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Abstract: Vehicle mass is crucial to autonomous vehicles control. Affected by the nonlinearity of
vehicle dynamics between vehicle states, it is still a tough issue to estimate vehicle mass precisely and
stably. The transformer aided adaptive extended Kalman filter is proposed to further improve the
accuracy and stability of estimation. Firstly, the transformer-based estimator is introduced to provide
an accurate pre-estimation of vehicle mass, with the nonlinear dynamics among vehicle states being
learned. Secondly, on the basis of comparing the real-time input and training data of neural network,
the weight adjustment module is designed to present an adaptive law. Finally, the adaptive extended
Kalman filter is proposed to meet the demand of accuracy and stability, where the pre-estimation of
transformer-based estimator is integrated with the adaptive law. Dataset is collected by conducting
heavy-duty vehicle simulation. The mean absolute percentage error, mean absolute error, root mean
square error and convergence rate averaged over simulation tests are 0.90%, 256.47 kg, 357.01 kg and
184 steps, respectively. The results show the outperformance of the proposed method in terms of
accuracy and stability.

Keywords: mass estimation; adaptive extended Kalman filter; transformer; autonomous vehicle

1. Introduction

With the rapid emergence of various advanced technologies in different fields, such as
computers and automobiles, the development of autonomous vehicles has become thriving
in recent years. Autonomous vehicles have landed in various scenarios with the help and
combination of those technologies. These vehicles are always equipped with different
electronic control systems, which are driven with feedback regulation [1,2]. Therefore, the
accurate estimation of vehicle real-time states and parameters can significantly improve
the performance of vehicle control systems. As one of them, vehicle mass has a significant
impact on the performance of systems that rely on vehicle dynamics, such as electronic
stability program (ESP), anti-lock brake system (ABS), etc. [3]. Moreover, vehicle mass
holds significant importance in vehicle dynamic modeling, and the estimation of other
vehicle states, such as lateral velocity and sideslip angle, heavily depends on such dynamic
model [4,5]. However, it is faced with a challenging problem since vehicle mass, especially
for coaches and trucks, changes greatly depending on real-time payloads. Therefore, devel-
oping a method for determining the vehicle mass is critical to the safety and performance
of autonomous vehicles, and has been extensively investigated by an increasing number of
researchers in recent years so as to tackle the challenge.

Generally speaking, there are three types of parameter estimation methods for vehicle
mass: sensor-based, model-based, and data-driven [6–12]. Sensor-based can be further
divided into two kinds: fixed sensors and on-board sensors. Fixed sensors like weigh-
bridges are the main weighing equipment used by factories, mines and businesses for bulk
cargo measurement because of their benefits of sturdy construction and convenient use.
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However, its application has been constrained by a lack of deactivation activity. On-board
sensor research naturally evolved to address this issue [6]. With the installation of on-board
sensors, mass weighing may be conducted while driving at any moment. However, the per-
formance of these sensors is subject to the complex and changeable working environment,
and the installation of additional sensors increases the cost of vehicle manufacturing.

The model-based approach primarily comprises three essential components, namely
the sensor data, vehicle model, and the core algorithm, which are of lower cost compared
to sensor-based ones [13–16]. In terms of sensor data, Rajamani and Hedrick adopted an
additional linear variable differential transformer (LVDT) for observational purposes when
constructing an adaptive vehicle states observer [17]. Jensen et al., in contrast, designed an
approach that utilized solely parameters obtained from the on-board diagnostics (OBD)
system to estimate mass [18]. Depending on the specific perspective chosen, various
types of models can be established, including the lateral dynamic model, suspension
dynamic model, longitudinal dynamic model, and others [17–20]. Given its dominant role
throughout the driving process and exclusive use of pre-existing sensors, the longitudinal
dynamic model facilitates the utilization of a larger amount of collected data for calculations
and is frequently utilized by researchers.

