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Abstract: In this study, we prepared chitosan/Fe(III)/deferoxamine nanoparticles with unimodal
size distribution (hydrodynamic diameter ca. 250 nm, zeta potential ca. 32 mV). The elaborated
nanoparticles are characterized by outstanding in vitro and in vivo antibacterial activity, which
exceeds even that of commercial antibiotics ampicillin and gentamicin. Moreover, the nanoparticles
are non-toxic. We found that the introduction of iron ions into the chitosan matrix increases the
ability of the resulting nanoparticles to disrupt the integrity of the membranes of microorganisms in
comparison with pure chitosan. The introduction of deferoxamine into the obtained nanoparticles
sharply expands their effect of destruction the bacterial membrane. The obtained antibacterial
nanoparticles are promising for further preclinical studies.
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1. Introduction

Infectious diseases of bacterial etiology are the cause of a large number of deaths
and disability among the population [1–3]. In addition, infectious diseases affect not only
people, but plants and animals, thereby causing significant damage to agriculture [4–6].
Therefore, infectious diseases represent both a medical and economic problem. Antibiotics
have been used to treat bacterial infections for decades [7]. Undoubtedly, the introduction
of antibiotics into clinical practice was one of the most important milestones in the history
of medicine [8,9].

However, the use of antibiotics is associated with three major problems. The first
problem is associated with the general systemic toxicity of antibiotics, which causes side
effects during treatment and requires significant restrictions, especially in the cases of
elderly patients, pregnant women, and children [10–12]. The second problem is related
environmental issues. Antibiotics are often detected in wastewater, food, and even food
packaging. Therefore, they harm the environment [13–16]. The third problem is related to
the emergence of antibiotic resistance in bacteria, and this requires the prescription of large
doses of antibiotics and/or the simultaneous use of several antibiotics [17–19]. All these
problems have stimulated an intensive search for alternatives to traditional antibiotics, and
such studies are among the most important tasks of medicinal chemistry and pharmacology.

Chitosan is a non-toxic, biocompatible and biodegradable polymer [20], which belongs
to the most important eco-friendly macromolecular compounds. In addition, chitosan
itself exhibits moderate antibacterial activity. The antibacterial effect of some of chitosan
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derivatives is comparable with that of common commercial antibiotics ampicillin and
gentamicin, and its transfection activity is similar to that of commercially available vector
lipofectamine. Meanwhile, the toxicity of these chitosan derivatives is much lower than
that of the reference antibiotics or lipofectamine [21].

Iron(III) is one of the most non-toxic 3D transition metals in the periodic table [22,23].
Moreover, several non-toxic iron-based compounds with promising antibacterial activity
(including in vivo) are described in the literature [24–27].

The non-toxic natural compound deferoxamine is part of a group of so-called
siderophores [28,29]. These are small, high-affinity compounds that chelate iron. Siderophores
are secreted by bacteria and help them to store iron. Antibacterial compounds conjugated
to siderophores are actively taken up by bacteria and this is used in medicinal chemistry.
Therefore, siderophores are often called the Trojan horse ligand [30,31].

In this study, we hypothesized that the non-covalent fusion of chitosan, iron(III) and
deferoxamine (Trojan horse ligand) would lead to the formation of a novel antibacterial
system. Such a system consists of natural non-toxic compounds and therefore should be a
non-toxic and promising alternative to antibiotics. The results of the synthesis, characteri-
zation and investigation of the biological properties of this system are discussed in detail in
the sections that follow below.

2. Materials and Methods
2.1. Materials

In this study, we used chitosan with a viscosity average molecular weight of 2.7 kDa
and degree of acetylation of 10%, abbreviately named CH (Bioprogress, Losino-Petrovsky,
Russia); iron(III) chloride hexahydrate and deferoxamine are abbreviately named DESF
(Aldrich, St. Louis, MI, USA). All other chemicals and solvents were obtained from com-
mercial sources and were used as received, without further purification.

2.2. Synthesis of Chitosan-Fe3+ Complex (POX-1)

A chitosan sample (1.0 g) was dispersed in 50 mL of a 1% solution of acetic acid and
was stirred (400 rpm) for 24 h at room temperature. Then, 10 mL of the resultant solution
was diluted to 200 mL with distilled water (solution A). Next, 0.1 g of ferric chloride(III)
hexahydrate was dissolved in 100 mL of water (solution B). Solutions A and B were mixed
and stirred for 1 h. The resultant solution was freeze-dried to give POX-1 as a soft orange
cotton-like material.

