Effect of Heat–Moisture Treatment on Crystallinity, Digestibility Properties, Bioactive Compounds, and Antioxidant Activity of Purple Rice (Oryza sativa L. indica) Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Compositions of Purple Rice Flour
2.3. Preparation of Purple Rice Flour
2.4. HMT Treatment in Three Cycles
2.5. Swelling Capacities and Solubilities
2.6. Determination of Starch Fractions
2.7. X-ray Diffraction (XRD)
2.8. Measurement of Phenolic Content and Anthocyanin Content
2.9. Antioxidant Activities
2.10. Granule Morphology
2.11. Statistical Analysis
3. Results and Discussion
3.1. Chemical Compositions of Purple Rice Flour
3.2. Swelling Capacity and Solubility
3.3. The Impact of Three Cycles of HMT on Starch Digestibility
3.4. X-ray Diffraction Pattern
3.5. Bioactive Compound and Antioxidant Activities
3.6. Correlation of TPC, TAC, DPPH, and ABTS
3.7. Effects HMT on Morphology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chiang, A.N.; Wu, H.L.; Yeh, H.I.; Chu, C.S.; Lin, H.C.; Lee, W.C. Antioxidant effects of black rice extract through the induction of superoxide dismutase and catalase activities. Lipids 2006, 41, 797–803. [Google Scholar] [CrossRef]
- Jang, S.; Xu, Z. Lipophilic and hydrophilic antioxidants and their antioxidant activities in purple rice bran. J. Agric. Food Chem. 2009, 57, 858–862. [Google Scholar] [CrossRef]
- Hou, F.; Zhang, R.; Zhang, M.; Su, D.; Wei, Z.; Deng, Y.; Zhang, Y.; Chi, J.; Tang, X. Hepatoprotective and antioxidant activity of anthocyanins in black rice bran on carbon tetrachloride-induced liver injury in mice. J. Funct. Foods 2013, 5, 1705–1713. [Google Scholar] [CrossRef]
- Guo, H.; Ling, W.; Wang, Q.; Liu, C.; Hu, Y.; Xia, M. Cyanidin 3-glucoside protects 3T3-L1 adipocytes against H2O2- or TNF-alpha-induced insulin resistance by inhibiting c-Jun NH2-terminal kinase activation. Biochem. Pharmacol. 2008, 75, 1393–1401. [Google Scholar] [CrossRef]
- Hu, C.; Zawistowski, J.; Ling, W.; Kitts, D.D. Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J. Agric. Food Chem. 2003, 51, 5271–5277. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.M.P.; de Oliveira, C.S.; Colman, T.A.D.; da Costa, F.J.O.G.; Schnitzler, E. Effects of heat–moisture treatment on organic cassava starch. J. Therm. Anal. Calorim. 2014, 115, 2115–2122. [Google Scholar] [CrossRef]
- Bian, L.; Chung, H.-J. Molecular structure and physicochemical properties of starch isolated from hydrothermally treated brown rice flour. Food Hydrocoll. 2016, 60, 345–352. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, D.H.; Kim, J.-Y. Effect of heat-moisture treatment under mildly acidic condition on fragmentation of waxy maize starch granules into nanoparticles. Food Hydrocoll. 2017, 63, 59–66. [Google Scholar] [CrossRef]
- Cahyana, Y.; Wijaya, E.; Halimah, T.S.; Marta, H.; Suryadi, E.; Kurniati, D. The effect of different thermal modifications on slowly digestible starch and physicochemical properties of green banana flour (Musa acuminata colla). Food Chem. 2019, 274, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.-z.; Xiao, Y.; Yang, S.; Liu, H.-m.; Liu, M.-h.; Yaqoob, S.; Xu, X.-y.; Liu, J.-s. Effects of heat–moisture, autoclaving, and microwave treatments on physicochemical properties of proso millet starch. Food Sci. Nutr. 2020, 8, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Khamthong, P.; Lumdubwong, N. Effects of heat-moisture treatment on normal and waxy rice flours and production of thermoplastic flour materials. Carbohydr. Polym. 2012, 90, 340–347. [Google Scholar] [CrossRef]
