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Abstract: S-wave velocity (Vs) is a critical petrophysical parameter for reservoir characterization. It
is desirable to predict Vs based on conventional logging data, but the logging cost is high. Therefore,
a deep hybrid neural network coupling the convolutional neural network (CNN), Stacked gated
recurrent unit (SGRU) is proposed to predict the Vs, where the inputs to the model are drill cutting
features. In the proposed CNN-SGRU hybrid model, CNN is adopted to capture the spatial features
from the input data, and SGRU is used to extract the temporal patterns of variation from both
the forward and backward directions. To illustrate the prediction effect, the glutenite reservoir in
the Baikouquan Formation of Mahu Sag, Junggar Basin is taken as an example. Mineral and pore
information of drill cuttings, including siliciclastic content, clay content, quartz content, and void
area ratio is chosen as the input data of the CNN-SGRU hybrid model. Three indices are used
to quantitatively evaluate the prediction performance, including Mean absolute percentage error
(MAPE), Root mean square error (RMSE), and Mean absolute error (MAE). The results show that the
prediction accuracy of the proposed model is higher than that of the Xu-White model, CNN, and
GRU. Furthermore, the results indicate that drill cuttings can replace logging data to predict Vs.

Keywords: rock physics; glutenite reservoir; Vs; drill cuttings; neural network; hybrid model

1. Introduction

As one of the most important petrophysical parameters, Vs is the cornerstone of the
inversion of pre-stack seismic data, brittleness factor calculation, and stress analysis [1,2].
The high cost of direct testing of Vs has led to the lack of measured Vs data from wells
in oil and gas field exploration and development, making reservoir mechanics parameter
acquisition and reservoir evaluation impossible [3–5]. Therefore, the establishment of a
cost-effective Vs forecasting method is of vital importance for oil and gas field development.

The empirical relational method and petrophysical modeling method are conventional
methods to predict Vs. Based on laboratory measurement data or logging data, the em-
pirical relational method fits a linear or simple nonlinear relationship between Vs and
compressional wave velocity [6,7] (or parameters such as porosity [8] and clay content [9]).
Although the empirical relationship method is simple and easy to estimate Vs, it can only
be applied to specific reservoirs with low calculation accuracy. Based on the theory of wave
propagation in the medium, the petrophysical modeling method constructs a mathematical
relationship between the microscopic characteristics of rocks (material composition and
structure) and elastic parameters. The Xu-White model [10] is a widely used representative
of the petrophysical modeling method. which considers the effects of rock matrix, mud
content, porosity, and pore shape at the same time. Also, some scholars [11–14] proposed
several improved methods based on the Xu-White model so that they can be applied to
areas other than sandy mudstone.
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Derived from wave propagation theory, the petrophysical modeling method has a
clear physical meaning and has become the mainstream Vs prediction method in the oil
and gas exploration industry. However, the complex mineral morphology and pore struc-
ture of reservoir rocks are difficult to characterize, making the prediction results of the
traditional petrophysical modeling method biased. With the rapid development of artificial
intelligence and machine learning algorithms, intelligent techniques based on machine
learning have been successfully applied to the petroleum industry. Various deep learning
models such as Recurrent neural network (RNN), Convolutional neural network (CNN),
Long short-term memory (LSTM) [15], Gated recurrent unit (GRU), Bidirectional LSTM
(BiLSTM), and Bidirectional GRU (BiGRU) are developed for logging interpretation [16–19]
and reservoir development [20–22]. Neural networks can deeply explore the connection be-
tween data to achieve accurate prediction, precisely providing a novel solution to establish
the relationship between logging data and Vs. Scholars proposed many machine learning
models [23–26] to predicate Vs with much higher prediction accuracy than traditional petro-
physics methods. Furthermore, some researchers have proven that hybrid neural networks
are beneficial to improving prediction accuracy compared to single neural networks, such
as the BiLSTM-CNN hybrid model [27] and the RNN-LSTM hybrid model [28].

Although deep learning-based methods for Vs prediction have become a hot issue in
academic research, it is still in its infancy, and there are many problems that are waiting to
be solved. The existing problems are as follows:

• Finding low-cost and easily accessible model input parameters to substitute logging
data. Machine learning methods and optimization algorithms require conventional
log data or seismic data as inputs, however, many wells are not logged in the field due
to the high cost, and seismic data is even more scarce.

