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Abstract: Slivers on the surface of rolled plates, which are serious defects for interstitial-free (IF) steel,
occur mainly as a result of inclusions in continuous casting (CC) slabs. It is, therefore, important
to study inclusions in CC slabs in terms of their migration towards the surface during hot rolling.
To investigate inclusion migration during the hot rolling of ultralow carbon steel, a 3D numerical
model was constructed using the finite element method. The positions of the inclusions in the surface
layer of an IF steel slab (50 mm) were tracked during hot rolling using a node-tracking method.
Furthermore, the study analyzed the effects of scarfing on inclusion migration during hot rolling and
inclusion distribution in a hot-rolled plate. During the hot-rolling process, inclusions in the wide
faces of the intermediate slab gradually migrated to the surface of the intermediate slab. Owing to
a thickness reduction, accumulation areas of inclusions were finally generated at the edge of the
hot-rolled plate; these areas may lead to sliver defects. The scarfing of the slab did not affect the
distribution of inclusions in the hot-rolled plate; however, it may have reduced the inclusion content
in the outermost layers of the hot-rolled plate. The inclusions were mainly located within 1 mm
underneath the hot-rolled plate. Moreover, the inclusions near the inner arc of the CC slab were
concentrated within 1.5 mm of the upper plate surface. Using galvanostatic electrolysis, the number
of large inclusions in samples prepared from a hot-rolled plate obtained from a plant was measured.
The measurements agreed well with the numerical model predictions, which validated the FE model
in the current work.

Keywords: continuous casting slab; surface defect; inclusion migration; FE model; ultralow carbon steel

1. Introduction

Ultralow carbon steels, such as IF steel, are extensively used to produce cold-rolled
sheets for use in automobiles and domestic appliances [1]. Excellent surface qualities are
required for this category of steel grades [2,3]. The alleviation of the appearance of surface
defects is of great importance for the production of ultralow carbon steels [4]. Among
the surface defects present in ultralow carbon steel sheets, slivers and blisters resulting
from the solidified shell entrapment of inclusions and slag entrainment that occur during
CC are the most frequent and harmful [5–7]. In recent decades, significant efforts have
been contributed to improving the cleanliness of molten steel and reducing inclusions
in molten steel during steelmaking and CC processes [4,8–10]. Nevertheless, inclusions
inevitably remain in slabs during CC [11–13]. Residual inclusions in the as-cast slabs can
evolve into surface defects during rolling. Hence, research on the inclusion evolution that
occurs during the rolling process is important in reducing surface defects and improving
the surface quality of ultralow carbon steel products.

In recent years, some experimental studies [14–27] and numerical simulation works [27–45]
have been conducted on the behavior of inclusions in steel during the rolling process. Experi-
mental studies are generally conducted to evaluate the composition transformation [14,16,19,22]
and deformability [14,16–18,20–25,27] of inclusions after rolling, as well as the generation
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of voids surrounding the inclusions [14,17,18]. However, these experimental studies are
mainly conducted through the methods of measuring the compositions and dimensions of
the inclusions in steel samples before and after the rolling process. Hence, an intuitionistic
understanding of the composition evolution and deformation process of inclusions during
the rolling process is difficult to attain based on experimental investigations.

Numerical simulation works mainly focus on the stresses and strains of inclusions
and the steel matrixes around them through the use of the finite element analysis (FEA)
method. Luo and Ståhlberg [29,30] developed a two-dimensional (2D) rigid–viscoplastic
finite element (FE) code to analyze the shape evolution of oxidized inclusions and MnS
inclusions in steels during flat rolling. The effects of the rolling temperature, friction and
rolling reduction on inclusion deformations were investigated using an FE model. An
FE code was constructed by Ervasti and Ståhlberg [31] based on a commercial package
to study void initiation close to a hypothetical single macroinclusion (with a radius of
4 mm) during the hot rolling of steel slabs. Using the numerical model, void formations
around inclusions at different distances from the slab surface were analyzed for different
single-pass reductions and roll radii. The results revealed that a roll with a large radius
should be chosen to prevent the generation of voids. Furthermore, the threat of a void
starting to form turned out to be slight for high reductions and in the vicinity of the slab
surface. Yu et al. [36] studied the deformation behaviors of spherical inclusions in stainless
steel strips during multipass cold rolling using a 3D FE method and updating the geometric
method. It was pointed out that inclusions with a diameter of less than 10 µm could hardly
deform. Cheng et al. [37–39] developed a 3D FE model to comprehensively investigate
inclusion deformations and void formations for different inclusion compositions and steel
grades. The effects of the rolling temperature, flow stresses of inclusions and steel matrix,
reductions on void size and inclusion deformation abilities were analyzed. The critical
temperatures above which no voids formed were different for different inclusions and
steel grades. Apart from the FEA, some novel numerical methods have recently been
proposed for the stress–strain analysis of isotropic and anisotropic media. Among them,
the “differential quadrature” [46] and “Bezier” [47] methods proved to have a higher
stability and accuracy than other numerical methods.