- Ahn, J.H.; Baek, H.R.; Kim, K.M.; Han, G.J.; Choi, J.B.; Kim, Y.; Moon, T.W. Slowly digestible sweetpotato flour: Preparation by heat-moisture treatment and characterization of physicochemical properties. Food Sci. Biotechnol. 2013, 22, 383–391. [Google Scholar] [CrossRef]
- Klein, B.; Pinto, V.Z.; Vanier, N.L.; Zavareze, E.d.R.; Colussi, R.; Evangelho, J.A.d.; Gutkoski, L.C.; Dias, A.R.G. Effect of single and dual heat–moisture treatments on properties of rice, cassava, and pinhao starches. Carbohydr. Polym. 2013, 98, 1578–1584. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, L.G.; da Silva Carvalho Filho, M.A.; Bauab, T.; Demiate, I.M.; Colman, T.A.D.; Andrade, M.M.P.; Schnitzler, E. The effects of heat-moisture treatment on avocado starch granules. J. Therm. Anal. Calorim. 2015, 120, 387–393. [Google Scholar] [CrossRef]
- Cetiner, B.; Acar, O.; Kahraman, K.; Sanal, T.; Koksel, H. An investigation on the effect of heat-moisture treatment on baking quality of wheat by using response surface methodology. J. Cereal Sci. 2017, 74, 103–111. [Google Scholar] [CrossRef]
- Silva, W.M.F.; Biduski, B.; Lima, K.O.; Pinto, V.Z.; Hoffmann, J.F.; Vanier, N.L.; Dias, A.R.G. Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment. Food Chem. 2017, 219, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, H.; Wei, T.; Shen, J.; Wang, M. Differences in physicochemical properties and in vitro digestibility between tartary buckwheat flour and starch modified by heat-moisture treatment. LWT-Food Sci. Technol. 2017, 86, 285–292. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, T.; Li, N.; Cheng, Q.; Qiao, D.; Zhang, B.; Zhao, S.; Huang, Q.; Lin, Q. Supramolecular structure and pasting/digestion behaviors of rice starches following concurrent microwave and heat moisture treatment. Int. J. Biol. Macromol. 2019, 135, 437–444. [Google Scholar] [CrossRef]
- Dudu, O.E.; Ma, Y.; Adelekan, A.; Oyedeji, A.B.; Oyeyinka, S.A.; Ogungbemi, J.W. Bread-making potential of heat-moisture treated cassava flour-additive complexes. LWT-Food Sci. Technol. 2020, 130, 109477. [Google Scholar] [CrossRef]
- Syarifin, A.N.; Purnomo, A.S.; Fudholi, A. The effect of heat moisture treatment on crystallinity and physicochemical-digestibility properties of purple yam flour. Food Hydrocoll. 2021, 120, 106889. [Google Scholar]
- Hoover, R.; Manuel, H. The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. J. Cereal Sci. 1996, 23, 153–162. [Google Scholar] [CrossRef]
- Chung, H.-J.; Liu, Q.; Hoover, R. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties, and nutritional fractions of pea, lentil, and navy bean starches. Int. Food Res. J. 2010, 43, 501–508. [Google Scholar] [CrossRef]
- Mapengo, C.R.; Emmambux, M.N. Functional properties of heat-moisture treated maize meal with added stearic acid by infrared energy. Food Chem. 2020, 325, 126846. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Cummings, J.H. Digestion of the carbohydrates of banana (Musa paradisiaca sapientum) in the human small intestine. Am. J. Clin. Nutr. 1986, 44, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Bello-Perez, L.A.; Flores-Silva, P.C.; Agama-Acevedo, E.; Tovar, J. Starch digestibility: Past, present, and future. J. Sci. Food Agric. 2020, 100, 5009–5016. [Google Scholar] [CrossRef]