• Considering the spatiotemporal relationship between data. Sedimentary rocks are
formed from weathered clastic material and dissolved material through transporta-
tion, sedimentation, and diagenesis. Cores at different locations in the reservoir are
temporally and spatially correlated.

Therefore, in this study, a hybrid neural network model with drill cutting features
as input parameters is proposed. The mineral composition, content, and pore characteris-
tics of drill cuttings are obtained with the help of the drilling cutting analysis technique
(RoqSCAN [29,30]), and their influence degree on Vs was analyzed based on Pearson corre-
lation analysis; the main control factors were preferably selected as model inputs. Then, a
CNN-SGRU hybrid deep neural network prediction model is constructed by integrating the
advantages of CNN and SGRU, which consider the spatiotemporal relationship between
data. Finally, the reliability and accuracy of the proposed model are verified by comparing
the prediction accuracy of the Xu-white model, CNN, GRU, and CNN-SGRU.

2. Methodology
2.1. Drill Cuttings Characteristic Parameters Acquisition

Drill cuttings are the true response to subsurface reservoir characteristics and are
available in every well drilled. With the ongoing development of automated mineralogy
analysis tools, such as RoqSCAN, there is now the ability to quickly analyze and character-
ize drill cuttings at the well site in real-time [31,32]. This study uses the RoqSCAN system to
obtain the drill cuttings’ characteristic parameters. The high-precision scanning microscope
system (SEM), energy-dispersive spectroscopy (EDS), and automated mineral analysis
software are the features of RoqSCAN. Figure 1 is the drill cutting analysis workflow; the
workflow consists of six steps:

• (a) drill cuttings are collected by drilling the fluid vibration screen, and one sample
(about 10 g) is taken every 2 m of drilling footage;

• (b) the drill cuttings will be cleaned, dried, then, poured into a sample preparation
mold with the consolidation agent;

• (c) after the testing samples are solidified, they will be polished using different mesh
sandpapers;
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• (d) polished samples are placed in a carbon plating machine to reduce the charge effect
of charge accumulation;

• (e) carbon-coated samples are placed in the test sample carrier;
• (f) samples are automatically analyzed by RoqSCAN.

Figure 1. Workflow of drill cutting scanning.

Reservoir rocks are composed of minerals, pores, microfractures, and fluids [33–35],
and many scholars have proven that mineral compositions and pore characteristics are
the key factors affecting Vs [36–38]. Moreover, the S-wave does not propagate in the
reservoir fluids [39]. Therefore, drill cuttings can be used to characterize all mineral
and pore information of the reservoir; they can be used to predict Vs. There are fewer
voices to question that drill cuttings reflect the mineral characteristics of the reservoir,
and yet some scholars questioned that the small cutting size may not be representative
of the formation rock pore system. In response to the question, Singer et al. [40] present
experimental evidence to show that cuttings > 2 mm retain all porosity information. In
summary, the mineral and pore information provided by drill cuttings can be used to
predict Vs. With the help of the RoqSCAN technique, mineralogical information is able to
achieve under EDS (Figure 2), and pore information can be obtained under SEM (Figure 3).
The mineralogical information is characterized by mineral type and content, and pore
information is characterized by the void area ratio and void aspect ratio. Void area ratio
refers to the visible porosity of the rock under SEM (i.e., the percentage of the void area
over the total area of the observed field of view), and void aspect ratio refers to the ratio
between the minor and major axes of an ellipsoidal pore [10].

Figure 2. Mineral distribution under EDS.
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Figure 3. Pore morphology under SEM.

2.2. The Proposed CNN-SGRU Model

Machine learning algorithms have proven to be efficient and effective in predicting Vs
from petrophysical logging data with their black-box nonlinear mapping ability [23]. In
this work, we proposed a novel deep learning model for automatic Vs estimation using a
Convolutional neural network (CNN) and Stacked gated recurrent unit (SGRU) combined
neural network (CNN-SGRU). This hybrid model can deeply mine the inner correlations
between drill cutting features and Vs for more robust and accurate predictions.