2.3. Synthesis of Chitosan-Fe3+ Complex (POX-2 and POX-3)

First, 100 mg of POX-1 was dissolved in 100 mL of distilled water (solution C) and
100 mg of deferoxamine was dissolved in 100 mL of distilled water (solution D). Solutions
C and D were mixed (solution E); one part of solution E was stirred for 2 h and freeze-dried
to give POX-2, and another was stirred for 24 h and freeze-dried to give POX-3.

2.4. General Methods

The apparent hydrodynamic diameter and ζ-potential of nanoparticles in water were
estimated at room temperature (approximately 25 ◦C) using a Photocor Compact-Z instru-
ment (Russia) at λ = 659 nm and θ = 90◦(10 scans, each one for 15 s).

IR spectroscopy was recorded on a Shimadzu IRSpirit at 4700 to 350 cm−1 (10 mg of
sample without any specified sample preparation).

UV spectra were recorded using a Mettler UV5 spectrophotometer.
Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) were per-

formed on the SDT Q600 using a heating rate of 5 ◦C/min in the temperature range from
40 ◦C to 600 ◦C.

X-ray diffraction analysis was carried out on a Dron-7 X-ray diffractometer, using a 2θ
angle interval from 7◦ to 40◦ with scanning step ∆2θ = 0.02◦ and exposure of 7 s per point.
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Cu Kα radiation (Ni filter) was used, which was subsequently decomposed into Kα1 and
Kα2 components during the processing of the spectra.

Loading efficiency (LE) was calculated using the following equation:

LE = [(m(deferoxamine total) − m(c deferoxamine in supernatant))/m(deferoxamine total)] × 100

The mass of deferoxamine in the supernatant was determined by UV spectroscopy at
a wavelength of 252 nm (calibration curve method).

X-ray fluorescence analysis of the samples was performed on a Clever C-31 X-ray
fluorescence spectrometer. The relative measurement error was ±7%. A rhodium tube with
a voltage of 50 kV and a current of 100 µA acted as a generator of γ-rays. The samples were
taken without filters for 2000 s.

High-resolution electrospray ionization mass spectrometry (positive ion mode) was
carried out on a APEX-Qe ESI FT-ICR instrument (Bruker, Billerica, MA, USA) with CH3CN
as a solvent.

Antibacterial activity (in vitro and in vivo) and toxicity were evaluated completely as
previously described by some of our group [32–35].

3. Results and Discussion
3.1. Preparation of Nanoparticles POX-1, POX-2 and POX-3

Treatment of the chitosan solution with iron(III) chloride immediately results in the
generation of yellow-colored nanoparticles POX-1 of unimodal size distribution with
hydrodynamic diameter ca. 285 nm and a high positive zeta potential (ca. 32 mV, see
Table 1). The formed nanoparticles do not change their characteristic size and zeta potential
values in a water nanosuspension for at least 10 days. Remarkably, when immersed in water
after lyophilization, POX-1 is almost instantly redispersed, with the complete restoration of
the starting values of the hydrodynamic diameter and zeta potential.

Table 1. Characteristics of the obtained nanoparticles.

Sample D, nm ζ, mV Polydispersity Index

POX-1 285 ± 2 +31.8 ± 0.1 0.11 ± 0.02
POX-2 254 ± 1 +32.0 ± 0.3 0.10 ± 0.02
POX-3 260 ± 1 +32.5 ± 0.2 0.11 ± 0.03

The addition of deferoxamine to the POX-1 nanosuspension leads to the rapid forma-
tion of novel POX-2 nanoparticles of smaller size (hydrodynamic diameter ca. 254 nm) and
the same zeta potential value as for POX-1 (ca. +32 mV, see Table 1). In water, POX-2, after
24 h, converts into POX-3 with hydrodynamic diameter ca. 260 nm, while the zeta potential
value remains unchanged. It is likely that POX-2 and POX-3 are the same system, but this
will be discussed in the following sections. It should be noted that both POX-2 and POX-3
are completely redispersible after lyophilization.

