil properties. For example, standard
normal variate (SNV), wavelet transform (WT), and detrending have been employed to
distinguish noise, improve resolution and sensitivity, and extract useful features in the
NIR data preprocessing [29,30]. Methods that can be used to reduce the size of data sets
used for training prediction models include correlation coefficient, two-dimensional corre-
lation, principal component analysis (PCA), and Hotelling’s T2 [31–35]. Many modeling
techniques are available for quantitative data analysis, including principal component
regression (PCR), partial least squares (PLS), locally weighted regression, artificial neural
networks (ANN), support vector regression, and the kernel partial least squares (KPLS),
which fall under the category of multivariate or machine learning regression methods.
They can be applied to analyze the correlation of NIR spectral data [36–42]. Additionally,
bilinear approaches and the introduction of nonlinear kernels in support vector machine
regression can assist in analyzing data with a strong nonlinear correlation. Recent studies
indicate that novel chemometric approaches, including machine learning methods, can
provide some advantage in the space nonlinearity and the time-varying issue of the process
simultaneously [36,38].
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However, unlike light oils or off-line measurements, HBO is a complicated hydro-
genated oil with assorted internal molecular structures [43]. The NIR spectral peaks of the
HBO samples overlap significantly. Their NIR spectral data fluctuate with the dynamic
detection environment, such as the contamination degree of the NIR probe [44,45]. For
a long-term online measurement of HBO properties in the dynamic ethylene cracking
process, these factors pose a great challenge to the prediction accuracy and robustness of
the HBO prediction model.

The aforementioned methods concentrate on addressing the nonlinearities of oil
properties and NIR spectra data or ensuring the robustness of predictive models on an
individual level. However, this approach may not yield a reliable predictive ability for
HBO quality parameters. Generally, regression methods can provide a good solution to
train the predictive model if the NIR spectra of the HBO samples can be denoised and
abnormal oil samples can be removed. Meanwhile, there is interest in developing a model
that incorporates the effects of oil properties on process control and profitability.

1.3. Motivation and Main Contributions

Real-time and accurate property information of HBO, such as PIONA, density, boiling
range, and BMCI for a long run period, is essential and beneficial for intelligent operation
and profitability in the ethylene cracking process. Aforementioned methods of NIR model-
ing are effective for offline prediction; however, the advantages of online prediction are not
sufficient. The motivation of this study is to address the issue of using NIR data to measure
the quality parameters including the physical and chemical properties of HBO in refiner-
ies, and to reveal the control and profitability improvement of this online measurement
technique for real-time optimization of ethylene cracking.

To improve the accuracy and robustness of the property prediction model and realize
the integration of online measurement and online optimization of ethylene cracking, a
practical online characterization of HBO properties was proposed in this paper. An NIR
absorption spectrometer that was equipped with a transmission probe was applied to
implement the approach. The main noise of the spectral data was removed by applying dis-
crete wavelet transform (DWT). Extreme samples were marked out to solve the robustness
problem by combining principal component analysis (PCA) and Hotelling’s T2 test. The
nonlinearities between the quality parameters of HBO and NIR data were constructed by
KPLS algorithm to improve prediction accuracy. The method can improve the predictive
ability of the models, thereby reducing the risk of performance degradation. Moreover,
integrated applications of the aforementioned rapid measurement methods and real-time
optimization of ethylene cracking unit were carried out.

The main contributions of the paper are as follows:
(1) A novel approach of DWT combining PCA with Hotelling’s T2 test was proposed

to solve the robustness problem of NIR prediction model.
(2) NIR prediction models based on KPLS were constructed to predict HBO properties

more accurately.
(3) An optimization framework integrating HBO online analysis and real-time opti-

mization module was proposed.

2. Experimental Section
2.1. HBO Sample Collection

Over 130 HBO samples, which consisted of mixtures of bottom oils from a medium-
pressure HCR unit and a high-pressure HCR unit, were collected from the feed pipeline
of an ethylene cracking furnace located in an eastern Chinese refinery. An automatic
sampler was utilized to collect HBO samples in the form of oil drops from the pipeline for
a sampling period of 1 h. Approximately 100 mL of the HBO sample was continuously
collected to ensure a greater number of HBO droplets were obtained from the sample. This
step ensured that the as-obtained HBO samples were composed of many small HBO oil
droplets at different time periods, which reflected the properties of the HBO sample as



Processes 2023, 11, 829 4 of 20

it flowed through the pipeline until relatively stable oil properties were achieved. The
interval between collecting different samples, which lasted for 2–3 days, depended on
changes in the properties of crude oil processed by the crude distillation unit and the
operating conditions of the hydrocracking unit. Consequently, the different HBO samples
had vastly different properties.