With regard to the core algorithms, the majority of model-based approaches utilize
filtering methods. Cai et al. presented a two-stage structured algorithm based on an ex-
tended Kalman filter (EKF) for estimating load and slope [21]. However, EKF suffers from
inaccurate approximations for highly nonlinear models due to its reliance on first-order
Taylor series expansions. In contrast, the unscented Kalman filter (UKF) offers a more pre-
cise approximation of nonlinear models using the unscented transform, even when they
are highly nonlinear. Therefore, Jin et al. employed UKF in their dual-structure approach
for online estimation of inertial parameters, including vehicle mass [22]. Nonetheless,
it should be noted that Kalman filter-based suboptimal approximations are limited by
their reliance on Gauss approximation. In an effort to overcome this limitation, Sun et al.
utilized a particle filter (PF) to estimate the electric vehicle mass, which is a non-linear,
non-Gauss filter and entirely unconstrained by the limitations of the Kalman filtering
framework [23]. However, PF may suffer from particle degeneracy and sampling error.
Hence, the pursuit of a universal and precise method that remains impervious to the
vagaries of nonlinearity is of great importance for the accurate estimation of vehicle mass.

The data-driven approach presents an appealing alternative for vehicle state esti-
mation, as it does not require costly additional hardware facilities and can learn non-
linear input-output relationships [24–26]. In a recent study, Korayem et al. compared
a model-based method with a data-driven approach based on a multi-layer perceptron
(MLP) for estimating the mass of a trailer tractor and found that the latter produced su-
perior results [27]. However, these methods rely heavily on training data and can lead to
unpredictable results if the distribution of test data does not match that of the training data,
thus causing a reduction in accuracy and stability, and possibly leading to harm in control
systems. To address this issue, Sieberg et al. suggested a hybrid estimating method using
long short-term memory (LSTM) and UKF with a confidence level to enhance reliability in
estimating other vehicle states [28].

Nevertheless, LSTM may suffer from vanishing gradients in long sequences, leading
to diminished performance. As an alternative to LSTM, Transformer has gained increasing
popularity in fields like computer vision (CV) and natural language processing (NLP), with
its accuracy in time series regression having been proved [29]. While UKF is a popular
choice of filter for state estimation, it requires more tuning parameters and may suffer from
numerical stability issues. Moreover, the confidence level calculation method proposed
in [28] can be time-consuming. To address these challenges and improve the accuracy
and stability of autonomous vehicle mass estimation, we propose the transformer aided
adaptive extended Kalman filter (TA-AEKF) method, which combines transformer and
EKF with a fast confidence level calculation method. Our paper makes the following
contributions:
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1. A novel estimator based on transformer is introduced to provide an accurate pre-
estimation of vehicle mass by learning nonlinear dynamics from vehicle data under
diverse conditions, thus acting as a virtual observation for EKF.

2. A fast confidence level calculation method is designed for weight adjustment based on
the conformity level between the real-time input and the training data, to adaptively
determine the impact of transformer pre-estimation.

3. TA-AEKF is proposed to integrate the transformer pre-estimation into EKF with the
adaptive weight adjustment in order to precisely and stably estimate vehicle mass.

The rest of this paper is organized as follows: In Section 2, the proposed method is
explained in detail. In Section 3, simulation data are collected. In Section 4, experiments
are conducted for method validation. Conclusions are made in Section 5.

2. Transformer Aided Adaptive Extended Kalman Filter
2.1. Framework

The proposed method comprises primarily three components. First, the acquired
dataset is used to train the transformer neural network offline to dig deep information.
When a new sequence of input variables is fed into the neural network for online estimation,
a pre-estimated mass value will be produced. Second, the weight τ is determined by
inputting the feature vector into the weight adjustment module at the same time. Finally,
the pre-estimated mass value will be embedded into the EKF as the expanded observation
quantity, and the weight τ will be utilized to balance the weight between the neural network
and EKF. The algorithm structure of TA-AEKF is shown in Figure 1.
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Figure 1. The framework of the proposed TA-AEKF estimator.
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Figure 1. The framework of the proposed TA-AEKF estimator.

