Recent Developments of Light-Harvesting Excitation, Macroscope Transfer and Multi-Stage Utilization of Photogenerated Electrons in Rotating Disk Photocatalytic Reactor
Abstract
:1. Introduction
2. Photocatalytic Reactor Design to Improve Light Energy Utilization
2.1. Thin Solution Film Photocatalytic Reactor
2.2. Rotating Disk Thin Solution Film Photocatalytic Reactor
2.3. Research Fields of Further Improving the Efficiency of Rotating Disk Photocatalytic Reactor
- (1)
- The light-harvesting excitation of photogenerated electrons. How to further improve the utilization rate of light energy, for example, efficiently capturing reflected light, so as to promote the advanced oxidation of organic pollutants.
- (2)
- The macroscopic transfer of photogenerated electrons. How to realize the conversion from chemical energy in organic pollutants to electrical energy through the macroscopic transfer of photogenerated electrons.
- (3)
- The multi-level utilization of photogenerated electrons. How to use the photogenerated electrons transferred to the cathode at multiple levels to realize the hydrogen production or simultaneous removal of other pollutants in the wastewater.
3. Light-Harvesting Excitation of Photogenerated Electrons
3.1. Design of Light-Harvesting Structured Photoanodes
3.2. Synthesis of Supported Catalyst Films with Light-Harvesting Structures
4. Design of Photo Fuel Cell
4.1. Synthesis of Supported Catalyst Films with Light-Harvesting Structures
4.2. Design of Dye-Sensitized Photo Fuel Cell
4.3. Design of Dual Rotating Disk Photo Fuel Cell
5. Multi-Level Utilization of Photogenerated Electrons
5.1. H2O2 Production at Cathode in Dual Rotating Disk Reactor
5.2. H2 Production at Cathode in Rotating Disk Reactor
5.3. Cathodic Hydrogen Production Combined with Nitrate Reduction
6. Conclusions
- (1)
- Research and development of low-cost, large-scale, efficient, and stable photoanodes. The catalyst needs to be loaded on the surface of the photoanode substrate in a thin solution film reactor. Therefore, not only is the supported photocatalyst with stable performance and low-cost needed, but also the photoanode substrate needs to be optimized in the process of photoanode preparation. The Ti plate is mostly used as anode substrate in most of the current research, and the catalyst layer can be firmly grown on its surface after acidic etching, but the cost of large-scale application is quite high. The combination of corrosion resistance and low-cost anode substrates and efficient photocatalyst film is the prerequisite for the application of the photocatalytic technique in the field of wastewater treatment.
- (2)
- Further optimization and model construction of thin film photocatalytic reactors. The thin solution film reactor has been proved to be the most effective reactor in the photocatalytic water treatment process, but its further enlargement still needs to consider many issues, such as floor area, light sources selection, and energy consumption. The development of the corresponding model can help to further enlarge and optimize the reaction device.
- (3)
- Multi-technique coupling realizes the deep and collaborative treatment of pollutants in wastewater. The photocatalytic technique has an extremely strong oxidation ability and can efficiently mineralize organic pollutants, but its removal rate is often slow due to the mass transfer limitation of heterogeneous reactions. Therefore, photocatalysis can be combined with other homogeneous oxidation processes, such as the Fenton process, to realize the rapid mineralization of organic pollutants. On the other hand, in addition to organic pollutants, wastewater contains other types of pollutants, such as inorganic salts, heavy metals, etc. How to use the photogenerated holes and electrons to achieve the simultaneous removal of multiple pollutants is also an issue that is worth studying in the future.
- (4)
- Studies on the effect of actual wastewater on the photocatalytic process. Most of the research uses simulated pollutants to investigate the photocatalytic performance of the catalyst at present, but the water quality conditions of the actual wastewater are often much more complex. Therefore, different types of actual wastewater should be used as the research objective to improve the stability of the photocatalytic technique in the future.