2.2. Laboratory Analysis of HBO Properties

The BMCI is widely used as an aromatic index for oil cracking, and the optimal BMCI
value for hydrocracking of HBO is normally lower than 12. The BMCI was calculated
as follows.

BMCI =
48, 640
T + 273

+ 473.7× d15.6
15.6 − 456.8 (1)

where T is the average boiling point (◦C) and d15.6
15.6 is the specific gravity at 15.6 ◦C (g/cm3).

The density, BMCI, and PIONA content of the liquid feedstock are crucial for the
optimization and control of the ethylene cracking process.

Density and average boiling point (T) (such as 10% point, 30% point, 50% point,
70% point, and 90% point) were determined following the American Society for Testing
and Materials (ASTM) D1298 and D86, respectively. The PIONA content of HBO sam-
ples was determined via the reproductive laboratory analysis method [46]. The chemical
compositions of the HBO samples in terms of hydrocarbon families and carbon number
distributions were analyzed via gas chromatograph [47] (Agilent 7890). Mass spectral data
were obtained using an Agilent GC–MS/7890-5975C operating in the electron impact posi-
tive ion mode within the pyrolysis temperature range of 350–750 ◦C. The Agilent 7890 GC
was equipped with a programmed temperature vaporization system, a flame ionization
detector, a cryogenic cooled oven compartment, and a capillary column of fused silica,
30 m long and 0.25 µm wide. The mass range was 1 m/z–1050 amu m/z, the resolution
was unit mass resolution, the sensitivity was 100 pg octafluoronaphthalene, S/N ≥ 10:1 at
272 m/z. The sample was extracted with a 0.4–1.0 µL microsyringe during the experiment.
The working condition of the instrument is to adjust the repulsion pole of the ion source to
maximize the molecular ion peak m/e 226 of n-cetane. The magnetic field scanning was
done from m/e 65–410. The ionization voltage was 70 eV and the ionization current was
10–70 µA. PIONA content was calculated using software (Carbon Distribution of Disel
Oil 2005) for calculating wax oil carbon number distribution and an MS software (Beijing
Research Institute of Petroleum Processing of China Petroleum & Chemical Corporation,
Beijing, China) for analyzing the hydrocarbon composition of vacuum gas oil.

2.3. Online NIR Detection System and HBO Spectra Collection

The HBO sampling site and the online method for measuring the NIR spectra of
the HBO samples are shown in Figure 1. An online NIR Fourier transform spectrometer
(Bruker, Germany), equipped with a tungsten halogen lamp, was used to online collect
NIR spectra. A liquid immersion fiber optic probe with a 1.0 mm optical path length was
installed on the feeding pipeline before the cracking furnace. The probe was connected to
a spectrometer via a 50 m fiber optics cable. When the spectrometer and illumination are
properly installed, this transmission mode of the NIR probe could collect more information
about the HBO samples, as the light can penetrate through them. It can be used for a
comprehensive assessment of the quality of HBO if satisfactory spectral information can be
obtained and processed. The NIR spectra were scanned within the wavelength range of
4500 cm−1–12,000 cm−1. During a 1 h HBO sampling period, 30 NIR spectra of the HBO
sample were recorded at 2 min intervals. Each spectrum consisted of 32 accumulation
scans, resulting in over 4000 spectra collected in total. The NIR spectrum of a sample
used for modeling was constructed by taking the average of the 30 spectra, ensuring
spectral reproducibility.
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2.4. Preprocessing and Analysis of the Spectral Data
2.4.1. WT for NIR Spectrum Preprocessing

A previous study had shown that WT can be used to denoise NIR data [48]. In the
present study, the spectral data were denoised via DWT. The signals transformed by DWT
were represented using Equation (2) below:

X(t) = ∑
j∈z

∑
k∈z

C(j, k)2
−j
2 ψ(2

−j
2 t− k) (2)

where X(t) is the function transferred by WT, ψ denotes the mother function, and j and k
are dimensions, wherein k is an integer value.

The NIR spectra of the HBO samples were preprocessed by DWT to denoise and im-
prove resolution. In this study, one-dimensional discrete wavelet denoising was employed.
The wavelet discrete Meyer family has been shown to be relatively accurate in decomposing
temporal wind signals and time-series data [49,50]. Moving average transform was utilized
to smoothen the raw spectral data of different segment sizes. SNV, multiplicative scattering
correction (MSC), SNV-minus a straight line (SNV-MASL), min-max normalization (MMN),
and DWT were used for preprocessing spectral data.