2.2. Transformer-Based Vehicle Mass Pre-Estimation
2.2.1. Preliminaries

A neural network is used for vehicle mass estimation and adaptive EKF (AEKF) design
in this paper. Different kinds of neural networks, such as MLP, LSTM have been used
for parameter estimation or even controller design in various fields for their excellence in
approximating nonlinear functions [30–33]. Compared with MLP, LSTM is more frequently
employed in time series regression problems to extract more hidden information. However,
LSTM can suffer from vanishing gradients in long sequence data. Shown in Figure 2, a
transformer neural network, where no decoder is adopted to solve this problem, for time
series regression is proposed, which is different from traditional ones originally adopted in
NLP with the encoder-decoder structure [34].
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Figure 2. The flow chart of the proposed transformer model.

Firstly, the input feature will be projected from w-dimension features into n-dimension.
zt, the sum of the embeddings of the input signal and positional embeddings of the input
signal, will then be passed into the encoder block. Here adopt the learnable positional
embeddings in order to mine the sequential information in the time series. The encoder
block is composed of several encoder layers. Each encoder layer mainly includes the fully
connected layer and the self-attention layer, the core component of the transformer. The
output Z of attention is calculated by:

Z = softmax
(

QKT
√

dk

)
V (1)

where Q, K, and V are the queries, keys, and values matrix, respectively, and dk the
dimension of the tensor, is used to scale the attention output.

In multi-head attention, the output of all attention heads will be concatenated and
then multiplied by the weight matrix W to produce the output of the encoder layer ZC:

ZC = Concatenate (Z1, . . . , Zh)W (2)

where h is the number of attention heads.
Features extracted by the encoder E = [e1; ...; et; ...; ew] ∈ Rn×r are input to a fully

connected layer in the linear block.

E
′
= f latten(E) ∈ Rn·r (3)

ŷ = WoE
′
+ bo (4)
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where Wo ∈ Rl×(n·r) and bo ∈ Rl are used to project the (n · w)-dimension features into
l-dimension, ŷ ∈ Rl is the estimated regression output of neural network.

For the regression problem, the quadratic loss function will be adopted:

L = ‖ŷ− y‖2 (5)

where y is the ground truth of the output variable, in this case, the total mass of the vehicle
(mtotal) and l = 1.

2.2.2. Input Feature Selection

Input features should be first decided properly to better study the nonlinear rela-
tionships between vehicle states. During the entire driving process, vehicle longitudinal
motions is more often than lateral one. Then the vehicle longitudinal dynamic model can
be chosen to select neural network features and design the adaptive EKF subsequently.

With the help of the transmission system, automobile driving torque Ttq can finally
go to the driving wheels. The corresponding reaction force of the ground will propel the
vehicle move forward. The various forces on the vehicle during the uphill process are as
shown in Figure 3. Considering only the longitudinal dynamics, the model of the vehicle
can be developed as follows:

Ft = Ff + Fw + Fj + Fi (6)

where Ft, Ff , Fw, Fj, and Fi refer to the driving force, rolling resistance, air resistance,
acceleration resistance and slope resistance, respectively.
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The driving force Ft can be expressed as:

Ft =
Ttqigi0ηT

r
(7)

where ig is the gear ratio of the transmission, i0 is the gear ratio of the final drive, ηT is the
transmission mechanical efficiency, r is the effective radius of rotating tire, respectively.

The acceleration resistance Fj is defined as:

Fj = δmax (8)

where δ is the rotating mass conversion factor, m is the total vehicle mass, ax is the vehicle
longitudinal acceleration, respectively.
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The air resistance Fw when there is no wind is as follows:

Fw =
1
2

ρCd A f u2
x (9)

where ρ is the air density, Cd is the aerodynamic drag coefficient, A f is the frontal area of
the vehicle, ux is the vehicle longitudinal speed, respectively.