Author Contributions
Funding
Conflicts of Interest
References
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Fijishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C 2008, 8, 1–12. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.Q.; Zhou, L.Y.; Zhang, G.C.; Yip, H.L.; Lau, T.K.; Lu, X.H.; Zhu, C.; Peng, H.J.; Johnson, P.A. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.W.; Yang, X.L.; Chen, Y.; Chu, Z.M.; Ye, Q.F.; Li, X.X.; Yin, Z.G.; You, J.B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 2002, 297, 2243–2245. [CrossRef]
- Li, X.; Yu, J.G.; Jaroniec, M.; Chen, X.B. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef]
- Xu, Q.L.; Zhang, L.Y.; Cheng, B.; Fan, J.J.; Yu, J.G. S-Scheme Heterojunction Photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar] [CrossRef]
- Qian, G.P.; Yu, H.N.; Gong, X.B.; Zhao, L. Impact of Nano-TiO2 on the NO2 degradation and rheological performance of asphalt pavement. Constr. Build. Mater. 2019, 218, 53–63. [Google Scholar] [CrossRef]
- Xu, Y.D.; Jin, R.Y.; Hu, L.; Li, B.; Chen, W.; Shen, J.S.; Wu, P.; Fang, J.K. Studying the mix design and investigating the photocatalytic performance of pervious concrete containing TiO2-Soaked recycled aggregates. J. Clean. Prod. 2020, 248, 119281. [Google Scholar] [CrossRef]
- Zhu, T.X.; Cheng, Y.; Huang, J.Y.; Xiong, J.Q.; Ge, M.; Mao, J.J.; Liu, Z.; Dong, X.L.; Chen, Z.; Lai, Y.K. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. Chem. Eng. J. 2020, 399, 125746. [Google Scholar] [CrossRef]
- Ma, W.J.; Li, Y.S.; Zhang, M.J.; Gao, S.T.; Cui, J.X.; Huang, C.B.; Fu, G.D. Biomimetic Durable Multifunctional Self-Cleaning Nanofibrous Membrane with Outstanding Oil/Water Separation, Photodegradation of Organic Contaminants, and Antibacterial Performances. ACS Appl. Mater. Interfaces 2020, 12, 34999–35010. [Google Scholar] [CrossRef]
- Xia, P.F.; Cao, S.W.; Zhu, B.C.; Liu, M.J.; Shi, M.S.; Yu, J.G.; Zhang, Y.F. Designing a 0D/2D S-Scheme Heterojuction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria. Angew. Chem. Int. Edit. 2020, 59, 5218–5225. [Google Scholar] [CrossRef]
- Lv, D.; Wang, R.X.; Tang, G.S.; Mou, Z.P.; Lei, J.D.; Han, J.Q.; De Smedt, S.; Xiong, R.H.; Huang, C.B. Ecofriendly Electrospun Membranes Loaded with Visible-Light Responding Nanoparticles for Multifunctional Usages: Highly Efficient Air Filtration, Dye Scavenging, and Bactericidal Activity. ACS Appl. Mater. Interfaces 2019, 11, 12880–12889. [Google Scholar] [CrossRef] [Green Version]
- Zeghioud, H.; Assadi, A.A.; Khellaf, N.; Djelal, H.; Amrane, A.; Rtimi, S. Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights: Dynamic and mechanism. J. Photochem. Photobiol. A 2018, 365, 94–102. [Google Scholar] [CrossRef]
- Rueda-Marquez, J.J.; Levchuk, I.; Ibanez, P.F.; Sillanpaa, M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 2020, 258, 120694. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Lai, C.; Zhang, M.M.; Li, B.S.; Huang, D.L.; Zeng, G.M.; Qin, L.; Liu, X.G.; Yi, H.; Cheng, M.; Li, L.; et al. Fabrication of CuS/BiVO4 (040) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight. Chem. Eng. J. 2018, 358, 891–902. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2019, 701, 135023. [Google Scholar] [CrossRef]
- Li, S.J.; Chen, J.L.; Hu, S.W.; Wang, H.L.; Jiang, W.; Chen, X.B. Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants. Chem. Eng. J. 2020, 402, 126165. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, P.L.; Zheng, J.L.; Li, J.; Fu, Q.; He, Y.N.; Zou, Y.N.; Wu, X.H.; Cheng, C.X.; Wang, F. Enhanced carbon dioxide reduction in a thin-film rotating disk photocatalytic fuel cell reactor. J. CO2 Util. 2020, 37, 328–334. [Google Scholar] [CrossRef]