- Englyst, H.N.; Cummings, J.H. Digestion of polysaccharides of potato in the small intestine of man. Am. J. Clin. Nutr. 1987, 45, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Raigond, P.; Dutt, S.; Singh, B. Resistant Starch in Food. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–33. [Google Scholar]
- Shi, M.; Chen, Y.; Yu, S.; Gao, Q. Preparation and properties of RS III from waxy maize starch with pullulanase. Food Hydrocoll. 2013, 33, 19–25. [Google Scholar] [CrossRef]
- Trung, P.T.B.; Ngoc, L.B.B.; Hoa, P.N.; Tien, N.N.T.; Hung, P.V. Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties. Int. J. Biol. Macromol. 2017, 105 Pt 1, 1071–1078. [Google Scholar] [CrossRef]
- Ozturk, S.; Koksel, H.; Kahraman, K.; Ng, P.K.W. Effect of debranching and heat treatments on formation and functional properties of resistant starch from high-amylose corn starches. Eur. Food Res. Technol. 2009, 229, 115–125. [Google Scholar] [CrossRef]
- Sun, H.; Fan, J.; Tian, Z.; Ma, L.; Meng, Y.; Yang, Z.; Zeng, X.; Liu, X.; Kang, L.; Nan, X. Effects of treatment methods on the formation of resistant starch in purple sweet potato. Food Chem. 2022, 367, 130580. [Google Scholar] [CrossRef]
- Min, B.; McClung, A.; Chen, M.H. Effects of hydrothermal processes on antioxidants in brown, purple and red bran whole grain rice (Oryza sativa L.). Food Chem. 2014, 159, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, L.; Zhu, H.; Li, Z. Modification of physicochemical properties and in vitro digestibility of wheat flour through superheated steam processing. J. Cereal Sci. 2017, 74, 231–237. [Google Scholar] [CrossRef]
- Chen, S.H.; Li, X.-F.; Shih, P.-T.; Pai, S.-M. Preparation of thermally stable and digestive enzyme resistant flour directly from Japonica broken rice by combination of steam infusion, enzymatic debranching and heat moisture treatment. Food Hydrocoll. 2020, 108, 106022. [Google Scholar] [CrossRef]
- Puncha-arnon, S.; Uttapap, D. Rice starch vs. rice flour: Differences in their properties when modified by heat–moisture treatment. Carbohydr. Polym. 2013, 91, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, N.A.; Roslen, S.N.H.; Abd Gafar, F.S.; Wan Ibadullah, W.Z.; Sukri, R. Characterization of heat-moisture treated Dioscorea alata purpurea flour: Impact of moisture level. J. Food Meas. Charact. 2019, 13, 1636–1644. [Google Scholar] [CrossRef]
- Liu, C.; Song, M.; Liu, L.; Hong, J.; Guan, E.; Bian, K.; Zheng, X. Effect of heat-moisture treatment on the structure and physicochemical properties of ball mill damaged starches from different botanical sources. Int. J. Biol. Macromol. 2020, 156, 403–410. [Google Scholar] [CrossRef]
- Chung, H.-J.; Liu, Q.; Hoover, R. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydr. Polym. 2009, 75, 436–447. [Google Scholar] [CrossRef]
- Zeng, F.; Ma, F.; Kong, F.; Gao, Q.; Yu, S. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch. Food Chem. 2015, 172, 92–98. [Google Scholar] [CrossRef]
- Huang, T.-T.; Zhou, D.-N.; Jin, Z.-Y.; Xu, X.-M.; Chen, H.-Q. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocoll. 2016, 54, 202–210. [Google Scholar] [CrossRef]