The rolling resistance Ff is defined as:

Ff = mg f cos α (10)

where g is the acceleration of gravity, f is the coefficient of rolling resistance, and α is the
angle of slope, respectively.

The slope resistance Fi is defined as:

Fi = mg sin α (11)

Integrate formulas of each force into (6) yields:

Ttqigi0ηT

r
= δmax +

1
2

ρCd A f u2
x + mg f cos α + mg sin α (12)

Given that the transmission ratio is not always available in advance and that the
effective tire radius varies and is challenging to determine, the transmission to wheel ratio
is approximated here using the vehicle’s speed and engine speed:

ir =
igi0

r
=

π

30
n
ux

(13)

where ir is defined as the ratio of igi0 to r.
Therefore, (12) is transformed into:

δmax =
π

30
TtqηTn

ux
− 1

2
ρCd A f u2

x −mg( f cos α + sin α) (14)

As seen in (14), at the very least, driving force, longitudinal acceleration, longitudinal
velocity, and slope angle should be gathered in order to determine vehicle mass. They
can be collected using sensors, such as IMU and GNSS, which are frequently used in
autonomous vehicles.

The neural network input feature vector is expressed as follows:

Ainput =
[
Ft Fw δax ( f cos α + sin α)g vx

]T (15)

where vx is velocity expressed in km/h.
The transmission of information in a classic feedforward neural network is unidirec-

tional, with the current input being transmitted forward layer by layer through the neural
network, corresponding to the current output. In real tasks, however, the output of the cur-
rent time is influenced not just by the current time input, but also by the historical time. As
a result, the back step of Ainput is taken into account and supplied into the neural network.

2.2.3. Neural Network Architecture

For multi-head attention, 16 parallel attention heads are adopted. The amount of
dropout applied to all linear layers is 0.3. The encoder block applied consists of 3 en-
coder layers.

2.3. Confidence Level for Weight Adjustment

The weight between EKF and the transformer neural network estimation results is
represented by the weight factor, which impacts their weight in the final estimation results.
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The confidence level is calculated by comparing the training and test datasets for similarity.
A subspace partition of training data and mapping of test data is presented in [28]. However,
it necessitates a significant amount of computing. A new approach is being developed here.
Assume the variable x

′
=
[
Ft ax vx α

]T in the training dataset’s state quantity vector x
follows the multivariate normal distribution:

p(x
′
; µ, Σ) =

1

(2π)
n
2 |Σ| 12

exp
(
−1

2
(x
′ − µ)TΣ−1(x

′ − µ)

)
(16)

where µ is the mean vector, Σ is the covariance vector, n represents the number of features
of x, and |Σ| ≡ det Σ is the determinant of Σ. Therefore, the probability density at µ of the
training data is:

pmax =
1

(2π)
n
2 |Σ| 12

(17)

During the application of estimation, every time a new datapoint is fed into the neural
network, substitute its value into (16), and get the corresponding probability density:

pk =
1

(2π)
n
2 |Σ| 12

exp
(
−1

2
(x
′
k − µ)TΣ−1(x

′
k − µ)

)
(18)

Here, the probability density of the test dataset point will be divided by the maximum
probability density in the training dataset, i.e., pmax to get the final confidence level:

τk =
pk

pmax
= exp

(
−1

2
(x
′
k − µ)TΣ−1(x

′
k − µ)

)
(19)