- Darvish, S.M.; Ali, A.M.; Sani, S.R. Designed air purifier reactor for photocatalytic degradation of CO2 and NO2 gases using MWCNT/TiO2 thin films under visible light irradiation. Mater. Chem. Phys. 2020, 248, 122872. [Google Scholar] [CrossRef]
- Jin, J.; Wang, C.; Ren, X.N.; Huang, S.Z.; Wu, M.; Chen, L.H.; Hasan, T.; Wang, B.J.; Li, Y.; Su, B.L. Anchoring ultrafine metallic and oxidized Pt nanoclusters on yolk-shell TiO2 for unprecedentedly high photocatalytic hydrogen production. Nano Energy 2017, 38, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.B.; Chen, X.F.; Hou, R.J.; Zhu, H.J.; Li, S.Q.; Huo, Y.N.; Li, H.X. Ag/BiOBr Film in a Rotating-Disk Reactor Containing Long-Afterglow Phosphor for Round-the Clock Photocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 20076–20082. [Google Scholar] [CrossRef]
- Yoneda, Y.; Goto, A.; Takeda, N.; Harada, H.; Kondo, M.; Miyasaka, H.; Nagasawa, Y.; Dewa, T. Ultrafast Photodynamics and Quantitative Evaluation of Biohybrid Photosynthetic Antenna and Reaction Center. J. Phys. Chem. C 2020, 124, 8605–8615. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, Z.L.; Lyu, M.Q.; Luo, B.; Wang, S.C.; Liu, G.; Cheng, H.M.; Wang, L.Z. Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Adv. Mater. 2019, 31, 1801369. [Google Scholar] [CrossRef]
- Gao, C.; Low, J.X.; Long, R.; Kong, T.T.; Zhu, J.F.; Xiong, Y.J. Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chem. Rev. 2020, 120, 12175–12216. [Google Scholar] [CrossRef]
- Zhang, W.H.; Mohamed, A.R.; Ong, W.J. Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now? Angew. Chem. Int. Edit. 2020, 59, 22894–22915. [Google Scholar] [CrossRef]
- Biswal, B.P.; Vignolo-Gonzalez, H.A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsc, B.V. Sustained Solar H2 Evolution from a Thiazolo[5,4-d]thiazole-Bridged Covalent Organic Framework and Nickel-Thiolate Cluster in Water. J. Am. Chem. Soc. 2019, 141, 11082–11092. [Google Scholar] [CrossRef] [Green Version]
- Reddy, N.L.; Rao, V.N.; Vijayakumar, M.; Santhosh, R.; Anandan, S.; Karthik, M.; Shankar, M.V.; Reddy, K.R.; Shetti, N.P.; Nadagouda, M.N. A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. Int. J. Hydrogen Energ. 2019, 44, 10453–10472. [Google Scholar] [CrossRef]
- Han, Y.Q.; Xu, H.T.; Su, Y.Q.; Xu, Z.L.; Wang, K.F.; Wang, W.Z. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 2019, 370, 70–78. [Google Scholar] [CrossRef]
- He, F.; Meng, A.Y.; Cheng, B.; Ho, W.K.; Yu, J.G. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chinese J. Catal. 2019, 41, 9–20. [Google Scholar] [CrossRef]
- Hu, T.P.; Dai, K.; Zhang, J.F.; Chen, S.F. Noble-metal-free Ni2P modified step-scheme SnNb2O6/CdS-diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation. Appl. Catal. B-Environ. 2020, 269, 118844. [Google Scholar] [CrossRef]
- Singh, P.; Shandilya, P.; Raizada, P.; Sudhaik, A.; Rahmani-Sani, A.; Hosseini-Bandegharaei, A. Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab. J. Chem. 2020, 13, 3498–3520. [Google Scholar] [CrossRef]
- Tobaldi, D.M.; Dvoranova, D.; Lajaunie, L.; Rozman, N.; Figueiredo, B.; Seabra, M.P.; Skapin, A.S.; Calvino, J.J.; Brezova, V.; Labrincha, J.A. Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment. Chem. Eng. J. 2021, 405, 126651. [Google Scholar] [CrossRef]
- Gao, B.W.; Sun, M.X.; Ding, W.; Ding, Z.P.; Liu, W.Z. Decoration of gamma-graphyne on TiO2 nanotube arrays: Improved photoelectrochemical and photoelectrocatalytic properties. Appl. Catal. B-Environ. 2020, 281, 119492. [Google Scholar] [CrossRef]
- Ye, S.S.; Chen, Y.X.; Yao, X.L.; Zhang, J.D. Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A review. Chemosphere 2021, 273, 128503. [Google Scholar] [CrossRef]