2.2.1. Convolutional Neural Network (CNN)

CNN implements feature extraction from input data by virtue of a local connection,
weight sharing, and translation invariance, promoting its wide application in face recogni-
tion [41], sentiment analysis [42], and time series forecasting [43]. As shown in Figure 4,
CNN generally comprises several iterations of convolution layers, a pooling layer, and a
dense layer. Among them, convolution layers obtain abstract features from multidimen-
sional data through the inner product of the input and convolution kernel. Playing the
role of downsampling, the pooling layer is responsible for reducing the size of extracted
feature maps by replacing the values within the sliding window with statistical values
(e.g., average or max), so as to eliminate the effect of interference and noise and save
computational resources. Located after the convolutional and pooling layers, the dense
layer is a selectively added component, which is used to connect the obtained features
with the target and thus output forecasts. Based on layers with diverse functions, CNN
is capable of extracting features effectively while reducing the dimension of input data,
which is beneficial to prediction performance and efficiency.

Figure 4. Sketch of the structure of CNN.

2.2.2. Stacked Gated Recurrent Unit (SGRU)

Well logging, Vs, and drill cuttings are typical sequential data that vary with depth,
which can reflect the variances in formation and lithology. As a popular machine learning
algorithm, the Recurrent neural network (RNN) is an expert in handling sequences because
it can not only relate the output with input features but also associate the output of the
current step with previous steps. In the past decades, RNN and its variants, such as
Long short-term memory (LSTM) and Gated recurrent unit (GRU), have been successfully
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used in sequence processing and forecasting, such as speech recognition [44], machine
translation [45], power forecasting [46], and traffic flow estimation [47]. By comparison,
GRU introduces a gate mechanism to avoid the issue of gradient exploding and vanishing
RNN, and further simplifies the gate structure of LSTM for greater efficiency, making itself
stand out.

As the forecasting task becomes more complex and challenging, it is found that deep
neural networks contribute to obtaining better performance. By stacking multiple layers
of neural networks, deep neural networks can recombine the learned features from the
previous layers and create high-level abstract features. One layer disposes of part of the task
at hand and then passes the information to the next layer. Acting as a processing pipeline,
deep neural networks can be exponentially more efficient at capturing representations
combined with shallow models. Therefore, a Stacked gated recurrent unit (SGRU) is
adopted as a basic component in this work to perform sequence forecasting.

In an SGRU neural network, multiple GRU hidden states are stacked on top of each
other, which allows information to be learned at different scales and levels, as shown in
Figure 5a. Figure 5b depicts the inner cell structure of the GRU cell. The cell state controls
the information flow among different steps, expressed as:

hT = (1 − zT)� hT−1 + zT � h̃T (1)

where hT−1 and hT are the hidden states at steps T−1 and T, respectively. ZT denotes the
update gate and h̃T is the candidate’s hidden state, which can be calculated by:

zT = σ(wz · [hT−1, XT ] + bz) (2)

h̃T = tanh(wh · [hT−1·rT , XT ] + bh) (3)

where σ is a sigmoid activation function and tanh is a tanh activation function. wz and
bz are the weight and bias of the update gate. wh and bh are the weight and bias of the
candidate’s hidden state. XT represents the input at step T. rT represents an important gate,
namely the reset gate, which can be determined by:

rT = σ(wr · [hT−1, XT ] + br) (4)

where wr and br are the weight and bias of the reset gate.

Figure 5. Sketch of the SGRU neural network: (a) structure of SGRU, (b) inner cell structure of GRU.

Based on the above calculation process, the input of the current step and the output of
the previous steps interact with the cell state through the reset gate and upset gate. The
forecast of the current step is the output, which will influence the output of the next steps.
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2.2.3. CNN-SGRU Model

Based on CNN and SGRU, a novel CNN-SGRU deep learning model is built for Vs
forecasting using drill cutting data, which combines the strengths of CNN and SGRU for
better performance. Figure 6 shows the structure of the proposed CNN-SGRU model.
The CNN component comprises two layers of one-dimensional CNN (1D CNN), Batch
normalization, and Max pooling, which assists in capturing effective spatial representations
from massive input data while accelerating feature extraction. Among them, 1D CNN
layers are primarily responsible for abstract feature extraction. Batch normalization and
Max pooling layers are added to save computational resources. Then the extracted features
by CNN are passed to the SGRU component for further relationship mapping between
rock microstructure and Vs. Three layers of GRU constitute the SGRU. The dropout layer
is added to avoid overfitting problems in deep learning. Finally, the forecast is output
through a dense layer.

Figure 6. Structure of the proposed CNN-SGRU model.

2.3. Evaluation Indices

To quantitatively evaluate the prediction performance, three common indices are
employed in this work, including Mean absolute percentage error (MAPE), Root mean
square error (RMSE), and Mean absolute error (MAE). Bigger values of MAPE, RMSE, and
MAE mean bigger prediction errors and lower accuracy.