2.4. AEKF

In comparison to RLS, KF is a correction-based recursive algorithm. It realizes the
parameter estimation of a linear system with the minimum variance criterion. KF and its
variants are frequently adopted for state estimation in linear systems [35,36]. For systems
with non-linear transition equations or measurement equations, EKF is derived to linearize
the equations. Different Kalman filter extensions (e.g., UKF, cubature KF (CKF)) have been
adopted in various fields [37–39]. However, EKF performs better in terms of real-time
performance, computing efficiency and parameter tuning in engineering applications. It is
assumed that the nonlinear system has the following nonlinear state transition equation
and observation equation:

xk = g(xk−1, µk−1) + wk−1 (20)

yk = h(xk) + vk (21)

where xk is the state quantity at step k, yk is the observation quantity, µ is the control
quantity, g is the transition function, h is the observation function, w is process noise,
subject to N(0, Qw), v is observation noise, subject to N(0, Rv).

The procedure of EKF is a series of successive operations of prediction based on state
input and update based on measurement output.

First, the prior state estimation of state quantity x̂−k is calculated by:

x̂−k = g(x̂k−1, µk−1) (22)

and then the prior state estimation of covariance matrix P−k is calculated by:

P−k = APk−1 AT + Qw (23)
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The Kalman gain Kk is calculated by:

Kk = P−k HT(HP−k HT + Rv)−1 (24)

Therefore, the posterior state estimation of state quantity x̂k is corrected with measure-
ments by:

x̂k = x̂−k + Kk
(
yk − Hx̂−k

)
(25)

and the posterior state estimation of covariance matrix Pk is updated by:

Pk = (I − Kk H)P−k (26)

Here, A and H are the Jacobian matrices, calculated by the partial derivative of state
transition function g and observation function h to state quantity x, respectively.

A =
∂g
∂x

(27)

H =
∂h
∂x

(28)

In order to apply EKF, the state space model is established. The longitudinal speed
and vehicle mass are selected as the state quantity:

xk =
[
vx

1
m
]T (29)

The state equation form is derived to be:
[

vxk
1

mk

]
=

[
g1
g2

]
+ wk−1 =

[
vk−1 + ax∆T

1
mk−1

]
+ wk−1 (30)

The observation quantity is chosen as follows:

yk =
[
vxk

]
(31)

The Jacobian matrix is:

A =




∂g1
∂v

∂g1
∂ 1

m
∂g2
∂v

∂g2
∂ 1

m


 =

[
A11 A12
0 1

]
(32)

where

A11 = 1− 3.6∆T
δm

(
3π

25
TtqηTn

v2 +
1

12.96
ρCD Avx

)
(33)

A12 =
3.6∆T

δ

(
3π

25
TtqηTn

v
− 1

25.92
ρCD Av2

x

)
(34)

The new observation quantity is chosen by expanding the original observation yk with
the transformer pre-estimation ynnk as follows:

ỹk =
[
yk ynnk

]
(35)

ynnk =
1

mnnk
(36)

where mnnk will be the estimated mass value of neural network.
Based on the weight adjustment module, an adaptive law is utilized to integrate

the pre-estimation of the transformer into the AEKF. The flow chart of AEKF is shown
in Figure 4. The pseudocode of TA-AEKF is shown in Algorithm 1, where Rv

nn = σ2
mnn
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represents the observation covariance matrix increased by the neural network. Instead of
using τk and (1− τk) as the weight factor, here divide them by τk and use (τk)/τk = 1 and
(1− τk)/τk to adjust the observation covariance matrix of neural network.
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Algorithm 1 Transformer Aided Adaptive Extended Kalman Filter

function DEEP ADAPTIVE EKF
x̂0 ← Initialization
P0 ← Initialization
for k← 1 to N do

x̂−k ← g(x̂k−1, µk−1)

Q̃w
k ← Qw

k
P−k ← APk−1 AT + Q̃w

k

R̃v
k ←

[
Rv 0
0 (1− τk)/τkRv

nn

]

Kk ← P−k HT(HP−k HT + R̃v
k)
−1

ỹk ←
[
yk ynnk

]T

x̂k ← x̂−k + Kk
(
ỹk − Hx̂−k

)

Pk ← (I − Kk H)P−k
end for
return x̂N , PN

end function

As τ ∈ (0, 1], therefore (1− τk)/τk ∈ [0,+∞). In case when the new input data of the
neural network is far from the original dataset, τ approaches zero. (1− τk)/τk approaches
+∞. The posterior state x̂k relies more on the matching degree between the physical model
and the actual driving condition. As the similarity grows, the value τ increases gradually.
If τ equals one, the observation covariance part based on the neural network equals zero.
The final estimation result is completely based on a neural network.