- Shan, B.; Vanka, S.; Li, T.T.; Troian-Gautier, L.; Brennaman, M.K.; Mi, Z.T.; Meyer, T.J. Ninary molecular-semiconductor p-n junctions for photoelectrocatalytic CO2 reduction. Nat. Energy 2019, 4, 290–299. [Google Scholar] [CrossRef]
- Huang, S.; Ouyang, Y.; Zheng, B.F.; Dan, M.; Liu, Z.Q. Enhanced Photoelectrocatalytic Activities for CH3OH-to-HCHO Conversion on Fe2O3/MoO3: Fe-O-Mo Covalency Dominates the Intrinsic Activity. Angew. Chem. Int. Edit. 2021, 60, 9546–9552. [Google Scholar] [CrossRef]
- Oli, H.B.; Kim, A.A.; Park, M.; Bhattarai, D.P.; Pant, B. Photocatalytic Fuel Cells for Simultaneous Wastewater Treatment and Power Generation: Mechanisms, Challenges, and Future Prospects. Energies 2022, 15, 3216. [Google Scholar] [CrossRef]
- Parvizi, T.; Parsa, J.B. High-efficient photocatalytic fuel cell integrated with periodate activation for electricity production by degradation of refractory organics. J. Power Sources 2021, 484, 229264. [Google Scholar] [CrossRef]
- Andrade, T.S.; Dracopoulos, V.; Keramidas, A.; Pereira, M.C.; Lianos, P. Charging a vanadium redox battery with a photo(catalytic) fuel cell. Sol. Energ. Mat. Sol. C. 2021, 221, 110889. [Google Scholar] [CrossRef]
- Gui, Y.; Cao, Y.; Li, G.; Ai, X.; Gao, X.; Yang, H. A solar storable fuel cell with efficient photo-degradation of organic waste for direct electricity generation. Energy Storage Mater. 2016, 5, 165–170. [Google Scholar] [CrossRef]
- Jia, Y.H.; Zhang, D.D.; You, H.; Li, W.G.; Jiang, K. Benthic microbial fuel cell equipped with a photocatalytic Cu2O-coated cathode. J. Nanopart. Res. 2019, 21, 3. [Google Scholar] [CrossRef]
- Stephan, B.; Ludovic, L.; Dominique, W. Modelling of a falling thin film deposited photocatalytic step reactor for water purification: Pesticide treatment. Chem. Eng. J. 2011, 169, 216–225. [Google Scholar] [CrossRef]
- Xu, Y.L.; Zhong, D.J.; Jia, J.P.; Chen, S.; Li, K. Enhanced dye wastewater degradation efficiency using a flowing aqueous film photoelectrocatalytic reactor. J. Environ. Sci. Health A 2008, 43, 1215–1222. [Google Scholar] [CrossRef]
- Xu, Y.; Zhong, D.; Jia, J.; Li, K.; Li, J.; Quan, X. Dual slant-placed electrodes thin-film photocatalytic reactor: Enhanced dye degradation efficiency by self-generated electric field. Chem. Eng. J. 2013, 225, 138–143. [Google Scholar] [CrossRef]
- Xu, Y.; Jia, J.; Zhong, D.; Wang, Y. Degradation of dye wastewater in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2/Ti anode. Chem. Eng. J. 2009, 150, 302–307. [Google Scholar] [CrossRef]
- Admas, M.; Campbell, I.; Robertson, P.K.J. Novel Photocatalytic Reactor Development for Removal of Hydrocarbons from Water. Int. J. Photoenergy 2008, 2008, 674537. [Google Scholar] [CrossRef] [Green Version]
- Dionysiou, D.D.; Balasubramanian, G.; Suidan, M.T.; Khodadoust, A.P.; Baudin, I.; Laîné, J.-M. Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water. Water Res. 2000, 34, 2927–2940. [Google Scholar] [CrossRef]
- Dionysiou, D.D.; Suidan, M.T.; Baudin, I.; Laîné, J.-M. Oxidation of organic contaminants in a rotating disk photocatalytic reactor: Reaction kinetics in the liquid phase and the role of mass transfer base on the dimensionless Damköhler number. Appl. Catal. B Environ. 2002, 38, 1–16. [Google Scholar] [CrossRef]
- Dionysiou, D.D.; Burbano, A.A.; Suidan, M.T.; Baudin, I.; Laîné, J.-M. Effect of Oxygen in a Thin-Film Rotating Disk Photocatalytic Reactor. Environ. Sci. Technol. 2002, 36, 3834–3843. [Google Scholar] [CrossRef]
- Dionysiou, D.D.; Khodadoust, A.P.; Kern, A.M.; Suidan, M.T.; Baudin, I.; Laîné, J.-M. Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Appl. Catal. B Environ. 2000, 24, 139–155. [Google Scholar] [CrossRef]