Slivers on the surface of rolled plates, which are serious defects for interstitial-free (IF)
steel, occur mainly as a result of inclusions in CC slabs. To reduce sliver defects on rolled
plates, the “scarfing” operation, which utilizes flame jets or mechanical grinding, has been
adopted in some steel plants. Wang et al. [48] studied the inclusion distribution in surface
layers of IF steel slabs with an original position analyzer (OPA); the results indicated that
scarfing 3.5 mm from the top slab surface could improve the strip quality. Lee et al. [49]
reported that large inclusions mainly appeared at 5–20 mm beneath the CC slab’s surface.
However, the sliver defects still often appeared on rolled plate produced using scarfed CC
slabs. The scarfing depth and effectiveness of the scarfing operation are controversial. As a
result, this operation has not been adopted in some steel plants.

The scope of this study was to investigate inclusion migration during the hot rolling of
IF steel using a 3D FE model. The positions of inclusions in the surface layer of an IF steel
slab were tracked during hot rolling using a node-tracking method. The distribution of
inclusions in the hot-rolled plate was revealed. To reveal the effectiveness of the “scarfing”
operation, the effects of scarfing on inclusion migration during hot rolling and on the
inclusion distribution in hot-rolled plates were analyzed. With the method of galvanostatic
electrolysis, large inclusions in samples prepared from a hot-rolled plate obtained from a
steel plant were measured, and the validity of the FE model was confirmed.

2. Numerical Methodology
2.1. The Thermophysical Parameters

Based on the chemical compositions listed in Table 1, true stress–strain curves of IF
steel were obtained for different strain rates and temperatures using the material property
simulation package JMatPro (Version 7.0). As shown in Figure 1a, the true stress–strain
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curves obtained using JMatPro were in good agreement with the curves obtained using
Gleeble-1500D. Thus, the validity of the calculations could be confirmed. In addition, other
material parameters (e.g., Young’s modulus, Poisson’s ratio and the thermal conductivity
coefficient) were calculated using JMatPro, the results of which are shown in Figure 1b.
These calculated parameters were fed into the simulation software Transvalor FORGE
through the software interface; the subroutine codes of the setup of material properties can
be found in the Appendix A.

Table 1. Chemical compositions of IF steel.

Element C Si Mn P S Alt Ti N

%wt ≤0.003 ≤0.03 0.11–0.15 ≤0.012 ≤0.01 0.02–0.045 0.05–0.09 ≤0.004
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Figure 1. Thermophysical parameters of IF steel used in the calculation: stress–strain curves (a) and
material parameter–temperature curves (b).

2.2. The Hot-Rolling Process Parameters

A 1580 mm hot-rolling production line of a steel plant was considered as the research
object of the study. As shown in Figure 2, the 1580 mm hot-rolling production line was
equipped with semicontinuous mills, including two reversible roughing mills (R1 and R2)
and seven-strand finishing mills (F1–F7). Based on the IF steel rolling schedule used in the
field production of the plant, a pass was conducted for the IF steel slab in the R1 roughing
mill. Subsequently, the slab was reversibly rolled using five passes in the R2 roughing mill.
Finally, seven continuous rolling passes were conducted in the finishing mill.
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To investigate the effect of surface scarfing on inclusion migration during hot rolling,
calculations were performed for two cases: Case-1 and Case-2. In Case-1, a 1050 mm
× 247 mm slab was not scarfed before it was rolled, whereas in Case-2, a 3 mm surface
scarfing was conducted on the slab to obtain a cross-section of 1044 mm × 241 mm before
it was rolled. The compression ratio of each pass in Case-1 was the same as that in Case-2.
The rolling schedules (intermediate slab thicknesses after each pass) of the two cases are
listed in Table 2. To reduce the calculation time and simulate the hot-rolling process to the
maximum extent, the slab size in the rolling direction was set to 1500 mm.
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Table 2. IF steel hot-rolling schedules with thicknesses of plates for two cases (unit: mm).