3. Data Acquisition

For a data-driven approach such as the transformer, the amount and richness of the
data may directly affect how the network functions. The dataset must include an adequate
amount of data samples and should resemble actual ones. The neural network is tested
using simulation data produced by the high-fidelity TruckSim model.
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By configuring the settings for the truck model and the testing environment in Truck-
Sim, gather sensor data in the virtual environment, and assess the accuracy of the parameter
estimate technique. The main parameters of simulation vehilc e is shown in Table 1. The
simulated vehicle’s curb weight is 6042 kg. A range of payloads is selected, ranging from
4000 to 40,000 kg every 4000 kg.

Different slope conditions are used to generate enough simulation data. Five kinds of
slope conditions are shown in Figure 5a, and the highway fuel economy driving schedule
(HWFET) speed profile condition shown in Figure 5b are adopted. Each payload value and
slope condition is combined to collect enough information. Each simulation is 100 s long.
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Table 1. Main parameters of simulation vehicle.

Parameter Value

vehicle curb weight 6042 kg
vehicle payload 4000 to 40,000 per 4000 kg

Frontal area 6.8 m2

efficiency 0.99
sample time 0.01 s

In order to verify the accuracy and stability of the proposed method, two simulation
tests are conducted. The gross vehicle weight is set to be 28,542 kg. The other parameters
remain the same as the vehicle used for simulation data collection. Two kinds of slope
conditions are used for test data generation, shown in Figure 6.
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4. Results

The proportion of the training set, test set, and validation set are 6:2:2. The training
of the neural network is implemented in Pytorch and Tsai [40]. The experiments were
conducted on Ubuntu 20.04 operating system computer, which is equipped with Intel(R)
Core(TM) i5-10600 CPU @ 3.30 GHz CPU, 64 G RAM and 12GB GeForce RTX 3080.

4.1. Evaluation Metrics

The root mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) are used as evaluation metrics to assess the accuracy of mass
estimate results:

RMSE =

√
1
n

n

∑
i=1

(m̂i −m)2 (37)

MAE =
1
n

n

∑
i=1
|m̂i −m| (38)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣
m̂i −m

m

∣∣∣∣ (39)

where m̂i is the estimated value of mass, m is the ground truth of mass, n is the total number
of estimated mass values.

In order to evaluate the stability of estimation results, here the convergence rate (CR)
is adopted to evaluate the stability of estimation [41]. The estimation result is deemed to be
convergent when the following requirements are satisfied:

cv(m̂) =
σ(m̂)

µ(m̂)
< cv0 (40)

|m̂i −m|
m

< 2% (41)

where cv is the coefficient of variation, defined as the standard variance of estimation σ(m̂)
divided by the mean of estimation µ(m̂), and cv0 is the threshold of cv and set to be 0.02.
CR is defined as the calculation steps cost when cv converges to lower than cv0.
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4.2. Performance Evaluation

The estimation results of each test are shown in Figures 7 and 8. The blue dashed line
represents the result of ground truth in the middle subgraph and cv0 = 2% in the bottom
subgraph, respectively.
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Figure 7. Simulation result of test 1: (a) Weight calculation. (b) Estimation value of mass. The blue
dashed line represents the result of the ground truth. (c) Evaluation with cv. The blue dashed line
represents cv0 = 2%.
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Figure 8. Simulation result of test 2: (a) Weight calculation. (b) Estimation value of mass. The blue
dashed line represents the result of ground truth. (c) Evaluation with cv. The blue dashed line
represents cv0 = 2%.