To confirm that deferoxamine is part of POX-2 and POX-3 and is not present in the
solution in free form, we separated the resulting POX-2 and POX-3 from the supernatant
after mixing the POX-1 and deferoxamine solutions. High-resolution mass spectrometry
with electrospray ionization of the supernatant did not reveal any deferoxamine signals.
Therefore, deferoxamine is included in the POX-2 and POX-3 nanoparticles. The loading
efficiency (LE) of deferoxamine was ca. 100%.

X-ray fluorescence analysis of POX-1, POX-2 and POX-3 confirmed the presence of
iron in the samples.

POX-2 also was characterized by scanning electron microscopy. The SEM image of
POX-2 is presented in Figure 1.
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Figure 1. SEM image of POX-2.

3.2. Infrared Spectroscopy

The spectrum of FeCl3 × 6H2O (Figure 2A) displays small peaks of deformation
vibrations of crystallized water at 1600 cm−1 and stretching vibrations of free water at
3530 cm−1. A wide double band of stretching vibrations of crystallized water exhibits
two pronounced maxima at 3000 and 3220 cm−1, while coordinated water deformation
vibration bands arise at 840, 680, 600, 540 cm−1. The spectrum of FeCl3 × 6H2O also
displays stretching vibration bands attributed to Fe–Cl (360 cm−1) and Fe–O (420 cm−1)
vibrations [36].
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The spectrum of chitosan (Figure 2B) shows a wide band of O–H and N–H stretching
(3440–3100 cm−1), C–H stretching (2870 cm−1) and bending (1460, 1420, 1380 cm−1) vibra-
tions, and N–H deformation vibrations (1590-1650 cm−1). Absorption bands in the range
of 900–1200 cm−1 are due to C–O–C, C–C and N–H deformation vibrations [37].

The spectrum of deferoxamine (Figure 2D) exhibits absorption bands of C=O, =O-H,
-CONHR, -CH2 stretching vibrations (2840–3240 cm−1), peaks at 1620 cm−1 and 1560 cm−1

of stretching =N-CO and deformation NH vibration bands. Peaks of stretching vibrations
-CH2-CO are located in the interval 1400–1440 cm−1, while deformation aliphatic amine
vibration peaks are found at 1030–1220 cm−1. In the range of 1040–500 cm−1, we observe
deformation vibrations -(CH2)x-, -NH2.

The spectrum of POX-1 (Figure 2C) displays the C–H stretching vibration band at cm−1,
which is shifted to 2890 cm−1 as compared to the starting chitosan. The spectrum shows a
wide band of O–H and N–H stretching (3440–3100 cm−1), C–H stretching (2890–2870 cm−1)
and bending (1460, 1420, 1380 cm−1) vibrations and characteristic bands due to C–O–C
and C–C deformation vibrations (900–1200 cm−1). The N–H deformation vibration band is
shifted to 1560–1520 cm−1 in comparison with the chitosan.

The spectrum of POX-2 (Figure 2E) exhibits stretching vibration bands characteristic
of POX-1 (Figure 2C), i.e., O–H and N–H peaks (3440–3100 cm−1) and a characteristic
band at 2360 cm−1. C–H stretching vibration bands are located at 2920–2840 cm−1 and
slightly shifted in comparison to POX-1. The spectrum of POX-2 exhibits stretching vi-
bration bands characteristic of deferoxamine (Figure 2D), i.e., peaks of stretching =N–CO
(1620 cm−1) and deformation N–H (1560 cm−1) vibration bands, stretching vibrations
CH2–CO (1400–1440 cm−1) and a characteristic peak at 520–580 cm−1.

The spectrum of POX-2 (Figure 2E) is identical to the spectrum of POX-3 (Figure 2F).
This confirms our assumptions about their identical structures.

3.3. X-Ray Diffraction

The spectra of chitosan and POX-1 are very similar. Both diffractograms show similar
stretched peaks at 10–30◦ 2θ, which are attributed to chitosan (Figure 3A) [38].

The maxima of the spectra of both chitosan and deferoxamine are in the same region
(15–27◦ 2θ). The spectrum of chitosan displays a double wide peak with the left-shouldered
maximum at 20◦ 2θ, while the diffractogram of deferoxamine at the same region exhibits
four peaks with the main one at ca. 21.2◦ 2θ. Thus, the maximum and the shoulders of
the deferoxamine-conditioned signals are right-shifted as compared to those of chitosan
(Figure 3B).