2.4.2. PCA and Hotelling’s T2 Test

PCA can be used to find combinations of variables that capture the main trends in the
data set and to visualize the most important information [51]. Given a data matrix X, its
covariance matrix is calculated as follows [52].

cov(X) =
XTX

m− 1
(3)

where m indicates samples. The result of the PCA procedure is given as follows:

Xn×m = t1pT
1 + t2pT

2 + tipT
i + ... + tkpT

k + En×m (4)
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where ti is the score vector, pT
i

is the loading vector, and E is the residual matrix. The
original dataset can be adequately described by several orthogonal principal components
(PCs) without losing substantial information, and the relationships between samples can
be easily detected when the PCS are relative to each other.

Extreme samples can affect the accuracy of the established model, so they should be
identified. One way of doing this is by using the Hotelling’s T2 statistic. Hotelling’s T2
is commonly used to detect extreme sample values and has relatively high power in all
unbiased tests [53]. Assuming that s11, s12, . . . , s1N1 and s21, s22, . . . , s2N2 are independent
normally distributed samples with parameters λ1, λ2 and σ2, i.e., N(λ1, σ2) and N (λ2, σ2),
Hotelling’s T2 test analyzes the null hypothesis H0: λ1 = λ2 against the alternative one, H1:
λ1 6= λ2. In performing this test, the mean (si) and standard deviation (si) of each sample
are calculated as follows [54].

sj =
1
N

Ni

∑
j=1

sij i = 1, 2 (5)

s2
i =

1
nj

Ni

∑
j=1

(xij − xi)
2 i = 1, 2 (6)

where Ni is the sample size, and ni = Ni − 1. The pooled variance is then represented by

S2
p =

n1S2
1 + n1S2

2
f

(7)

where f = n1 + n2 = N1 + N2 − 2. The null hypothesis is rejected if and only if

[(
N1N2

N1 + N2
)
(x1 − x2)

2

S2
p

] > t2
f ,α/2 = F1, f ,α (8)

where xi is the mean of each independent normally distributed sample, S2
p is the pooled

variance, t f ,α/2 is the critical value derived from the samples’ t-distribution, α is the signifi-
cance level, and F1, f ,α is the critical value derived from the Fisher distribution. The basic
assumption of Hotelling’s T2 test is that the distribution of data is normal.

In this study, PCA and Hotelling’s T2 test were utilized to analyze the variation in
spectral data and remove extreme samples.

2.4.3. Selection of Characteristic Variables

The NIR spectrum region extends from 12,000 cm–1 to 4000 cm–1, but the region
generally used for rapid HBO analysis is between 10,000 cm–1 and 4500 cm–1. Due to the
large amounts of redundant information unrelated to the prediction of density, BMCI,
and PIONA content, spectral regions related to specific properties should be selected,
and spectral regions that do not overlap with absorption peaks of other functional groups
should be avoided. In spectral modeling, the spectral data obtained according to the spectral
wavelength are input variables for the model, and several important wavelengths related to
response information should be selected as far as possible to enhance the predictive ability
of the constructed calibration model. Different wavelength ranges were chosen based on
the correlation between HBO properties and NIR absorbance and chemical properties,
which are discussed in detail in Section 3.2.

2.5. Development and Evaluation of Prediction Models

The NIR data and a corresponding estimation for the properties of the HBO are
expressed as follows.

x = [x1, ..., xn]
T (9)

ŷ = [ŷ1, ..., ŷl ]
T (10)
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where xi, i = 1, ..., n denotes the NIR absorbance at the ith wavelength; ŷ, i = 1, ..., l denotes
the jth estimated property.

xk = [xk1, ..., xkn]
T , k = 1, ..., m (11)

yk = [xk1, ..., xkl ]
T , k = 1, ..., m (12)

where xk and yk are oil samples. m is the number of oil samples.
Therefore, the NIR spectral peak height data matrix X and the corresponding property

matrix Y are calculated as follows.

X = [x1, x2, ..., xm]
T (13)

Y = [y1, y2, ..., ym]
T (14)

Five prediction models were constructed by PCR [55], PLS [56], ANN, and KPLS,.
Their results were compared and the best prediction approach was selected.

2.5.1. KPLS

The KPLS models can project the input X to a high-dimensional figure space, which
are represented as follows [57]: {

Φ(X) = TPT + E
Y = UQT + F

(15)

where Φ indicates a nonlinear transformation.
The relationship of score matrices T and U can be represented as Equation (16).