In Figure 7a, the weight level of test 1 changes due to the difference between the
training set and the test set. Shown in Figure 7b, the estimation results of the neural network
estimator vary and fluctuate occasionally. The transformer shows higher oscillations,
followed by LSTM and MLP. However, these oscillations are not allowed in the control
system as they would break the stability of the system. On the other hand, the estimation
result of EKF is more stable. To start with, the EKF result undershoots to some high
value but then begins to converge to ground truth gradually, showing more stability. The
estimation results of the proposed method neither overshoot nor oscillates. Figure 7c shows
the coefficient of variation and demonstrates the stability of each method. cv of neural
network methods gradually rises and is higher than 2% in the end, while the result of EKF
overshoots and converges to lower than 2%. The result of the proposed method rises like
neural network estimators, but will finally converge to a stable value lower than 2%.

In Figure 8a, the weight level of Test 2 changes more frequently, and the results of
neural network estimators will also oscillate, which also shows the instability of neural
network results, and might do harm to control systems. The changing trend of results also
shows the advantages of the proposed method.

The metrics listed in Tables 2–4 demonstrate the superiority of the proposed method
in terms of accuracy, with lower values in MAPE, RMSE, and MAE. RMSE and MAE are
used to measure the deviation between the ground truth value and the predicted value,
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whereas MAPE measures the relative size of the deviation. RMSE and MAE have the same
dimensions as the quantity, while MAPE is dimensionless. RMSE is more sensitive to
outliers and can magnify prediction errors due to the square operation. In contrast, MAE
and MAPE are more robust to extreme values.

Table 2. Evaluation metrics of simulation test 1 results.

Method MAPE MAE RMSE CR
(%) (kg) (kg) (steps)

EKF 5.85 1669.77 1719.58 3790
MLP 2.28 652.05 1117.12 nan

LSTM 1.80 514.51 1124.30 nan
Transformer 1.42 404.91 972.35 nan

TA-AEKF
(Proposed) 0.89 255.41 356.42 156

Table 3. Evaluation metrics of simulation test 2 results.

Method MAPE MAE RMSE CR
(%) (kg) (kg) (steps)

EKF 5.98 1706.40 1745.78 3338
MLP 3.57 1018.14 2031.73 nan

LSTM 2.95 843.07 2018.19 nan
Transformer 2.15 613.11 1068.24 nan

TA-AEKF
(Proposed) 0.90 257.53 357.61 212

Table 4. Evaluation metrics of simulation test 1 & 2 average results.

Method MAPE MAE RMSE CR
(%) (kg) (kg) (steps)

EKF 5.91 1688.08 1732.68 3564
MLP 2.93 835.09 1574.42 nan

LSTM 2.38 678.79 1571.25 nan
Transformer 1.78 509.01 1020.29 nan

TA-AEKF
(Proposed) 0.90 256.47 357.01 184

In test 1, the MAE of LSTM is smaller than that of MLP, but LSTM has a higher value
of RMSE, indicating that there are higher extreme values in LSTM’s estimation. As for test
2, EKF has the highest value of MAE, indicating the maximum number of estimation errors.
However, LSTM and MLP have higher values of RMSE, indicating higher deviations in the
results of neural network estimators. MAPE is easier to understand, even when the ground
truth values are different, whereas MAE and RMSE need to combine the real value to judge
the difference. These discrepancies are also apparent from Figures 7 and 8.

In terms of the time needed to converge to the threshold of efficiency variation, the
proposed method is faster, demonstrating its stability advantage. Furthermore, among the
three neural network estimators, the transformer neural network demonstrates superior
performance. However, it should be noted that all neural network estimators exhibit
instability, as they are unable to converge below the threshold of 2%. These further prove
the necessity of integrating EKF with the transformer.