Cases Before Rolling R1 Roughing Mill R2 Roughing Mill

R2-1 R2-2 R2-3 R2-4 R2-5

Case-1 247 172.9 124.49 92.12 70.01 54.61 45.63
Case-2 241 168.7 121.46 89.88 68.31 53.28 44.52

Cases
Finishing Mill

F1 F2 F3 F4 F5 F6 F7

Case-1 27.25 17.55 12.34 9.06 7.14 6.15 5.5
Case-2 26.59 17.12 12.04 8.84 6.97 6.01 5.37

2.3. The Solving and Numerical Details

The initial and boundary conditions used in the study were listed in Table 3. To
compute the thermal–mechanical coupling of large deformations, the Euler–Lagrangian
coupling algorithm of the FORGE package was used. A three-dimensional solid tetrahedron
element with four nodes was adopted for the slab in the simulations.

Table 3. The initial and boundary conditions for the simulations.

Conditions Parameters Values Notes

Initial conditions
Slab initial temperature 1210 ◦C

Slab initial velocity Vi < Vr Vi is initial velocity; Vr is rolling speed.

Ambient temperature 30 ◦C
Temperature of rollers 250 ◦C

Boundary conditions

Rotary speed of rollers ω = Vr/R R is the roller radius.

Contact heat transfer qc = h(T − Tr)
h is the coefficient of the contact heat

transfer; T is the slab temperature; Tr is
the roller temperature

Radiant heat qr = σheatεheat(T4 − T4
0 )

εheat is the emissivity; σheat is Stefan’s
constant; T0 is the ambient temperature.

Heat dissipates of plastic
strain

.
W = ηKs

√
3

.
ε

m+1
η is the strain efficiency; Ks is the

constant;
.
ε is the strain rate; m is the

sensitivity coefficient of the strain rate.

Friction heat q = b1/(b1 + b2)τf rVg

b1 and b2 are the ratios of the heat
transferred from the friction interface to

the slab and rollers; Vg is the sliding
velocity; τf r is the shear friction.

As shown in Figure 3, the geometry model and grid structure were constructed for
the R1 pass. Subsequently, a coupling calculation for the R1 pass was performed. After
performing the R1 pass calculation, the geometry model and grid structure of the deformed
intermediate slab with detailed thermal–mechanical information were constructed for the
R2-1 pass. The R2-1 pass computation was performed thereafter. The R2-2 pass analysis
was performed based on the R2-1 pass procedure, but assuming that the rotation of the
rollers and the movement of the intermediate slab were in the opposite directions. The
analysis of passes R2-3, R2-4 and R2-5 was also similarly performed. After simulating
the R2-5 pass, the cell model of the deformed intermediate slab with detailed thermal–
mechanical information was considered in the analysis of the continuous rolling process
(F1–F7). Finally, the continuous rolling process was simulated, and the intermediate slab
was deformed to obtain a hot-rolled plate 5.5 or 5.37 mm in thickness.
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Figure 3. The geometry models and grid structures of the R1 and R2-1 passes.

In this study, inclusions in the intermediate slab were simplified using different points,
as stated in Tripathy et al. [32]. The inclusion positions were tracked during the calculations
using the sensor module of the FORGE package to reveal inclusion migration during the
hot-rolling process. In practice, the inclusions exposed to the surface of the intermediate
slab would be ground off by the rollers. Therefore, during the tracking process, inclusions
that were within 0.1 mm of the upper and lower surfaces of the intermediate slab were
considered to have been removed, and, thus, their positions were not tracked in the
subsequent process.

The initial positions of the inclusions in the slab were determined using numerical sim-
ulations of the inclusion transport in the CC slab [50]. According to previous studies [50–52],
large inclusions are mainly distributed within 50 mm beneath the inner and outer slab arcs.
Therefore, in this study, only those inclusions were tracked during hot rolling. Figure 4
shows the initial distribution of inclusions in the CC slab before performing the FE cal-
culations pertaining to hot rolling. To reduce the computational cost and accelerate the
calculation process, only the inclusions in the slab that were 50 mm long in the casting
(rolling) direction were tracked. In Case-2, due to surface scarfing, the inclusions within
3 mm beneath the CC slab were ignored and not tracked in the subsequent FE calculations.
The study mainly focused on position migration in the slab during the hot-rolling process
and along the thickness and width directions of the inclusions. The inclusion positions
were projected on a cross-sectional plane in the discussion that follows (Figure 4b).
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A sensitivity analysis was conducted for different meshes, as shown in Figure 5.
The coarse, medium and fine meshes consisted of approximately 90,000, 160,000 and
220,000 elements. The mesh had an effect on the results to some extent. As the number
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of elements increased, the variation in the calculated results (equivalent strain and tem-
perature) decreased. In the current work, a fine mesh for the slab with ~220,000 elements
was selected.
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3. Experimental Methodology