- Xu, Y.; He, Y.; Cao, X.; Zhong, D.; Jia, J. TiO2/Ti Rotating Disk Photoelectrocatalytic (PEC) Reactor: A Combination of Highly Effective Thin-Film PEC and Conventional PEC Processes on a Single Electrode. Environ. Sci. Technol. 2008, 42, 2612–2617. [Google Scholar] [CrossRef]
- Zhang, A.; Zhou, M.; Han, L.; Zhou, Q. The combination of rotating disk photocatalytic reactor and TiO2 nanotube arrays for environmental pollutants removal. J. Hazard. Mater. 2011, 186, 1374–1383. [Google Scholar] [CrossRef]
- Huo, Y.; Chen, X.; Zhang, J.; Pan, G.; Jia, J.; Li, H. Ordered macroporous Bi2O3/TiO2 film coated on a rotating disk with enhanced photocatalytic activity under visible irradiation. Appl. Catal. B Environ. 2014, 148–149, 550–556. [Google Scholar] [CrossRef]
- Boiarkina, I.; Pedron, S.; Patterson, D.A. An experimental and modelling investigation of the effect of the flow regime on the photocatalytic degradation of methylene blue on a thin film coated ultraviolet irradiated spinning disc reactor. Appl. Catal. B Environ. 2011, 110, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Boiarkina, I.; Norris, S.; Patterson, D.A. The case for the photocatalytic spinning disc reactor as a process intensification technology: Comparison to an annular reactor for the degradation of methylene blue. Chem. Eng. J. 2013, 225, 752–765. [Google Scholar] [CrossRef] [Green Version]
- Boiarkina, I.; Norris, S.; Patterson, D.A. Investigation into the effect of flow structure on the photocatalytic degradation of methylene blue and dehydroabietic acid in a spinning disc reactor. Chem. Eng. J. 2013, 222, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Kanki, T.; Sano, N.; Toyoda, A. Photocatalytic degradation of organic compounds in aqueous solution by a TiO2-coated rotating-drum reactor using solar light. Sol. Energy 2001, 70, 331–337. [Google Scholar] [CrossRef]
- Damodar, R.A.; Swaminathan, T. Performance evaluation of a continuous flow immobilized rotating tube photocatalytic reactor (IRTPR) immobilized with TiO2 catalyst for azo dye degradation. Chem. Eng. J. 2008, 144, 59–66. [Google Scholar] [CrossRef]
- Yao, Y.; Li, K.; Chen, S.; Jia, J.; Wang, Y.; Wang, H. Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode. Chem. Eng. J. 2012, 187, 29–35. [Google Scholar] [CrossRef]
- Li, K.; He, Y.; Xu, Y.; Wang, Y.; Jia, J. Degradation of Rhodamine B Using an Unconventional graded Photoelectrode with Wedge Structure. Environ. Sci. Technol. 2011, 45, 7401–7407. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yang, C.; Wang, Y.; Jia, J.; Xu, Y.; He, Y. A High-Efficient Rotating Disk Photoelectrocatalytic (PEC) Reactor with Macro Light Harvesting Pyramid-Surface Electrode. AIChE J. 2012, 58, 2448–2455. [Google Scholar] [CrossRef]
- Li, M.; Yu, S.X.; Huang, H.W.; Li, X.W.; Feng, Y.B.; Wang, C.; Wang, Y.G.; Ma, T.Y.; Guo, L.; Zhang, Y.H. Unprecedented Eighteen-Faceted BiOCl with a Ternary Facet Junction Boosting Cascade Charge Flow and Photo-redox. Angew. Chem. Int. Edit. 2019, 58, 9517–9521. [Google Scholar] [CrossRef]
- Jiang, R.R.; Lu, G.H.; Yan, Z.H.; Wu, D.H.; Zhou, R.R.; Bao, X.H. Insights into a CQD-SnNb2O6/BiOCl Z-scheme system for the degradation of benzocaine: Influence factors, intermediate toxicity and photocatalytic mechanism. Chem. Eng. J. 2019, 374, 79–90. [Google Scholar] [CrossRef]
- Wang, H.X.; Liao, B.; Lu, T.; Ai, Y.; Liu, G. Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@CeO2 heterostructured microspheres: Structural characterization and reaction mechanism. J. Hazard. Mater. 2020, 385, 121552. [Google Scholar] [CrossRef]
- Wu, S.S.; Yu, X.; Zhang, J.L.; Zhang, Y.M.; Zhu, Y.; Zhu, M.S. Construction of BiOCl/CuBi2O4S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal. Chem. Eng. J. 2021, 411, 128555. [Google Scholar] [CrossRef]