T = Φ(X)Φ(X)TU(TTΦ(X)Φ(X)TU)
−1

(16)

The kernel function K is represented as Equation (17).

K(x, y) =< Φ(x), Φ(y) >= ΦΦT (17)

where x and y are the inputs and outputs, respectively. < Φ(x), Φ(y) > denotes the dot
product. The deflation of it is calculated by Equations (18) and (19).

K̃ =

(
I − 1

m
lmlT

m

)
K
(

l− 1
m

lmlT
m

)
(18)

I =

1 · · · 0
...

. . .
...

0 · · · 1


m×m

, lm =

1 · · · 1
...

. . .
...

1 · · · 1


m×m

(19)

In this research, the dot product calculated by Gaussian kernel function is represented
as Equation (20).

K(x, y) = exp(−‖ x− y ‖2

2σ2 ) (20)

where σ is the kernel parameter.

2.5.2. Significance Test on Model Accuracy

In building a prediction model, relevant samples from the dataset were randomly
applied to construct a calibration model, and the remaining samples were applied to test
the performance of the model. In the calibration subset, every method (i.e., PCR, PLS, and
ANN) was employed to evaluate the methods by cross-validation [58]. This study used
10-fold cross-validation and averaged (or combined) the results of 10-fold results to produce
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a single estimation. The root mean square errors of cross validation (RMSECV), the root
mean squared errors of prediction set (RMSEP), and the mean absolute relative error
(MARE) were calculated using Equations (21)–(24), respectively, and they were applied to
evaluate the constructed models. For prediction set samples, smaller RMSEP and MARE
values indicate higher accuracy. R measured the correlation between predicted and true
values. The closer the value of R2 was to 1, the better the model performance was.

RMSECV =

√
∑n

i=1 (yi,exp − yi,pre)
2

n
(21)

RMSEP =

√
∑n

i=1 (yi,exp − yi,pre)
2

n
(22)

MARE =
1
n ∑n

i=1

∣∣∣yi.pre − yi. exp

yi. exp
× 100%

∣∣∣∣∣ (23)

R2 = 1−
∑n

i=1 (yi,exp − yi,pre)
2

∑n
i=1 (yi,exp − yi,pre)

2 (24)

where n denotes the number of calibration/prediction set samples, yi,pre denotes the pre-
dicted value for a given sample i, yi,exp denotes the experimental value, and yi,pre denotes
the average of the response variable.

The flow chart illustrating how the methods predict the properties of HBO rapidly
through transmission NIR spectroscopy is shown in Figure 2. The same sample sets and
the same characteristic wavelength ranges of NIR spectroscopy were used to construct NIR
prediction modes via PCR, PLS, ANN, and KPLS.

Processes 2023, 11, x FOR PEER REVIEW 9 of 22 
 

 

 

Figure 2. Flow chart of the proposed integrative approach for the rapid determination of HBO. 

2.6. Real-Time Optimization of Ethylene Cracking Process Integrated with Online NIR Measure-

ment System 

A real-time optimization system was constructed to optimize the 360,000 t/year HBO 

ethylene cracker. The system had several functions, including optimization mode selec-

tion and setting, monitoring of cracking feed data, selection of operating conditions and 

setting of constraint ranges, results display of cracking depth optimization and dilution 

ratio (stream to feed ratio), and system status verification. The real-time optimization 

framework of ethylene cracking process is shown in Figure 3. It was composed of an 

online NIR detection system for HBO and a real-time optimization module for the eth-

ylene cracking process. Every module constructed a security policy to ensure the safety 

and stability of the system. 

In this case study, the online property analysis module utilizes NIR spectroscopy to 
provide accurate property data for HBO, including density, distillation curve, BMCI , 

and PIONA. These properties are obtained through practical online characterization of 

the HBO, using the data interaction module. These data of properties are sent to the real-

time optimization module. In this module, the yield of cracking products can be predicted 

by a process model of an ethylene cracking furnace with current operating conditions and 

feedstock properties. 

 

Figure 3. Real-time optimization framework of ethylene cracking process integrated with online 

analysis property of HBO. 

Figure 2. Flow chart of the proposed integrative approach for the rapid determination of HBO.