To investigate the distribution of inclusions in the hot-rolled plate and validate the
FE model that was constructed, large inclusions (>50 µm) in the hot-rolled plate were
quantitatively extracted using galvanostatic electrolysis as Figure 6a shows [50]. The pH
of the electrolyte was ~7. The current density was ~15 mA·cm−2. Figure 6b presents the
machining process of the steel samples obtained using galvanostatic electrolysis. Samples
were taken from the centers and edges of hot-rolled plates from a steel plant. Four samples,
namely, E1–E4, which were 100 and 15 mm long in the width and rolling directions,
respectively, were obtained from the edge of the hot-rolled plates. Each sample was divided
into five equal parts along the thickness direction of the plate (e.g., E1.1–E1.5). E1.1, E2.1,
E3.1 and E4.1 were, thereafter, spot welded to obtain a sample, representing the uppermost
position (0–1 mm beneath the upper surface or the inner arc) of the edge of the hot-rolled
plate for use in the galvanostatic electrolysis. Similarly, nine other samples representing
different positions of the hot-rolled plate produced from a slab that had no scarfing were
prepared. Samples of the hot-rolled plate scarfed before rolling were similarly prepared for
use in the galvanostatic electrolysis.
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4. Results and Discussion
4.1. Prediction of Inclusion Migration during the Roughing Rolling Process

Figure 7 shows the distributions of the inclusions in the intermediate slabs after the R1
pass. In terms of the inclusion distributions, there was no obvious difference between the
slab before rolling and the intermediate slab after the R1 pass. Nevertheless, after the R1
pass, the inclusions in the slabs became concentrated. Furthermore, after the R1 pass, no
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apparent difference could be observed between the inclusion distribution in the slab with
no scarfing and in the slab with 3 mm scarfing.
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Figure 8 shows the evolution of the inclusion distributions in the intermediate slabs
during the R2 rough rolling process (R2-1 to R2-5 passes). Some characteristics of inclusion
distribution evolution could be observed during the R2 rough rolling process. First, the
inclusions near the wide faces of the intermediate slab became increasingly dense and
moved close to the surface. Second, the inclusions in the accumulation zone of the intrusions
located in the inner arc of the intermediate slab (at approximately 1/4th of the thickness)
gradually migrated to the inner arc surface. Third, as rolling continued, the difference
between the inclusion distribution in the slab that was not scarfed and in the slab with
3 mm scarfing became increasingly small. Additionally, accumulation zones of inclusions
were generated near the narrow face of the intermediate slab. These accumulation zones
of inclusions resulted from the size reduction in the intermediate slab along its thickness
direction during the rolling process.
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4.2. Statistics of Inclusion Distribution in the Intermediate Slab during the Roughing
Rolling Process

The prediction results shown in Figures 7 and 8 demonstrate the evolution of the
inclusion distribution in the intermediate slabs during the rolling process. However, these
two figures can only merely present the inclusion distributions on the cross-sections of the
intermediate slabs. The variations in inclusion contents along the thickness direction on the
cross-section of the intermediate slab after different passes could be useful in determining
inclusion migration in the slabs during the rolling process. Hence, it was necessary to
reveal the statistical results for the variations in inclusion positions on the cross-section of
the intermediate slab after different passes based on the numerical simulations. To observe
the statistical regularities of inclusion position evolutions during the rolling process, each
intermediate slab was divided into 50 layers along its thickness direction. The number of
inclusions in each layer was counted and the proportion of inclusions in each layer was
calculated after each pass.

Figure 9 shows the inclusion distributions along the thickness directions in the two
cases considered before and after the R1 pass. In the slab with no scarfing, the number of
inclusions that were farther away from the wide face of the intermediate slab decreased
after the R1 pass. Nevertheless, the inclusions near the wide face of the slab increased in
number after the R1 pass. In other words, the inclusions in the slab tended to migrate from
inside to the wide face during the R1 pass. The number of inclusions in the layer closest
to the outer arc face also increased after the R1 pass. However, the number of inclusions
in the layer closest to the inner arc face decreased after the R1 pass. During the R1 pass,
some inclusions migrated to the outermost layer of the slab; meanwhile, some inclusions in
the outermost layer were removed by the roller. The inclusion migration trend in the slab
with 3 mm scarfing during the R1 pass was also observed. The number of inclusions in the
surface layer of the slab decreased and the number of inclusions in the outermost layer of
the scarfed slab increased after the R1 pass.
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Figure 9. The inclusion distributions along the thickness direction before and after the R1 pass: the
case without scarfing (a) and the case with 3 mm scarfing (b).