- Jia, Z.H.; Li, T.; Zheng, Z.F.; Zhang, J.D.; Liu, J.X.; Li, R.; Wang, Y.W.; Zhang, X.C.; Wang, Y.F.; Fan, C.M. The BiOCl/diatomite composites for rapid photocatalytic degradation of ciprofloxacin: Efficiency, toxicity evaluation, mechanisms and pathways. Chem. Eng. J. 2020, 380, 122422. [Google Scholar] [CrossRef]
- Tao, S.S.; Sun, S.D.; Zhao, T.; Cui, J.; Yang, M.; Yu, X.J.; Yang, Q.; Zhang, X.; Liang, S.H. One-pot construction of Ta-doped BiOCl/Bi heterostructures toward simultaneously promoting visible light harvesting and charge separation for highly enhanced photocatalytic activity. Appl. Surf. Sci. 2021, 543, 148798. [Google Scholar] [CrossRef]
- Guo, S.Q.; Zhu, X.H.; Zhang, H.J.; Gu, B.C.; Chen, W.; Liu, L.; Alvarez, P.J.J. Improving Photocatalytic Water Treatment through Nanocrystal Engineering: Mesoporous Nanosheet-Assembled 3D BiOCl Hierarchical Nanostructures That Induce Unprecedented Large Vacancies. Environ. Sci. Technol. 2018, 52, 6872–6880. [Google Scholar] [CrossRef]
- Liu, J.J.; Zhang, S.L.; Zhao, H.T. Fabricating visible-light photoactive 3D flower-like BiOCl nanostructures via a one-step solution chemistry method at room temperature. Appl. Surf. Sci. 2019, 479, 247–252. [Google Scholar] [CrossRef]
- Xiong, J.; Cheng, G.; Qin, F.; Wang, R.; Sun, H.; Chen, R. Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation. Chem. Eng. J. 2013, 220, 228–236. [Google Scholar] [CrossRef]
- Xiong, J.; Cheng, G.; Li, G.; Qin, F.; Chen, R. Well-crystallized square-like 2D BiOCl nanoplates: Mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Adv. 2011, 1, 1542–1553. [Google Scholar] [CrossRef]
- Wang, D.; Gao, G.; Zhang, Y.; Zhou, L.; Xu, A.; Chen, W. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation. Nanoscale 2012, 4, 7780–7785. [Google Scholar] [CrossRef]
- Yao, L.; Yang, H.; Chen, Z.; Qiu, M.; Hu, B.; Wang, X. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 2021, 273, 128576. [Google Scholar] [CrossRef]
- Ye, L.; Deng, K.; Xu, F.; Tian, L.; Peng, T.; Zan, L. Increasing visible-light absorption for photocatalysis with black BiOCl. Phys. Chem. Chem. Phys. 2012, 14, 82–85. [Google Scholar] [CrossRef]
- Xiao, X.; Hao, R.; Liang, M.; Zuo, X.; Nan, J.; Li, L.; Zhang, W. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. J. Hazard. Mater. 2012, 233–234, 122–130. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Chen, P.; Zhang, X.; Sun, H.; Tang, Y.; Liao, Q.; Huang, J.; Wang, H.; Meng, H.; et al. Boosting Efficiency and Stability of Organic Solar Cells Using Ultralow-Cost BiOCl Nanoplates as Hole Transporting Layers. ACS Appl. Mater. Interfaces 2019, 11, 33505–33514. [Google Scholar] [CrossRef]
- Li, K.; Yang, C.; Xu, Y.; Ying, D.; Wang, Y.; Jia, J. Effect of inorganic anions on Rhodamine B removal under visible light irradiation using Bi2O3/Ti rotating disk reactor. Chem. Eng. J. 2012, 211–212, 208–215. [Google Scholar] [CrossRef]
- Li, K.; Tang, Y.; Xu, Y.; Wang, Y.; Huo, Y.; Li, H.; Jia, J. A BiOCl film synthesis from Bi2O3 film and its UV and visible light photocatalytic activity. Appl. Catal. B Environ. 2013, 140–141, 179–188. [Google Scholar] [CrossRef]
- Li, K.; Zhang, H.; Tang, Y.; Ying, D.; Xu, Y.; Wang, Y.; Jia, J. Photocatalytic degradation and electricity generation in a rotating disk photoelectrochemical cell over hierarchical structured BiOBr film. Appl. Catal. B Environ. 2015, 164, 82–91. [Google Scholar] [CrossRef]
- Li, K.; Zhang, H.; He, Y.; Tang, T.; Ying, D.; Wang, Y.; Sun, T.; Jia, J. Novel wedge structured rotating disk photocatalytic reactor for post-treatment of actual textile wastewater. Chem. Eng. J. 2015, 268, 10–20. [Google Scholar] [CrossRef]