2.6. Real-Time Optimization of Ethylene Cracking Process Integrated with Online NIR
Measurement System

A real-time optimization system was constructed to optimize the 360,000 t/year HBO
ethylene cracker. The system had several functions, including optimization mode selection
and setting, monitoring of cracking feed data, selection of operating conditions and setting
of constraint ranges, results display of cracking depth optimization and dilution ratio
(stream to feed ratio), and system status verification. The real-time optimization framework
of ethylene cracking process is shown in Figure 3. It was composed of an online NIR
detection system for HBO and a real-time optimization module for the ethylene cracking
process. Every module constructed a security policy to ensure the safety and stability of
the system.

In this case study, the online property analysis module utilizes NIR spectroscopy to
provide accurate property data for HBO, including density, distillation curve, BMCI, and
PIONA. These properties are obtained through practical online characterization of the
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HBO, using the data interaction module. These data of properties are sent to the real-time
optimization module. In this module, the yield of cracking products can be predicted by
a process model of an ethylene cracking furnace with current operating conditions and
feedstock properties.
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3. Results and Discussions
3.1. Sample Statistics

The properties of over 130 HBO samples were investigated in this study using reference
methods. These samples were randomly divided into two subsets with a ratio of 6:4, which
represented the subset of validation and prediction, respectively. The range of properties
and the mean of the samples were calculated. Results showed that the methods had a good
range and distribution. Density was 821.5–839.8 kg/m3 with a mean of 832.2 kg/m3 for
the full set; the mean of the calibration subset and prediction subset were 832.4 kg/m3

and 832.2 kg/m3, respectively. Moreover, the means of these properties for the calibration
subset were close to those of the prediction subset used for external validation, which
were 13.1, 26.2%, 26.8%, <0.1%, 46.1%, and 0.8% in the prediction subset. In addition, both
subsets had distribution patterns that were similar and consistent with those of the full set.
Owing to the low content of olefins in the HBO, these compounds were not considered in
this modeling study. The characteristics of different types of samples provided are shown
in the Table 1 below.

Table 1. Measured properties of HBO.

Properties Range of Full
Set

Mean

Full Set Calibration on Subset Prediction on Subset

Density (kg/m3) 821.5–839.8 832.2 832.4 832.2
BMCI 9.0–16.7 13.1 13.3 13.1

PIONA (Volume%)

Paraffins 21.9–30.28 26.2 26.4 26.2
Isoparaffins 22.6–28.45 26.8 26.5 26.8

Olefins <0.5 <0.1 <0.1 <0.1
Naphthenes 41.2–53.9 46.1 46.3 46.1
Aromatics 0–2.23 0.8 0.8 0.8
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3.2. Spectral Features of HBO Samples and Spectroscopic Techniques

Noise elimination or reduction was performed to improve the model’s performance.
The OPUS software comes with the MSC, SNV, SNV-MASL, MMN, and DWT methods,
which are used to eliminate or reduce noise. The DWT of the software was mainly used
to deduct the influence of the instrument background or drift on the signal. MSC and
SNV were applied to eliminate the effect of scattering on the spectrum due to the uneven
distribution of particles and different particle sizes. MMN could be employed to eliminate
the adverse effects caused by large scale differences. Therefore, the different methods used
to preprocess HBO parameters (such as paraffins) are shown as in Figure 4, which were
SNV, MSC, SNV-MASL, MMN, and DWT.
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As shown in Figure 4, the RMSEP and MARE values of all pretreatment methods
were lower than 0.8 and 0.6, respectively. The RMSEP value of SNV-MASL was the
highest, while the MARE value was relatively small. The RMSEP value of MMN was
relatively small but the MARE value was particularly high. SNV and MSC had similar
effects. Among the five methods, RMSEP and MARE values of DWT were the smallest;
considering RMSEP and MARE comprehensively, the effect of DWT was best compared
with other methods. Thus, DWT was chosen as the method for the pretreatment of NIR
spectral data.

Over 4000 spectra were collected. The mean NIR spectra of the HBO samples with
different properties are shown in Figure 5. The spectral curves of all samples clearly
showed a similar tendency for both A and B orientations with no abnormal variation trend,
suggesting accurately discriminating the properties of HBO was challenging. The line of
different color represented different samples. In general, five obvious absorption peaks
appeared at 8300 cm−1, 7350 cm−1, 5830 cm−1, 5765 cm−1, and 5658 cm−1. Specifically,
the wavelength at around 5590 cm−1 and 6055 cm−1 was the maximum absorption region,
which corresponded to the first overtones of the C–H stretching vibrations of –CH3, –CH2,
and –HC=CH–. The peak ranging from 7200 cm−1 to 7500 cm−1 was the result of OH
stretching overtones. The small peaks between 4800 cm−1 and 4550 cm−1 were attributed
to the C=C and C–H stretching combination tones of unsaturated fatty acids [47].