Figure 10 shows the inclusion distributions in the two slabs along their thickness
directions before and after the R2-5 pass. The inclusion positions in the intermediate slab
migrated steadily during the R2 hot-rolling process. The inclusions inside the slab gradually
migrated to the surface. Consequently, the proportion of inclusions inside the intermediate
slabs decreased as the hot-rolling process continued. In addition, during the R2 hot-rolling
process, the inclusion accumulation zones located in the inner arc of the intermediate slabs
moved close to the inner arc surfaces. Moreover, in the slab with no scarfing and in the slab
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with 3 mm scarfing, the inclusion distribution trends along the thickness directions were
similar. Nevertheless, because the slab surface was scarfed before starting the hot-rolling
process, the number of inclusions in the outermost layer of the intermediate slab for the
case with 3 mm scarfing was less than that of the case without scarfing after the R2-5 pass,
which was similar to the situation after the R1 pass.
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Figure 10. The inclusion distributions along the thickness direction before and after the R2-5 pass:
the case without scarfing (a) and the case with 3 mm scarfing (b).

Figure 11 shows the distribution of the equivalent strain in the intermediate slabs
along the thickness direction after each pass. During each pass, the equivalent strain in the
surface layer of each slab was larger than that inside the slab. For the initial R1 pass, the
equivalent strain variation was the most obvious. It was precisely because of the equivalent
strain distribution along the thickness direction of the intermediate slab that the inclusions
in the slab interior migrated to the surface layer during the hot-rolling process.
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4.3. Prediction and Measurement of Inclusion Distribution in the Hot-Rolled Plate

Figure 12 shows the distributions of the inclusions in the hot-rolled plate after rolling
was completed. The inclusions were located almost within 1 mm beneath the surface of the
hot-rolled plate. Furthermore, the distribution of inclusions in the hot-rolled plate in the
case with no scarfing was similar to that in the case with 3 mm scarfing. In other words,
scarfing hardly influenced the inclusion distribution in the intermediate slab or hot-rolled
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plate during the hot-rolling process. In addition, owing to the thickness reduction, the
inclusions near the narrow face of the intermediate slab gradually accumulated along the
thickness direction as the hot-rolling process continued. Finally, accumulation areas of
inclusions were generated at the edge of the hot-rolled plate, where sliver defects of the
rolled plate often appeared.
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Figure 13a shows the inclusion distribution along the thickness direction of the hot-
rolled plate calculated using the proposed FE model. For the two cases with no scarfing
and with 3 mm scarfing, the prediction results showed that inclusions were mainly located
within 1 mm beneath the underside (outer arc) of the hot-rolled plate. Moreover, inclusions
near the inner arc of the CC slab were concentrated within 1.5 mm beneath the upper
surface of the plate after the hot-rolling process was completed. In addition, the number
of inclusions in the outermost layers of the plate in the case with 3 mm scarfing was less
than that in the case without scarfing. Hence, the scarfing of the CC slab did not affect
the distribution of inclusions in the hot-rolled plate; nevertheless, it could reduce the
inclusion content in the outermost layers of the hot-rolled plate. The research object of
this study was endogenous inclusions and not external inclusions. External inclusions,
particularly inclusions generated by mold flux entrainment, which are typically large and
prone to be captured in the initial solidified mold shell, are generally located in the region
extremely close to the CC slab’s surface. Therefore, CC slab scarfing can effectively reduce
the surface defects of hot-rolled plates caused by mold flux entrainment. Nevertheless, slag
entrainment in the mold typically occurs under unsteady casting conditions (e.g., the initial
casting stage, casting speed change, nozzle change and ladle change). Hence, scarfing may
have little effect on reducing surface defects in plates produced from normal CC slabs.