- Huang, S.; Li, L.; Zhu, N.; Lou, Z.; Liu, W.; Cheng, J.; Wang, H.; Luo, P.; Wang, H. Removal and recovery of chloride ions in concentrated leachate by Bi(III) containing oxides quantum dots/two-dimensional flakes. J. Hazard. Mater. 2020, 382, 121041. [Google Scholar] [CrossRef]
- Jiang, H.; Huang, S.; Lv, H.; Ge, D.; He, X.; Zhou, P.; Xiao, K.; Zhang, Y. Construction of bismuth-based porous carbon models by 3D printing technology for light-enhanced removal of chloride ions in wastewater. Water Res. 2022, 225, 119134. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, B.; Shao, S.; Shi, B.; Li, X.; Wang, C.; Chen, Y. Removal of chloride from waste acid using Bi2O3: Thermodynamics and dechlorination behavior. J. Water Process Eng. 2022, 49, 103048. [Google Scholar] [CrossRef]
- Li, K.; Zhang, H.; Tang, T.; Xu, Y.; Ying, D.; Wang, Y.; Jia, J. Optimization and application of TiO2/Ti-Pt photo fuel cell (PFC) to effectively generate electricity and degrade organic pollutants simultaneously. Water Res. 2014, 62, 1–10. [Google Scholar] [CrossRef]
- Li, K.; Xu, Y.; He, Y.; Yang, C.; Wang, Y.; Jia, J. Photocatalytic Fuel Cell (PFC) and Dye Self-Photosensitization Photocatalytic Fuel Cell (DSPFC) with BiOCl/Ti Photoanode under UV and Visible Light Irradiation. Environ. Sci. Technol. 2013, 47, 3490–3497. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, C.; Guo, H.; Niu, C.-G.; Zhao, X.-F.; Wen, X.-J.; Zeng, G.-M. Construction of a high-performance photocatalytic fuel cell (PFC) based on plasmonic silver modified Cr-BiOCl nanosheets for simultaneous electricity production and pollutant removal. Nanoscale 2019, 11, 6662–6676. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, C.-G.; Zhao, X.-F.; Liang, C.; Guo, H.; Zeng, G.-M. Ultrathin BiOCl Single-Crystalline Nanosheets with Large Reactive Facets Area and High Electron Mobility Efficiency: A Superior Candidate for High-Performance Hye Self-Photosensitization Photocatalytic Fuel Cell. ACS Appl. Mater. Interfaces 2018, 10, 39723–39734. [Google Scholar] [CrossRef]
- Li, K.; Zhang, H.; Tang, T.; Tang, Y.; Wang, Y.; Jia, J. Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell. J. Power Sources 2016, 324, 368–377. [Google Scholar] [CrossRef]
- Li, K.; Zhang, H.; Ma, Y.; Sun, T.; Jia, J. Nanostructured polypyrrole cathode based dual rotating disk photo fuel cell for textile wastewater purification and electricity generation. Electrochim. Acta 2019, 303, 329–340. [Google Scholar] [CrossRef]
- Wang, T.; Chutia, A.; Brett, D.J.L.; Shearing, P.R.; He, G.; Chai, G.; Parkin, I.P. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energ. Environ. Sci. 2021, 14, 2639–3669. [Google Scholar] [CrossRef]
- Wu, H.; Feng, C.; Zhang, L.; Zhang, J.; Wilkinson, D.P. Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochem. Energy R. 2021, 4, 473–507. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, C.; Yu, Y.; Lu, S.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269. [Google Scholar] [CrossRef]
- Zhou, Y.; Abazari, R.; Chen, J.; Tahir, M.; Kumar, A.; Ikreedeegh, R.R.; Rani, E.; Singh, H.; Kirillov, A.M. Bimetallic metal-organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications. Coordin. Chem. Rev. 2022, 451, 214264. [Google Scholar] [CrossRef]
- Wu, S.; Hu, Y.H. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics. Chem. Eng. J. 2021, 409, 127739. [Google Scholar] [CrossRef]
- Wang, B.; Biesold, G.M.; Zhang, M.; Lin, Z. Amorphous inorganic semiconductors for the development of solar cell, photoelectrocatalytic and photocatalytic applications. Chem. Soc. Rev. 2021, 50, 6914–6949. [Google Scholar] [CrossRef]
- Xu, Y.; He, Y.; Jia, J.; Zhong, D.; Wang, Y. Cu-TiO2/Ti Dual Rotating Disk Photocatalytic (PC) Reactor: Dual Electrode Degradation Facilitated by Spontaneous Electron Transfer. Environ. Sci. Technol. 2009, 43, 6289–6294. [Google Scholar] [CrossRef]