In Figure 5a, the noise in the raw spectral data are obvious and the results of denoising
absorbance data by DWT are given in Figure 5b. The spectral absorbance preprocessed by
DWT with intensity and peak regions did not change, whereas the noises were removed
and important data were retained. The pretreated spectra of HBO samples after eliminating
baseline drift are given in Figure 5c. In the NIR spectra of HBO samples, the spectral features
were enhanced and the baseline variations were weakened. The denoised spectral data were
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exported for further preprocessing and development of appropriate prediction models. The
important information was mainly contained between 6780 cm−1 and 4800 cm−1. Therefore,
this part of the spectra was considered as the characteristic variables for exploratory
purposes to simplify the model.
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Figure 5. NIR spectra of HBO samples within the range of 12,000 cm−1–4500 cm−1. (a) Raw NIR
spectral data. (b) Spectra denoised by DWT. (c) Spectra after baseline correction. (d) Score plot from
the PCA of the NIR spectra of the HBO samples.

Different types of uncertainty, such as the performance of the spectrophotometer,
human uncertainty during the experimental process, and sample preparation, may generate
extreme data points [59]. These uncertainties will increase the variance of the spectral data
and/or quality parameters being measured [60]. Therefore, extreme points in the data were
detected to determine the variance of the spectral data [61].

By combination PCA with the Hotelling’s T2 functions to pretreat the spectral data
of HBO samples, extreme data were determined by the 95% confidence limits. Figure 5d
clearly shows the explained variances of data (score plot) by PC-1 and PC-2. The first and
second components explained 97% and 2% of the variance in the data, respectively. A total
of six data points were located outside the 95% confidence interval, i.e., outside the ellipse,
so they were determined to be extreme points, of which the Hotelling’s T2 values were
higher than 7.07.

3.3. NIR Model Development for Predicting HBO Properties

Based on the data of different properties obtained from NIR spectroscopy, over
4000 spectral data points were divided into groups at a ratio of 6:4 into a verification
set and a prediction set. The values obtained from the KPLS models were compared with
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the true values to continuously narrow the gap. Online monitoring was carried in three
operating periods. After selecting the preprocessing transformations on the denoised data
and trying various approaches, calibration models were developed for the density, BMCI,
and PINA content of HBO samples. The RMSECV and MARE values obtained by PCR,
PLS, ANN, and KPLS are shown in Figure 6.
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Figure 6. RMSECV and MARE of different methods (PCR, PLS, ANN, and KPLS) in the calibration
subset.

As shown in Figure 6, RMSECV and MARE were basically consistent, indicating that
the density, BMCI, and hydrocarbon composition of the HBO samples could be quickly
analyzed by the four methods. KPLS consistently showed better performance and predicted
results than PCR, PLS, and ANN. Its RMSECV and MARE values were smaller than those
of the other models constructed by PCR, PLS, and ANN. In the KPLS model, the RMSECV
values of density, BMCI, and paraffins, isoparaffins, and naphthenes were 0.981, 0.340,
0.501, 0.328, and 0.723, respectively, whereas their MARE values were 0.136, 2.853, 0.218,
1.017, and 1.310, respectively. Therefore, the model developed by KPLS for predicting HBO
properties was assessed using the prediction set. The KPLS method also showed good
prediction performance in modeling the PIONA content in gasoline. This method was used
to model the PIONA content in gasoline, and achieved good prediction results [25].

The results of the application of the KPLS model to the NIR spectral data of the HBO
samples in the prediction subset are provided in Figure 7. The density, BMCI, PIONA
content, 10% point, 30% point, 50% point, 70% point, and 90% point of the HBO samples
measured by the standard test method were compared. Among them, the highest R2 value
was for the 10% point, the second highest R2 value was for paraffins, and the smallest R2

value was for the 90% point, the corresponding value was 0.877. The smallest RMSEP was
for isoparaffins, the next smallest was the BMCI, and the highest RMSEP value was for
the 10% point, and the corresponding value was 2.150. The smallest MARE value was for
density, and the next smallest value was for paraffins; the highest MARE value was for
the 70% point, and the corresponding value was 2.854. The result of the three values of
paraffins was relatively good compared to the results of other properties. The RMSEP and
MARE values of the models were less than 3 and their R2 exceeded 0.87. The low RMSEP
and MARE values for these properties confirmed the models’ prediction performance.
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3.4. Accuracy of Online Detection of HBO Properties
3.4.1. Implementation of Online NIR Detection