Figure 13b shows the measured inclusion distributions of the hot-rolled plate along
the thickness direction in the width center and edge regions. As already mentioned, the
inclusions near the narrow face of the CC slab gradually accumulated along its thickness
direction as the hot-rolling process continued. Thus, the number of inclusions within the
edge region of the hot-rolled plate was greater than in its center region. In the width center
region of the plate, the inclusions were mainly concentrated within 1 mm beneath the lower
surface of the plate and 2 mm beneath the upper surface of the plate. Furthermore, no
inclusions were detected within the width center region of the plate. The measurements
of the inclusion distribution in the hot-rolled plate agreed well with the numerical model
predictions, which also validated the FE model used in the study. Figure 13c shows the
morphology of a sliver defect in a hot-rolled IF steel plate obtained from the production
field. As stated above, the inclusions in the edge region of the intermediate slab gradually
concentrated along the thickness direction of the slab during its hot rolling. Consequently,
concentrated zones of inclusions appeared in the edge region of the hot-rolled plate, which
can produce sliver defects.
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5. Conclusions

In this study, a 3D numerical model using the finite element method was constructed
to simulate the hot rolling of IF steel. The inclusion positions in the IF steel slab surface
layer were tracked during the hot-rolling process using a node-tracking method. The
distribution of inclusions in the hot-rolled plate was also observed. The study revealed
the effect of scarfing on inclusion migration during hot rolling and inclusion distribution
in a hot-rolled plate. Using galvanostatic electrolysis, measurements of large inclusions
in samples obtained from hot-rolled plates in a plant were performed, which verified the
validity of the FE model. The study conclusions are as follows:

1. During the hot-rolling process, inclusions in the wide faces of intermediate slabs
gradually migrated to the surfaces. Moreover, inclusions in the accumulation zone
located in the inner arc of the intermediate slabs were close to the inner arc surfaces.
During the hot-rolling process, equivalent strains in the surface layers of the slabs
were larger than the equivalent strains inside the slabs, which caused the inclusions
inside the slabs to migrate to the surface layer.

2. As the hot-rolling process continued, the difference between the inclusion distri-
butions in the slab with no scarfing and in the slab with 3 mm scarfing decreased
significantly. For the two cases, the inclusions were mainly located within 1 mm
underneath the hot-rolled plate. Moreover, the inclusions near the inner arc of the CC
slab were concentrated within 1.5 mm of the upper plate surface. The scarfing of the
CC slab did not affect the inclusion distribution in the hot-rolled plate; nevertheless, it
may have reduced the inclusion content in the outermost layer of the plate.

3. Due to the reduction in the intermediate slab’s thickness, the inclusions near the
narrow face of each CC slab gradually accumulated in its thickness direction as the
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hot-rolling process continued. Finally, accumulated areas of inclusions were generated
at the edge of the hot-rolled plate, which could have caused sliver defects.

4. To experimentally investigate the inclusion distribution in a hot-rolled plate and
validate the FE model that was constructed, large inclusions in the hot-rolled plate ob-
tained from a steel plant were quantitatively extracted using galvanostatic electrolysis.
The measurements of the inclusion distribution in the hot-rolled plate agreed well
with the numerical model predictions, thereby validating the FE model constructed in
the study.

5. Owing to the computing capacity of the computer and the maturity of the numerical
model, some works could not be conducted in the current stage. These works, such
as a coupling model between inclusions in the microscale and steel matrixes in the
macroscale, modeling on the breakup of inclusions in steel matrixes during the rolling
process, the effect of adhesion between inclusions and the steel matrix on the inclusion
deformation during the rolling process, should be performed in the future.
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Appendix A

The subroutine codes of the setup of material properties in the numerical simulations
are as follows:

{Software= GLPre_V2.1}
{Supported_Software= FORGE2 FORGE3}
{Comments=
ALLOY_ID_WT% 0.041C0.003Cr0.01Fe99.7243Mn0.11N0.0017Ni0.01P0.012S0.008Si0.03Ti0.05
ALLOY_ID_AT% Al0.084C0.013Cr0.011Fe99.61Mn0.11N0.007Ni0.01P0.022S0.014Si0.06Ti0.058
Alloy calculated with JMatPro
JMatPro VERSION 7.0.0
MATERIAL TYPE = General Steel
RT STRENGTH INPUT = 0.2% Proof Stress 1000 MPa / 145.05 ksi
}
{Rheological_Units= mm-mpa}
{Rheological_Data_as_Text= EVP
Thermoecroui: Pointapoint, File = IF_properties_FlowStress.dat
DatAJMatpro = IF_properties_PhysProps.dat}
{External_Files_To_Copy=IF_properties_FlowStress.dat, IF_propties_PhysProps.dat}
{Thermal_Units= SI}
{Thermal_Data_as_Text=
!Thermal coefficients Define in DataJMatpro
Epsilon = 0.88 ! Emissivity}
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