The maxima of the spectra of both POX-2 and deferoxamine are located at ca. 21◦ 2θ.
The spectrum of the POX-1 sample does not display any significant peak at this region. This
fact indicates the presence of deferoxamine in POX-2 and its absence in POX-1 (Figure 3C).

The X-ray diffraction spectra of POX-2 and POX-3 samples are very similar. However,
the diffractogram of POX-3 displays a broader maximum peak at 18–25◦. 2θ. This indicates
the presence of smaller, crystallographically active structural units in the main particles of
the sample (for example, in the POX-3 nanoparticles, probably, there are smaller nanolevel
particles) (Figure 3D). The described differences do not refute our assumption about the
identity of the chemical structure of POX-2 and POX-3.

Generally, the X-ray diffraction study confirms the identical chemical structures of
POX-2 and POX-3, and allows us to conclude that both POX-2 and POX-3 contain chitosan
and deferoxamine.

3.4. Differential Thermal Analysis (DTA) and Thermogravimetric Analysis (TGA)

The pure chitosan TGA curve has two stages of thermal degradation (Figures 4 and 5).
The first stage is associated with a small weight loss due to the evaporation of the adsorbed
and weakly bound water (mass loss 7%, Tmax = 121 ◦C). This stage is accompanied by
a weak endothermic effect. The second stage is associated with the degradation of the
polymer structure (mass loss 89%, Tmax = 520 ◦C).
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Figure 5. DTA curves of DESF, CH, POX-1, POX-2, POX-3.

POX-1 was obtained by the interaction of chitosan with Fe3+ ions. The thermal
degradation curve of POX-1 is characterized by three stages of degradation. The first
stage is associated with water loss, and it is accompanied by a slight endothermic effect
(mass loss 10%, Tmax = 122 ◦C). The second stage is associated with the degradation of the
polymer structure, and it is accompanied by a pronounced, unsharp exothermic effect (mass
loss 73%, Tmax = 440 ◦C). The third stage of decomposition has a spasmodic, pronounced
exothermic effect (mass loss 10%, Tmax = 453 ◦C) (Figures 4 and 5).

POX-2 and POX-3 were prepared via the interaction of POX-1 with deferoxamine.
Their thermal decomposition curves are almost identical, and the values of weight loss
and maximum temperature differ by no more than 10% (Figures 4 and 5). The first stage
of thermal degradation is associated with water loss (mass loss 7%, Tmax = 146 ◦C). The
second stage is accompanied by an acute exothermic effect (mass loss 25%, Tmax = 200 ◦C)
followed by a gradual loss of mass. The third stage is accompanied by a sharp, pronounced
exothermic effect (Tmax = 445 ◦C, weight loss 20%). The POX-1 and POX-2 curves are
significantly different from those of the starting deferoxamine and POX-1, which indicates
the formation of new systems. The systems include the characteristic features of the thermal
decomposition of both starting deferoxamine and POX-1: (i) deferoxamine-like weight
loss at 200 ◦C (for deferoxamine, at 202 ◦C); (ii) POX-1-like sharp weight loss at 445 ◦C
(for POX-1, at 453 ◦C). These observations are in agreement with the results of the X-ray
diffraction study.

3.5. Biological Studies
3.5.1. In Vitro Antibacterial Activity

The in vitro antibacterial activity of the prepared nanoparticles was compared with
that of the starting chitosan, iron(III) chloride hexahydrate and deferoxamine. For the
in vitro evaluation of the antibacterial effect, we used the conventional agar well diffusion
method. This method allows one to directly estimate the diameter of the microbial colonies’
growth inhibition zone. The compound that provokes the largest zone of inhibition of
bacterial growth is considered the most active antibacterial agent. The results of the
experiments are presented in Table 2.
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Table 2. Antibacterial effects of the elaborated nanoparticles.

Sample
Inhibition Zone (mm) *

S. aureus E. coli

Chitosan 13.1 ± 0.1 9.7 ± 0.3
Iron(III) chloride hexahydrate 16.0 ± 0.3 12.2 ± 0.2

Desferal 2.6 ± 0.1 1.3 ± 0.1
POX-1 22.4 ± 0.1 14.8 ± 0.2
POX-2 29.7 ± 0.2 22.5 ± 0.1
POX-3 29.9 ± 0.1 21.7 ± 0.3

Ampicillin 30.1 ± 0.3
Gentamicin 22.1 ± 0.1

* Mean value ± SD, n = 3.