An online NIR system was established using an online NIR instrument for analyzing
HBO properties under actual production conditions. The system is capable of reading
spectra generated by spectral analysis software and using an encapsulated KPLS model for
HBO NIR analysis to predict the properties of HBO samples. The model was implemented
in C#. The predicted results can be transmitted to the OLE for process control (OPC) server
through OPC communication and saved on the local server. A comprehensive program
logic flow chart of the NIR analysis system formed herein is shown in Figure 8.
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The program of the NIR analysis system determined whether the media access control
(MAC) address of the current server meets the running permission. If yes, after the OPC
connection, then the program would locate the latest spectrum in the folder generated by
the spectroscopic analysis software based on time. If the file memory size was greater than
a given threshold, then the spectrum file would be read, the present spectra pretreatment
program and the NIR model parameters could be decoded and read, and the properties of
the HBO samples were predicted. The predicted results were saved on the local server and
transmitted to the OPC server through the OPC protocol. At this point, the whole program
was completed and waited until the scan cycle finished the next round of prediction. In the
long-term online prediction process, if the error was unacceptable, the spectrum pretreat-
ment program and the quantitative model parameters were updated offline according to
the method described in this paper. These updated spectroscopic preprocessing programs
and NIR models were given into the online NIR system to maintain the accuracy of HBO
properties online measurements.
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3.4.2. Online Detection Accuracy of Three Run Periods

The predictive performance of the prediction model on the component data was
evaluated using the performance indicators described above. For online NIR prediction of
petroleum properties, the absolute errors between their predicted values and laboratory
analysis values were always expected to be small and within a certain range. Moreover,
the stability and accuracy of prediction models were normally required in the long-term
applications of the refinery production processes. In this study, the normal operation of
the online NIR detection system from the start to the cleaning of the fiber optic probe was
recorded as an operating cycle (about 1 month). A small number of samples (one sample
every three days) were collected in every period to verify the online predictive performance
of the aforementioned NIR models using RMSEP and MARE values between the online
predicted values and the experimental values. Over 30 samples were obtained in three
run periods. The online predictive accuracy of density, BMCI, paraffins, isoparaffins, and
naphthenes of the HBO samples in the three run periods is shown in Figure 9.
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Figure 9. Online prediction accuracy of HBO samples in three run periods. (a) RMSEP of density,
BMCI, paraffins, isoparaffins, naphthenes, 10% point, 30% point, 50% point, 70% point, and 90%
point. (b) MARE of 10% point, 30% point, 50% point, 70% point, and 90% point.

As shown in Figure 9, the ranges of the RMSEP values of density, BMCI, paraffins,
isoparaffins, naphthenes, 10% point, 30% point, 50% point, 70% point, and 90% point of
most samples were−0.99–1.16 kg/m3, 0.37–0.40 kg/m3, 0.54–0.58 kg/m3, 0.35–0.40 kg/m3,
0.77–0.80 kg/m3, 2.95–3.20 ◦C, 2.94–3.06 ◦C, 3.05–3.10 ◦C, 2.79–2.88 ◦C, and 1.85–1.90 ◦C,
respectively. All RMSEP values of the samples’ properties were less than 4 in the three run
periods. The MARE values of the density, BMCI, paraffins, isoparaffins, naphthenes, 10%
point, 30% point, 50% point, 70% point, and 90% point of these samples were all less than
4.0%. It can see that NIR was very effective for chemical or physical parameters. Using
the BMCI for example, the value of the relevant BMCI was calculated indirectly from
Equation (1). The value of the BMCI is correlated with the mean boiling point (T) and
density. HBO is rich in alkanes, a certain amount of cycloalkanes, and a small amount of
aromatics, and its sulfur and nitrogen contents were low. Hydrocarbons contain C–H and
C–C, whose molecular vibrations affect the yield of ethylene cracking. Thus, the online
predictive effect of the NIR model did not significantly attenuate in the three run periods,
which was acceptable for online prediction of HBO properties.