• (a) MAPE is utilized to show the proportion of prediction errors to true values, calcu-
lated by:

MAPE =
1
M

M

∑
i=1

∣∣∣∣∣y
p
i − yt

i
yt

i

∣∣∣∣∣× 100% (5)

where yp
i and yt

i are the predicted and the true values of the ith sample, respectively.
M denotes the number of samples.

• (b) RMSE is used to compute the standard deviation between predictions and actual
values, as below:

RMSE =

√√√√√ M
∑

i=1
(yt

i − yp
i )

2

M
(6)
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• (c) MAE represents the average difference between the forecasts and actual values,
which is calculated by:

MAE =
1
M

M

∑
i=1

∣∣∣yt
i − yp

i

∣∣∣ (7)

2.4. Overall Workflow

Figure 7 describes the overall workflow of the S-wave prediction process. A total of
five steps are listed in detail.

• Step 1: Data preparation. First, mineralogical and pore information are acquired using
RoqSCAN, then the Pearson correlation [48] is used to analyze the main control factors
affecting Vs, and finally, the main control factors are used as model input parameters.

• Step 2: Data preprocessing. To prepare adequate data for model training, obtained data
have to be preprocessed in advance, including Z-score normalization (Equation (8))
and input-output pair transformation. Z-score normalization facilitates the conver-
gence of deep neural networks. A sliding window is utilized to transform input and
output data into 3D input-2D output pairs. A more detailed transformation process
can refer to [21].

x̃ =
x − x

δ
(8)

where x and x̃ are the raw data and the normalized data, respectively. x and δ are the
average and standard deviation of x, respectively.

• Step 3: Data partition. The whole dataset is divided into the training set, validation
set, and test set in the ratio of 70%, 15%, and 15% with sampling depth.

• Step 4: Hyperparameter optimization. Optimal hyperparameters of the CNN-SGRU
model are determined through the Bayesian optimization algorithm, such as the
number of neurons, learning rate, and dropout ratio.

• Step 5: Model training and forecasting. With drill cutting features as inputs, the CNN-
SGRU model is well-trained for Vs forecasting based on the optimal hyperparameters.

Figure 7. Overall workflow of the Vs prediction.
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3. Results

In this section, the proposed CNN-SGRU hybrid model is used for Vs prediction in a
horizontal well, the whole prediction process is introduced in detail, and the prediction
results are compared with the rock physics model (Xu-White model) and single neural
networks (CNN and GRU).

3.1. Data Preparation and Preprocession

The study area is located on the west slope of the Mahu Depression in the Junggar
Basin, China, where the Lower Triassic Baikouquan Formation is dominated by coarse
clastic sediments and belongs to the fan delta-lake sedimentary system, and the main rock
type is glutenite. The target well is a horizontal well (MaX) with a horizontal section of
945 m, and Vs logging is carried out in this well. The interval of drill cutting sampling
was <2 m, and a total of 524 samples were taken. Mineral and pore information for each
sample was obtained by Roqscan, and minerals were divided into four main categories:
siliciclastics, clays, carbonates, and accessory minerals. Figure 8 shows the distribution
of different types of minerals in the horizontal section of MaX, the minerals in drill cut-
tings are mainly siliciclastics and clays. In addition, siliciclastic compositions are mainly
quartz and albite as shown in Figure 9. Figure 10 illustrates the void area ratio and void
aspect ratio of drill cuttings, and there is a large fluctuation of the void area ratio with
depth. By comparison, the aspect ratio is stable at about 0.1. As shown in Figure 11,
Pearson correlation analysis shows the correlation between drill cutting characteristics
parameters and the testing Vs, and comparatively, siliciclastics, clays, quartz, and void area
ratio are strongly correlated with Vs. To reduce the complexity of the proposed model,
prevent the influence of redundant features, and improve the calculation speed and accu-
racy, siliciclastic content, clay content, quartz content, and void area ratio are chosen as
model inputs.

Figure 8. Area map of mineral composition of drill cuttings at different well depths.
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Figure 9. Stacked area map of the distribution of silicate mineral types at different well depths.

Figure 10. Scatter plot of drill cutting pore information at different well depths.
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Figure 11. Heatmap of Pearson correlation analysis.