- Lehmann, U.; Robin, F. Slowly digestible starch–its structure and health implications: A review. Trends Food Sci. Technol. 2007, 18, 346–355. [Google Scholar] [CrossRef]
- Su, C.; Zhao, K.; Zhang, B.; Liu, Y.; Jing, L.; Wu, H.; Gou, M.; Jiang, H.; Zhang, G.; Li, W. The molecular mechanism for morphological, crystal, physicochemical and digestible property modification of wheat starch after repeated versus continuous heat-moisture treatment. LWT-Food Sci. Technol. 2020, 129, 109399. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International. Volume I, Agricultural Chemicals, Contaminants, Drugs; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Su, C.; Saleh, A.S.M.; Zhang, B.; Zhao, K.; Ge, X.; Zhang, Q.; Li, W. Changes in structural, physicochemical, and digestive properties of normal and waxy wheat starch during repeated and continuous annealing. Carbohydr. Polym. 2020, 247, 116675. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46 (Suppl. 2), 33–50. [Google Scholar]
- Babu, A.S.; Parimalavalli, R. Effect of pullulanase debranching and storage temperatures on structural characteristics and digestibility of sweet potato starch. J. Saudi Soc. Agric. Sci. 2016, 17, 208–216. [Google Scholar]
- Nara, S.; Komiya, T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch/Stärke 1983, 35, 407–410. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Yea, C.S.; Addelia Nevara, G.; Muhammad, K.; Ghazali, H.M.; Karim, R. Physical properties, resistant starch content and antioxidant profile of purple sweet potato powder after 12 months of storage. Int. J. Food Prop. 2019, 22, 974–984. [Google Scholar] [CrossRef] [Green Version]
- Burgos, G.; Amoros, W.; Muñoa, L.; Sosa, P.; Cayhualla, E.; Sanchez, C.; Díaz, C.; Bonierbale, M. Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. J. Food Compos. Anal. 2013, 30, 6–12. [Google Scholar] [CrossRef]
- Ahmed, M.; Akter, M.S.; Eun, J.-B. Impact of α-amylase and maltodextrin on physicochemical, functional and antioxidant capacity of spray-dried purple sweet potato flour. J. Sci. Food Agric. 2010, 90, 494–502. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Li, A.; Zhu, Y.; Xu, L.; Zhu, W.; Tian, X. Comparative study on the determination of assay for laccase of Trametes sp. J. Nutr. Biochem. 2008, 2, 181–183. [Google Scholar]
- Chen, C.-C.; Lin, C.; Chen, M.-H.; Chiang, P.-Y. Stability and quality of anthocyanin in purple sweet potato extracts. Foods 2019, 8, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashwar, B.A.; Gani, A.; Wani, I.A.; Shah, A.; Masoodi, F.A.; Saxena, D.C. Production of resistant starch from rice by dual autoclaving-retrogradation treatment: Invitro digestibility, thermal and structural characterization. Food Hydrocoll. 2016, 56, 108–117. [Google Scholar] [CrossRef]
- Dias, A.R.G.; da Rosa Zavareze, E.; Spier, F.; de Castro, L.A.S.; Gutkoski, L.C. Effects of annealing on the physicochemical properties and enzymatic susceptibility of rice starches with different amylose contents. Food Chem. 2010, 123, 711–719. [Google Scholar] [CrossRef]
- Zhu, L.-J.; Liu, Q.-Q.; Sang, Y.; Gu, M.-H.; Shi, Y.-C. Underlying reasons for waxy rice flours having different pasting properties. Food Chem. 2010, 120, 94–100. [Google Scholar] [CrossRef]
- Gunaratne, A.; Hoover, R. Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr. Polym. 2002, 49, 425–437. [Google Scholar] [CrossRef]