Overall, the results obtained were due to the combination of DWT with other pre-
processing functions. DWT was used in denoising the raw spectral data before creating a
regression model. The predictive performance of the KPLS model developed herein for the
online estimation of the density; the BMCI; and contents of paraffins, isoparaffins, naph-
thenes, 10% point, 30% point, 50% point, 70% point, and 90% point of the HBO samples
had relatively acceptable regression parameters.
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3.5. Effects of Online NIR Measurement System Assisted Online Cracking Depth Optimization

The cracking depth optimization control was implemented in a 0.36 Mt/year HBO
cracker (SL-IV mode). The optimization results of the COT and the yield of key products,
such as ethylene, propylene, and high value-added products, are shown in Figure 10. As
can be seen, after optimization, the COT control value decreased by 2.5 ◦C from 802.4 ◦C to
799.9 ◦C, indicating a decrease in energy consumption of the cracking furnace decreases.
Ethylene yield decreased by 0.22 percentage points from 30.18% to 29.97%, whereas the
yield of propylene increased by 0.74 percentage points from 16.96% to 17.70%. The sum
yield of ethylene and propylene increased from 47.14% to 47.67% by 0.53 percentage points.
The yield of high value-added products (H2, ethylene, propylene, butadiene, benzene)
increased by 0.26 percentage points from 61.42% to 61.68%. It can be seen that the depth
optimization method integrated with online NIR measurement of HBO can effectively
improve the yield of the target products and bring significant economic benefits.
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4. Conclusions

In this study, a novel approach combining DWT, PCA, Hotelling’s T2 test, and the
KPLS algorithm was proposed for online prediction of HBO samples characteristics using
NIR spectroscopy. The characteristic distribution of the HBO samples investigated herein
had a broad range. The noise in the spectral data was removed using DWT. The spectral data
of the HBO samples were pretreated by combining PCA with the Hotelling’s T2 functions,
and extreme data were identified by the 95% confidence limits. The prediction results of
the HBO calibration set samples indicated that the KPLS method consistently performed
better and had better results than PCR, PLS, and ANN, as demonstrated by the distinctly
different values of RMSECV and MARE. The RMSEP, MARE, and R2 values for density,
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BMCI, paraffin, isoparaffin, naphthenes, and the 10% point, 30% point, 50% point, 70%
point, and 90% point obtained from the KPLS model were in good agreement with the data
obtained from the standard test methods, indicating that they were suitable for prediction
subset and online measurement. The NIR method proposed for the analysis of HBO
chemical composition was faster than GC-MS and other standard methods. The NIR models
constructed were utilized for the online measurement of HBO properties in an industrial
ethylene plant. The online measurement of quality parameters of HBO through NIR
spectroscopy, along with the proposed practical online characterization of HBO properties,
has enhanced the real-time optimization of the ethylene cracking process. The improvement
in the yield of target products and the reduction in energy consumption had promoted the
economic benefits of the ethylene cracking process. Moreover, applications of integration
of real-time detection and real-time optimization in plants and enterprises can boost the
industrial reform from automation to digitization and intelligence.
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Abbreviations

Acronyms and Parameters
ANN artificial neural network
ASTM American Society for Testing and Materials
BMCI Bureau of Mines correlation index
DWT discrete wavelet transform
GC gas chromatograph
GC-MS gas chromatograph-mass spectrometry
HBO hydrocracking bottom oil
HCR hydrocracking unit
LVs latent variables
MARE the mean absolute relative error
MLR multiple linear regression
MMN min-max normalization
MS mass spectrometry
MSC multiplicative scattering correction
NIR near-infrared
PCA principal component analysis
PCR principal component regression
PC-1 the first PC
PC-2 the second PC
PCs principal components
PLS partial least squares regression
PIONA paraffins, isoparaffins, naphthenes, olefins, and aromatics
RMSECV root mean squared error of cross validations
RMSEP the root mean squared error of prediction set
SNV standard normalized vector
SNV-MASL SNV-minus a straight line
WT wavelet transform
d15.6

15.6 specific gravity at 15.6 ◦C (g/cm3)
E residual matrix
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F1,f,α critical value derived from the Fisher distribution
i a given sample
j dimension
K kernel function
K̃ deflation of kernel function
k integer value
m row of samples
Ni sample size
n number of calibration/prediction set samples
pT

i loading vector
Si standard deviation of each sample
sij independent normally distributed samples
si mean of each sample
S2

p pooled variance
T average boiling point (◦C)
T score matrix
ti score vector
t f ,α/2 critical value derived from the samples’ t-distribution
U score matrix
X spectral data matrix
X the NIR spectral peak height data matrix
X (t) the function transferred by WT
xk oil samples
xi NIR absorbance at the i-th wavelength
xi mean of each sample
Y the corresponding property matrix
yk oil samples
ŷi the j-th estimated property
yi,pre predicted value
yi,exp experimental value
yi,pre the average of the response variable
ψ mother function
Φ a nonlinear transformation
σ kernel parameter
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