4.3. Input Feature Demonstration

To prove that the input feature is selected for the neural network, here the permutation
method is used. In addition to the original features, lateral acceleration ay and yaw rate
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ω are also fed into the neural network. The MAPE increase when a feature is removed
is calculated, shown in Figure 9. The removal of features included in At would result in
higher MAPE than ay and ω. Therefore, just selecting the input features in At is enough to
recharacterize the nonlinear dynamics.
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Figure 9. Permutation feature importance shown by mape increase when corresponding feature is
removed.
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Figure 9. Permutation feature importance shown by MAPE increases when the corresponding feature
is removed.

4.4. Confidence Level Demonstration
4.4.1. Calculation Speed Demonstration

To better demonstrate the calculation speed of the confidence level module, the com-
puting time of each method is calculated as shown in Table 5. Results prove the outperfor-
mance of the proposed method in terms of calculation speed of confidence level.

Table 5. Evaluation computing time of weight adjustment.

Method Computing Time (s)
Test1 Test2 Average of Test1 & Test2

Method 1 ([28]) 280.21 293.68 286.94
Method 2 (Proposed) 1.00 0.99 1.00

4.4.2. Improtance Demonstration

To better demonstrate the importance of the weight adjustment module, here different
values are chosen to balance the relationship between the transformer and AEKF. The
weight factor is set to be 10−15, 1 and the adaptive weight τx, respectively. Furthermore,
the results are shown in Figure 10 and Table 6. When τ equals one, (1− τk)/τk equals zero.
In this case, the result of TA-AEKF is the same as the estimation of the transformer. lim

x→0
is

represented by setting τ = 10−15. Furthermore, the result would be more reliant on the
dynamic model. TA-AEKF estimator results when τ = τk has the lowest MAPE, MAE,
and RMSE. As for convergence steps, the values of τ = 10−15 and τ = τk are very close.
Therefore, the adaptive τ = τx does work.

Table 6. Evaluation metrics of different weight factors.

Method MAPE MAE RMSE CR
(%) (kg) (kg) (steps)

τ = 1e− 15 8.06 2301.15 2305.04 154
τ = 1 1.42 404.91 972.35 nan
τ = τk 0.89 255.41 356.42 156
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Figure 10. Simulation result of test 1 data using different values of weight to adjust: (a) Estimation
value of mass. The blue dashed line represents the result of ground truth. (b) Evaluation with cv. The
blue dashed line represents cv0 = 2%.

4.5. Real Time Test

To better evaluate the real-time performance of the proposed method, the correspond-
ing computing time is calculated. For neural network estimators, the model can be trained
offline and loaded before estimation. As shown in Table 7, LSTM costs the lowest time and
TA-AEKF costs the highest. Besides, for a certain driving process, the total mass remains
constant. Therefore, the calculation of mass can be done just once by collecting enough data.
In this case, the computing time of the proposed method meets the need for the requested
real-time performance.

Table 7. Evaluation computing time of simulation test.

Method Computing Time (s)
Test1 Test2 Average of Test1 & Test2

EKF 0.53 0.57 0.55
MLP 0.17 0.21 0.19
LSTM 0.17 0.18 0.17
Transformer 0.44 0.46 0.45
TA-AEKF (Proposed) 1.07 1.09 1.08

5. Conclusions

In order to further improve the accuracy and robustness of autonomous vehicle
mass estimation, the transformer-aided adaptive extended Kalman filter is proposed by
integrating the transformer pre-estimation into an extended Kalman filter using a weight
adjustment module. Simulation tests are conducted to validate the appropriateness of
neural network feature selection, the adaptive law of the proposed weight adjustment
module and the accuracy and stability of the proposed method.

In future work, we extend to collect more real vehicle data under more complex
working conditions for performance verification. Furthermore, the proposed method will
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be extended to the estimation of other parameters in autonomous vehicles and different
fields.
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