Both the starting chitosan and iron(III) hexahydrate are characterized by moderate
antibacterial activity, while their composite POX-1 is ca. 1.5 times more effective toward
the tested bacteria. This can be explained by the formation of highly positively charged
nanoparticles of POX-1. Our previous studies showed that, in many instances, chitosan-
based nanoparticles exhibit much stronger antibacterial effects than the starting chitosan in
its native form of a molecular coil [39].

Deferoxamine practically does not have an antibacterial effect. In contrast, the blending
of deferoxamine with POX-1 results in POX-2 with outstanding antibacterial activity, which
is comparable to that of the reference antibiotics ampicillin and gentamicin. We speculate
that the high antibacterial activity of POX-2 is associated with the symbatic action of
POX-1/deferoxamine in their complex with POX-2, but a fuller understanding of their
mechanism requires additional biological studies.

The antibacterial effect of POX-3 essentially does not differ from that of POX-2.
The most effective antibacterial nanoparticles proved to be POX-2 and POX-3. The min-

imum inhibitory concentration (MIC) values were 0.14 µg/mL (S. aureus) and 0.19 µg/mL
(E. coli) (compare with MIC values of ampicillin 0.18 µg/mL (S. aureus), gentamicin
0.23 µg/mL (E. coli)). Thus, the most active elaborated antibacterial nanoparticles, POX-2
and POX-3, are not inferior in their in vitro effect to the conventional antibiotics ampicillin
and gentamicin.

3.5.2. Effect of the Integrity of the Bacterial Membrane

The main recognized model of the mechanism of the antibacterial effect of chitosan
is associated with its polycationic nature [40]. Due to the protonation of primary amino
functionalities, the neutral chitosan (pKa = 6.5) is converted into its polycation. The
polycation interacts with the anionic moieties of the microbial cell, and this results in ionic
pumps’ dysfunction, osmotic imbalance, and overall membrane dysfunction, followed by
cell membrane rupture and bacterial death [41].

To study the effects of the elaborated systems on the integrity of the microbial mem-
brane, we used spectrophotometry of a suspension of bacterial cells in a 0.5% aqueous
solution of sodium chloride in the UV region [42]. This approach is based on the fact
that intracellular components are characterized by strong absorption at 260 nm [43]. In
preliminary experiments, we found that both deferoxamine and iron(III) chloride did not
damage the membranes of the tested bacteria. Thus, we compared the effect of starting
chitosan and POX-1, POX-2 and POX-3 on the integrity of the cell membranes of S. aureus
and E. coli. The results of the study are summarized in Figures 6 and 7.

In general, POX-1, POX-2 and POX-3 disrupt the integrity of the bacterial cell to
a greater extent than the initial chitosan, and the effect of POX-2 and POX-3 is more
pronounced than that of the starting chitosan. In addition, both in the case of Staphylococ-
cus aureus and in the case of E. coli, POX-2 and POX-3 require less time to reach a plateau,
i.e., their effect develops faster than that of chitosan of POX-1. Thus, the main mode of the
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antibacterial effect of POX-2 and POX-3 is the destruction of the integrity of the bacterial
cell membrane.
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3.5.3. In Vitro Toxicity

The in vitro toxicity of the leading POX-2 and POX-3 was evaluated using the classic
MTT test and compared with that of the starting chitosan, POX-1, deferoxamine and iron(III)
chloride. As a quantitative measure of toxicity, we used the cell viability (CV, %) of the
HEK-293 line after the cells were treated with a solution of the test substance (300 µg/mL).
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The highest toxicity was found for iron(III) chloride (CV = 72%). The incorporation of
iron(III) chloride into the chitosan polymeric matrix dramatically reduces its toxicity (CV =
94%). As a result, the formed nanoparticles POX-1 are characterized by the same toxicity as
the starting chitosan (CV = 96%), which is considered a non-toxic polymer. The introduction
of deferoxamine into POX-1 to give POX-2 or POX-3 did not lead to any noticeable changes
in toxicity (for POX-1, CV = 93%; for POX-2, CV = 96%). However, it should be noted
that the described nanoparticles are characterized by high positive values of the zeta
potential; therefore, their intravenous administration into the general systemic circulation
is undesirable, since it can cause the aggregation of negatively charged platelets. In this
regard, in further experiments in vivo, we decided to use the intracavitary method of
administration for these nanoparticles.