- Olayinka, O.O.; Adebowale, K.O.; Olu-Owolabi, B.I. Effect of heat-moisture treatment on physicochemical properties of white sorghum starch. Food Hydrocoll. 2008, 22, 225–230. [Google Scholar] [CrossRef]
- Waduge, R.N.; Hoover, R.; Vasanthan, T.; Gao, J.; Li, J. Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Int. Food Res. J. 2006, 39, 59–77. [Google Scholar] [CrossRef]
- Jacobs, H.; Eerlingen, R.C.; Clauwaert, W.M.C.; Delcour, J.A. Influence of annealing on the pasting properties of starches from varying botanical sources. Cereal Chem. 1995, 72, 480–487. [Google Scholar]
- Pepe, L.d.S.; Moraes, J.d.; Albano, K.M.; Telis, V.R.N.; Franco, C.M. Effect of heat-moisture treatment on the structural, physicochemical, and rheological characteristics of arrowroot starch. Food Sci. Technol. Int. 2016, 22, 256–265. [Google Scholar] [CrossRef]
- Sun, Q.; Han, Z.; Wang, L.; Xiong, L. Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment. Food Chem. 2014, 145, 756–764. [Google Scholar] [CrossRef]
- Chung, H.-J.; Hoover, R.; Liu, Q. The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. Int. J. Biol. Macromol. 2009, 44, 203–210. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Mitra, S.; Gilbert, R.G.; Gidley, M.J.; Fox, G.P. Influence of heat treatment on starch structure and physicochemical properties of oats. J. Cereal Sci. 2019, 89, 102805. [Google Scholar] [CrossRef]
- Adebowalea, K.; Olu-owolabi, B.I.; Olayinka, O.O.; Lawal, O.S. Effect of heat moisture treatment and annealing on physicochemical properties of red sorghum starch. Afr. J. Biotechnol. 2005, 4, 928–933. [Google Scholar]
- Adebowale, K.O.; Lawal, O.S. Effect of annealing and heat moisture conditioning on the physicochemical characteristics of Bambarra groundnut (Voandzeia subterranea) starch. Nahrung 2002, 46, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Lawal, O.S.; Adebowale, K.O. An assessment of changes in thermal and physico-chemical parameters of jack bean (Canavalia ensiformis) starch following hydrothermal modifications. Eur. Food Res. Technol. 2005, 221, 631–638. [Google Scholar] [CrossRef]
- Niba, L.L. Processing effects on susceptibility of starch to digestion in some dietary starch sources. Int. J. Food Sci. Nutr. 2003, 54, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Yadav, D.N.; Singh, A.K.; Tomar, S.K. Effect of heat-moisture treatment on resistant starch content as well as heat and shear stability of pearl millet starch. Agric. Res. 2015, 4, 411–419. [Google Scholar] [CrossRef]
- Van Hung, P.; Huong, N.T.; Phi, N.T.; Tien, N.N. Physicochemical characteristics and in vitro digestibility of potato and cassava starches under organic acid and heat-moisture treatments. Int. J. Biol. Macromol. 2017, 95, 299–305. [Google Scholar] [CrossRef]
- Zavareze, E.d.R.; Storck, C.R.; de Castro, L.A.S.; Schirmer, M.A.; Dias, A.R.G. Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chem. 2010, 121, 358–365. [Google Scholar] [CrossRef]
- Varatharajan, V.; Hoover, R.; Liu, Q.; Seetharaman, K. The impact of heat-moisture treatment on the molecular structure and physicochemical properties of normal and waxy potato starches. Carbohydr. Polym. 2010, 81, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Haralampu, S.G. Resistant starch—A review of the physical properties and biological impact of RS3. Carbohydr. Polym. 2000, 41, 285–292. [Google Scholar] [CrossRef]