- Tang, T.; Li, K.; Ying, D.; Sun, T.; Wang, Y.; Jia, J. High efficient aqueous-film rotating disk photocatalytic fuel cell (RDPFC) with triple functions: Cogeneration of hydrogen and electricity with dye degradation. Int. J. Hydrogen Energ. 2014, 39, 10258–10266. [Google Scholar] [CrossRef]
- Tang, T.; Li, K.; Shen, Z.; Sun, T.; Wang, Y.; Jia, J. An appealing photo-powered multi-functional energy system for the poly-generation of hydrogen and electricity. J. Power Sources 2015, 294, 59–66. [Google Scholar] [CrossRef]
- Tang, T.; Li, K.; Shen, Z.; Sun, T.; Wang, Y.; Jia, J. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity. J. Power Sources 2016, 301, 54–61. [Google Scholar] [CrossRef]
- Li, J.; Listwan, A.; Liang, J.; Shi, F.; Li, K.; Jia, J. High proportion of 1 T phase MoS2 prepared by a simple solvothermal method for high-efficiency electroctalytic hydrogen evolution. Chem. Eng. J. 2021, 422, 130100. [Google Scholar] [CrossRef]
- Su, L.; Li, K.; Zhang, H.; Fan, M.; Ying, D.; Sun, T.; Wang, Y.; Jia, J. Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode. Water Res. 2017, 120, 1–11. [Google Scholar] [CrossRef]
- Li, K.; Chen, C.; Bian, X.; Sun, T.; Jia, J. Electrolytic nitrate reduction using Co3O4 rod-like and sheet-like cathodes with the control of (220) facet exposure and Co2+/Co3+ ratio. Electrochim. Acta 2020, 362, 137121. [Google Scholar] [CrossRef]
- Chen, C.; Li, K.; Li, C.; Sun, T.; Jia, J. Combination of Pd-Cu Catalysis and Electrolytic H2 Evolution for Selective Nitrate Reduction Using Protonated Polypyrrole as a Cathode. Environ. Sci. Technol. 2019, 53, 13868–13877. [Google Scholar] [CrossRef]
- Bian, X.; Shi, F.; Li, J.; Liang, J.; Bao, C.; Zhang, H.; Jia, J.; Li, K. Highly selective electrocatalytic reduction of nitrate to nitrogen in a chloride ion-free system by promoting kinetic mass transfer of intermediate products in a novel Pd-Cu adsorption confined cathode. J. Environ. Manag. 2022, 324, 116405. [Google Scholar] [CrossRef]
- Shi, F.; Li, J.; Liang, J.; Bao, C.; Gu, J.-N.; Li, K.; Jia, J. Highly dispersed Pd-Cu bimetallic nanocatalyst based on γ-Al2O3 combined with electrocatalytic in-situ hydrogen production for nitrate hydroreduction. Chem. Eng. J. 2022, 434, 134748. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Li, K.; Tang, Q.; Bian, X.; Gu, J.; Cao, Q.; Zhong, L.; Russell, C.K.; Fan, M.; et al. Cu+ based active sites of different oxides supported Pd-Cu catalysts and electrolytic in-situ H2 evolution for high-efficiency nitrate reduction reaction. J. Catal. 2020, 392, 231–243. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Li, K.; Jia, J. Recent Developments of Light-Harvesting Excitation, Macroscope Transfer and Multi-Stage Utilization of Photogenerated Electrons in Rotating Disk Photocatalytic Reactor. Processes 2023, 11, 838. https://doi.org/10.3390/pr11030838
Jiang Z, Li K, Jia J. Recent Developments of Light-Harvesting Excitation, Macroscope Transfer and Multi-Stage Utilization of Photogenerated Electrons in Rotating Disk Photocatalytic Reactor. Processes. 2023; 11(3):838. https://doi.org/10.3390/pr11030838
Chicago/Turabian StyleJiang, Zhe, Kan Li, and Jinping Jia. 2023. "Recent Developments of Light-Harvesting Excitation, Macroscope Transfer and Multi-Stage Utilization of Photogenerated Electrons in Rotating Disk Photocatalytic Reactor" Processes 11, no. 3: 838. https://doi.org/10.3390/pr11030838
APA StyleJiang, Z., Li, K., & Jia, J. (2023). Recent Developments of Light-Harvesting Excitation, Macroscope Transfer and Multi-Stage Utilization of Photogenerated Electrons in Rotating Disk Photocatalytic Reactor. Processes, 11(3), 838. https://doi.org/10.3390/pr11030838