The collected input data cannot be fed directly into the proposed model and need to
be processed. First, obtained data had to be preprocessed, including Z-score normalization
and input-output pair transformation, and then the dataset was divided into the training
set, validation set, and test set. Finally, hyperparameters were optimized by the Bayesian
optimization algorithm. Table 1 shows the optimal values of hyperparameters used in
the CNN-SGRU hybrid model and comparative models (CNN and GRU). All the models
were coded in Python 3.7 under the Keras framework [49] and run on Intel ® Core™ 16
i7-4790 3.60 GHz CPU with 16 GB of memory. Training error curves of CNN, GRU, and
CNN-SGRU models are shown in Figure 12. Figure 12 shows that the CNN-SGRU model
obtains a more desirable training error curve, and the loss function error is minimal. MAPE,
RMSE, and MAE were used as evaluation criteria.

Table 1. Optimization range and optimal values of hyperparameters.

Hyperparameter Optimization Range Optimal Values

Number of Conv1D layers [1, 4] 2
Number of BiGRU layers [2, 5] 3

Number of neurons in Conv1D layers [10, 100] 50
Number of neurons in BiGRU layers [10, 100] 63

Activation function tanh, Relu, sigmoid Relu
Dropout rate [0.1, 0.5] 0.2
Learning rate [0.0001, 0.01] 0.0015

Size of the input window [3, 28] 3
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Figure 12. The variation of the loss function with training epoch: (a) CNN, (b) GRU, (c) CNN-SGRU.

3.2. Comparison of Prediction Accuracy Analysis

To verify the feasibility and accuracy of the proposed CNN-SGRU hybrid model, the
Vs prediction results are compared with the Xu-White model, CNN, and GRU. The theories
and methodologies of CNN and GRU are introduced in Section 2, and the Xu-White model
in this study is an approximation model proposed by Keys and Xu [50] in 2002. Figure 13
is the workflow of the petrophysical model, the specific modeling process consists of
two steps:

• (a) calculating the modulus of the matrix of different minerals with the V-R-H model [51].
In Equations (9) and (10), the mineral modulus values refer to [52,53].

• (b) Based on K-T theory [2], the modulus of dry rock can be calculated by Equations
(11) and (12), and then Vs can be calculated by Equation (13).

Km =

N
∑

i=1
fiKi +

(
N
∑

i=1

fi
Ki

)−1

2
(9)

µm =

N
∑

i=1
fiµi +

(
N
∑

i=1

fi
µi

)−1

2
(10)

K(φ) = Km(1 − φ)p (11)

µ(φ) = µm(1 − φ)q (12)

Vs =
√

µ/ρ (13)

where Km and µm are the matrix bulk modulus and shear modulus, respectively. fi, Ki and
µi are volume content, bulk modulus and shear modulus of the i-th mineral component,
respectively. N is the number of different mineral types. K(φ) and µ(φ) are bulk modulus
and shear modulus of dry rock, respectively. φ is the porosity. P and q are the geometrical
factors, respectively. ρ is dry rock density.

Figure 14 shows the Vs prediction results of the Xu-White model, CNN, GRU, and
the proposed CNN-SGRU model. As shown in Figure 14a, overall, the predicted Vs
curve of the Xu-White method is similar to the trend of the testing Vs curve, but the local
matching degree is not good. The reason for this result is that the Xu-White model is mainly
applicable to sandstone, while glutenite is a special sedimentary rock. The existence of
gravel in glutenite enhances the heterogeneity of glutenite, which ultimately leads to some
deviations in the prediction results. Compared with the GRU and CNN-SGRU, CNN learns
better for the fluctuation of data curves and can better extract the dramatic fluctuations
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between data, as shown in Figure 14b–d. On the whole, the results of the CNN, GRU, and
CNN-SGRU are acceptable for the training set. However, the result of GRU for the test set
is an obvious error, which implies that the generalizability is not strong enough to predict
the data that did not appear during training. In contrast, the proposed CNN-SGRU hybrid
model has a good prediction for both the training set and test set, and it learns the inner
variation mechanism, as shown in Figure 14d.

Figure 13. Schematic diagram of the rock physics model.

Figure 14. Cont.
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Figure 14. Comparison between actual and prediction Vs of the four models.