- Chen, X.; He, X.; Fu, X.; Huang, Q. In vitro digestion and physicochemical properties of wheat starch/flour modified by heat-moisture treatment. J. Cereal Sci. 2015, 63, 109–115. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Wronkowska, M.; Soral-Śmietana, M.; Krupa, U.; Biedrzycka, E. In vitro fermentation of new modified starch preparations-changes of microstructure and bacterial end-products. Enzyme Microb. Technol. 2006, 40, 93–99. [Google Scholar] [CrossRef]
- Vanhoutte, T.; De Preter, V.; De Brandt, E.; Verbeke, K.; Swings, J.; Huys, G. Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl. Environ. Microbiol. 2006, 72, 5990–5997. [Google Scholar] [CrossRef] [Green Version]
- Jiranuntakul, W.; Puttanlek, C.; Rungsardthong, V.; Puncha-arnon, S.; Uttapap, D. Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. J. Food Eng. 2011, 104, 246–258. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, S. Influence of heat-moisture treatment (HMT) on physicochemical and functional properties of starches from different Indian oat (Avena sativa L.) cultivars. Int. J. Biol. Macromol. 2019, 122, 312–319. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.; Li, W.; Wang, X.; Lv, M.; Peng, Q.; Wang, M. Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing. Carbohydr. Polym. 2015, 132, 237–244. [Google Scholar] [CrossRef]
- Dudu, O.E.; Li, L.; Oyedeji, A.B.; Oyeyinka, S.A.; Ma, Y. Structural and functional characteristics of optimised dry-heat-moisture treated cassava flour and starch. Int. J. Biol. Macromol. 2019, 133, 1219–1227. [Google Scholar] [CrossRef]
- Hoover, R.; Vasanthan, T. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches. Carbohydr. Res. 1994, 252, 33–53. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.-j.; Liu, Y.; Li, D.; Wang, L.-j.; Adhikari, B. Heat-moisture treatment and acid hydrolysis of corn starch in different sequences. LWT-Food Sci. Technol. 2017, 79, 11–20. [Google Scholar] [CrossRef]
- Vermeylen, R.; Goderis, B.; Delcour, J.A. An X-ray study of hydrothermally treated potato starch. Carbohydr. Polym. 2006, 64, 364–375. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Bintang, S.; Soeherman, G.P.; Djali, M. Physicochemical and pasting properties of corn starch as affected by hydrothermal modification by various methods. Int. J. Food Prop. 2022, 25, 792–812. [Google Scholar] [CrossRef]
- Castro, L.M.G.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M. Impact of high pressure on starch properties: A review. Food Hydrocoll. 2020, 106, 105877. [Google Scholar] [CrossRef]
- Haq, N.; Rashem, W.; Mubashir, N.; Dure, S. Physical and Chemical Modifications in Starch Structure and Reactivity. In Chemical Properties of Starch; Martins, E., Ed.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Jacobs, H.; Delcour, J.A. Hydrothermal modifications of granular starch, with retention of the granular Structure: A Review. J. Agric. Food Chem. 1998, 46, 2895–2905. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Yang, T.; Ma, Y.; McClements, D.J.; Ren, F.; Tian, Y.; Jin, Z. A review of structural transformations and properties changes in starch during thermal processing of foods. Food Hydrocoll. 2021, 113, 106543. [Google Scholar] [CrossRef]