3.5.4. In Vivo Antibacterial Activity

At the next stage of the current work, we evaluated the in vivo antibacterial activity
and toxicity of the leading systems, i.e., POX-2 and POX-3, in rats and compared their
effects with those of antibiotics ampicillin and gentamicin.

The rats were subjected to the so-called model peritonitis. To imitate peritonitis, we
infected the rats with a microbial mixture containing hospital strains of S. aureus and
E. coli. Six hours after the introduction of microorganisms, all rats showed the conventional
symptoms of peritonitis: lethargy, food refusal, rapid breathing and abdominal distention.
In the control groups, exudate (200 µL) was collected with a sterile syringe 24 h after
infection. A day later, all other rats were injected with a solution of the tested POX-2 or
POX-3, or ampicillin or gentamicin. Then, 200 µL of exudate was taken after 7 h. To 200 µL
of exudate, 1000 µL of 0.9% NaCl aqueous solution was added. Next, 100 µL of the resulting
solution was evenly applied to a Petri dish with meat peptone agar. Colonies were counted
24 h after incubation at 37 ◦C. Subsequently, colony-forming units (CFU) were recalculated
per 1 mL of exudate (Table 3).

Table 3. In vivo antibacterial effect.

Tested Sample CFU per 1 mL of Exudate (7 h after Treatment
or 31 h after Infection)

Control without treatment (24 h after infection) 2690
POX-2 0
POX-3 0

Ampicillin 540
Gentamicin 370

All tested samples demonstrated high in vivo antibacterial effects. However, POX-2
and POX-3 showed extremely high antimicrobial effects: no growth of colonies was found
after collection of the exudate. The lower efficacy of the antibiotics can be explained by
their rapid elimination after intracavitary administration. The elimination of polymer-
based nanoparticles is much slower, and this leads to an increase in antibacterial activity
compared low-molecular compounds, i.e., antibiotics, ampicillin and gentamicin. It should
be noted that the results of this in vivo study in rats may not be directly applicable to
human patients, and further studies, including clinical trials, are necessary to confirm the
efficacy and safety of these nanoparticles in humans.

4. Conclusions

The results of this work can be considered from the following main perspectives.
Firstly, we elaborated the following types of chitosan-based nanoparticles: chitosan/

Fe(III) (POX-1) and chitosan/Fe(III)/deferoxamine (POX-2 and POX-3, which differs from
POX-2 in that it has been stirred in water for 24 h rather than 1 h). The resulting nanopar-
ticles are characterized by close values of the hydrodynamic diameter and zeta potential.
Characterization of the obtained POX-2 and POX-3 by physicochemical methods of analysis
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clearly demonstrated that POX-2 and POX-3 are practically identical nanoparticles. The
equal biological effects of POX-2 and POX-3 support this conclusion. Therefore, POX-2 is
stable in water for at least 24 h, retaining all the characteristic features of its structure and
biological effects.

Secondly, we evaluated the in vitro and in vivo antibacterial activity of the prepared
POX-1, POX-2 and POX-3. The most effective antibacterial species are POX-2 and POX-
3 and their antimicrobial efficiency is equal, which is not surprising since POX-2 and
POX-3 are the same system. POX-2 and POX-3 are characterized by outstanding in vivo
antibacterial effects, and their activity exceeds even that of commercial antibiotics ampicillin
and gentamicin. Moreover, POX-2 and POX-3 are non-toxic.

Thirdly, we concluded that the introduction of iron ions into the chitosan matrix increases
the ability of the resulting nanoparticles to disrupt the integrity of the membranes of mi-
croorganisms in comparison with pure chitosan. The introduction of deferoxamine into the
obtained nanoparticles sharply expands their effect of destruction of the bacterial membrane.

Finally, we provide a fast, simple and convenient route to obtain highly effective,
non-toxic antibacterial systems. This route is based on non-covalent chemistry and does not
require laborious and sophisticated organic synthesis methods. The obtained antibacterial
nanoparticles are promising for further preclinical studies, and this project is underway in
our group.
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