The prediction effect of the test set best reflects the performance of the model, so the
test set needs to be further analyzed. Figure 15 shows the results of the evaluation indices
of the four methods, Figure 16 is the relative error distribution of the four methods, and the
values of the evaluation indices are shown in Table 2. Both statistical analysis results of
Figures 15 and 16 reveal that the proposed method exhibited the optimum performance.
The MAPE, RMSE, and MAE of the CNN-SGRU model are 0.01381, 43.4676, and 34.04062,
respectively. By comparison, the evaluation indices of the Xu-white model are 0.02739,
79.42729, and 67.25988, respectively. The predicted results demonstrate that the machine
learning prediction method outperforms the rock physics modeling method. The evaluation
indices of the CNN-SGRU are reduced by 34~37% and 6~8% compared to CNN and GRU,
respectively. The CNN has the largest relative error interval, and the CNN-SGRU has
the smallest, as shown in Figure 16. This means that CNN has lower prediction accuracy
despite better learning curve fluctuations. Compared with CNN, the prediction error
fluctuation interval of GRU is smaller, but the mean and median relative error of GRU is
larger. The CNN-SGRU hybrid model retained not only the advantages of the CNN in
complex feature extraction but also those of SGRU in time-series feature extraction, this is
to say, hybrid neural networks can combine the advantage of single neural networks. The
CNN-SGRU hybrid model has the smallest relative error interval, mean relative error, and
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intermediate relative error. In summary, the proposed method achieved the optimum Vs
prediction based on the drill cutting data.

Figure 15. Comparison of performance of four models in terms of (a) MAPE, (b) RMSE, and (c) MAE.

Figure 16. Boxplots of relative error of the four models.

Table 2. Comparison of prediction errors of various models.

Prediction Method
Evaluation Indice

MAPE [m/s] RMSE [m/s] MAE [m/s]

Xu-white model 0.02739 79.42729 67.25988
CNN 0.02112 69.84337 52.33075
GRU 0.01504 46.4082 36.86077

CNN-SGRU 0.01381 43.46766 34.04062

4. Discussion

The current study proposed a hybrid neural networks model (CNN-SGRU model) to
predict Vs, and the input to the model is not the conventional log data but drill cutting
features. The graphical correlation between target data and predicted outputs of the models
is shown in Figure 14 for training and testing data, and Table 2 provides a comparison
between all models used based on the statistical evaluation indices including Mean abso-
lute percentage error (MAPE), Root mean square error (RMSE), and Mean absolute error
(MAE). These results show a significant improvement in the CNN-SGRU hybrid model
in comparison with the conventional rock physics model (Xu-White model), CNN, and
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GRU models. Although the hybrid model has obtained better prediction results, it still has
some limitations to improve. Next, the prediction accuracy can be further improved in the
following ways:

• (a) Optimizing drill cutting sampling interval. The conventional log sampling interval
is about 0.125 m, while the drill cutting sampling interval is 2 m, which is much larger
than the log sampling interval, so it may lead to larger fluctuations and reduce the
prediction accuracy.

• (b) Finding new optimization algorithms. In the future, this method can be combined
with the optimization algorithms to enhance the accuracy of the model, such as the
Shrimp and Goby Association Search algorithm (SGA) [54], Grey Wolf Optimizer
(GWO) algorithm [55], surrogate-assisted stochastic optimization inversion (SASOI)
algorithm [56] and so on.

• (c) Improving model generalization capabilities. The current study only focuses on
glutenite reservoirs, and there is a need to analyze the effectiveness of the proposed
model in other types of reservoirs.

5. Conclusions

In this work, a novel CNN-SGRU hybrid model for Vs forecasting is proposed, which
can output more accurate, robust, and generalizable forecasts by fully leveraging the
strengths of CNN and SGRU. The CNN module is responsible for extracting the spatial
features from sequences and SGRU is employed to find the temporal features embedded in
Vs variation. In this way, more important spatiotemporal features are highlighted, leading
to a performance boost.

A studied well case was elaborated, and the results show that the prediction results of
the CNN-SGRU model are the most consistent with the actual Vs values, and the CNN-
SGRU model outperforms the conventional petrophysical model (Xu-White model), CNN
and GRU models in terms of both forecasting accuracy and stability. The MAPE, RMSE,
and MAE of the CNN-SGRU model are 0.01381, 43.4676, and 34.04062, respectively. The
mean relative error of the Xu-white model, CNN, GRU, and CNN-SGRU is 2.43%, 0.30%,
0.54%, and 0.05%, respectively. Additionally, drill cuttings can reflect the mineral and
pore information of the reservoir, therefore, Vs can be forecast well by drill cuttings as
model inputs.
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