- Hu, X.; Guo, B.; Liu, C.; Yan, X.; Chen, J.; Luo, S.; Liu, Y.; Wang, H.; Yang, R.; Zhong, Y.; et al. Modification of potato starch by using superheated steam. Carbohydr. Polym. 2018, 198, 375–384. [Google Scholar] [CrossRef]
- Shin, S.I.; Kim, H.J.; Ha, H.-J.; Lee, S.-H.; Moon, T.W. Effect of hydrothermal treatment on formation and structural characteristics of slowly digestible non-pasted granular sweet potato starch. Starch/Stärke 2005, 57, 421–430. [Google Scholar] [CrossRef]
- Deka, D.; Sit, N. Dual modification of taro starch by microwave and other heat moisture treatments. Int. J. Biol. Macromol. 2016, 92, 416–422. [Google Scholar] [CrossRef]
- Lazaridou, A.; Marinopoulou, A.; Biliaderis, C.G. Impact of flour particle size and hydrothermal treatment on dough rheology and quality of barley rusks. Food Hydrocoll. 2019, 87, 561–569. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Arifin, H.; Khairani, L. Comparing the effect of four different thermal modifications on physicochemical and pasting properties of breadfruit (Artocarpus altilis) starch. Int. Food Res. J. 2019, 26, 269–276. [Google Scholar]
- Self, K.P.; Wilkins, T.J.; Morley, M.J.; Bailey, C. Rheological and heat transfer characteristics of starch-water suspensions during cooking. J. Food Eng. 1990, 11, 291–316. [Google Scholar] [CrossRef]
- Pukkahuta, C.; Varavinit, S. Structural transformation of sago starch by heat-moisture and osmotic-pressure treatment. Starch/Stärke 2007, 59, 624–631. [Google Scholar] [CrossRef]
- Sui, Z.; Kong, X. Physical Modifications of Starch; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Leila, A.; Jean-Yves, M.; Rezzoug, S.-A.; Thierry, M.; Luc, G.; Stephane, C.; Maache-Rezzoug, Z. Prediction of thermal conductivity and specific heat of native maize starch and comparison with HMT treated starch. J. Renew. Mater. 2019, 7, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Piga, A.; Del Caro, A.; Corda, G. From Plums to Prunes: Influence of Drying Parameters on Polyphenols and Antioxidant Activity. J. Agric. Food Chem. 2003, 51, 3675–3681. [Google Scholar] [CrossRef]
- Thuengtung, S.; Ogawa, Y. Comparative study of conventional steam cooking and microwave cooking on cooked pigmented rice texture and their phenolic antioxidant. Food Sci. Nutr. 2020, 8, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.; Marchesan, E.; Massoni, P.F.S.; da Silva, L.P.; Sartori, G.M.S.; Ferreira, R.B. Antioxidant properties of rice grains with light brown, red and black pericarp colors and the effect of processing. Int. Food Res. J. 2013, 50, 698–703. [Google Scholar] [CrossRef] [Green Version]
- Patras, A.; Brunton, N.P.; O'Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, W.; Xu, B. Profiles of phenolics, carotenoids and antioxidative capacities of thermal processed white, yellow, orange and purple sweet potatoes grown in Guilin, China. Food Sci. Hum. Wellness 2015, 4, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Hong, K.H.; Koh, E. Effects of cooking methods on anthocyanins and total phenolics in purple-fleshed sweet potato. J. Food Process. Preserv. 2016, 40, 1054–1063. [Google Scholar] [CrossRef]
- Pérez-Conesa, D.; García-Alonso, J.; García-Valverde, V.; Iniesta, M.-D.; Jacob, K.; Sánchez-Siles, L.M.; Ros, G.; Periago, M.J. Changes in bioactive compounds and antioxidant activity during homogenization and thermal processing of tomato puree. Innov. Food Sci. Emerg. Technol. 2009, 10, 179–188. [Google Scholar] [CrossRef]
- Surh, J.; Koh, E. Effects of four different cooking methods on anthocyanins, total phenolics and antioxidant activity of black rice. J. Sci. Food Agric. 2014, 94, 3296–3304. [Google Scholar] [CrossRef]
- Norkaew, O.; Boontakham, P.; Dumri, K.; Noenplab, A.N.L.; Sookwong, P.; Mahatheeranont, S. Effect of post-harvest treatment on bioactive phytochemicals of Thai black rice. Food Chem. 2017, 217, 98–105. [Google Scholar] [CrossRef]
- Hoover, R.; Vasanthan, T. The flow properties of native, heat-moisture treated, and annealed starches from wheat, oat, potato and lentil. J. Food Biochem. 1994, 18, 67–82. [Google Scholar] [CrossRef]
- Khunae, P.; Tran, T.; Sirivongpaisal, P. Effect of heat-moisture treatment on structural and thermal properties of rice starches differing in amylose content. Starch/Stärke 2007, 59, 593–599. [Google Scholar] [CrossRef]
- Kawabata, A.; Takase, N.; Miyoshi, E.; Sawayama, S.; Kimura, T.; Kudo, K. Microscopic observation and x-ray diffractometry of heat/moisture-treated starch granules. Starch/Stärke 1994, 46, 463–469. [Google Scholar] [CrossRef]
- Zavareze, E.d.R.; Halal, S.L.d.M.E.; Santos, D.G.d.l.; Helbig, E.; Pereira, J.M.; Dias, A.R.G. Resistant starch and thermal, morphological and textural properties of heat-moisture treated rice starches with high-, medium- and low-amylose content. Starch/Stärke 2012, 64, 45–54. [Google Scholar] [CrossRef]
Sample | Chemical Composition (%) | ||||
---|---|---|---|---|---|
Moisture | Protein | Fat | Ash | Carbohydrate | |
Purple rice flour | 10.44 ± 0.15 | 8.01 ± 0.09 | 0.32 ± 0.03 | 0.42 ± 0.12 | 80.82 ± 0.32 |
Samples | RDS (%) | SDS (%) | RS (%) |
---|---|---|---|
NF | 58.77 ± 0.13 a | 29.07 ± 0.19 h | 12.16 ± 0.32 i |
OHMT120 | 52.82 ± 0.30 b | 26.64 ± 0.60 i | 20.54 ± 0.30 d |
OHMT125 | 51.01 ± 0.45 c | 31.29 ± 0.21 g | 17.70 ± 0.24 f |
OHMT130 | 48.73 ± 0.15 d | 36.38 ± 0.55 d | 14.90 ± 0.39 h |
OHMT220 | 48.23 ± 0.43 d | 28.77 ± 0.18 h | 23.00 ± 0.25 b |
OHMT225 | 46.95 ± 0.24 e | 31.77 ± 0.52 fg | 21.28 ± 0.28 cd |
OHMT230 | 45.49 ± 0.25 f | 34.16 ± 0.50 e | 20.35 ± 0.25 d |
AHMT120 | 48.40 ± 0.42 d | 32.50 ± 0.88 f | 19.10 ± 0.46 e |
AHMT125 | 45.00 ± 0.21 f | 38.39 ± 0.60 c | 16.60± 0.39 g |
AHMT130 | 44.10 ± 0.32 g | 40.96 ± 0.51 b | 14.95 ± 0.18 h |
AHMT220 | 38.22 ± 0.27 j | 36.81 ± 0.14 d | 24.97 ± 0.41 a |
AHMT225 | 39.45 ± 0.28 i | 39.06 ± 0.44 c | 21.50 ± 0.16 c |
AHMT230 | 40.23 ± 0.43 h | 42.62 ± 0.59 a | 17.16 ± 1.02 fg |
Samples | Peak Intensities 2θ (°) | Relative Crystallinity (%) | |||
---|---|---|---|---|---|
15 | 17 | 18 | 23 | ||
NF | 1366 | 1606 | 1664 | 1662 | 21.09 k |
OHMT120 | 1496 | 1685 | 1710 | 1784 | 30.20 f |
OHMT125 | 1442 | 1625 | 1685 | 1747 | 25.21 j |
OHMT130 | 1465 | 1657 | 1701 | 1765 | 27.25 h |
OHMT220 | 1565 | 1754 | 1785 | 1802 | 35.21 b |
OHMT225 | 1527 | 1721 | 1732 | 1785 | 32.19 d |
OHMT230 | 1501 | 1695 | 1708 | 1767 | 30.14 f |
AHMT120 | 1513 | 1708 | 1725 | 1760 | 31.29 e |
AHMT125 | 1485 | 1685 | 1702 | 1732 | 26.42 i |
AHMT130 | 1468 | 1671 | 1681 | 1712 | 25.20 j |
AHMT220 | 1582 | 1782 | 1784 | 1823 | 37.25 a |
AHMT225 | 1535 | 1761 | 1745 | 1796 | 33.70 c |
AHMT230 | 1507 | 1711 | 1715 | 1741 | 28.30 g |
Samples | Antioxidant Activities | |
---|---|---|
DPPH Radical Scavenging Activity (mg TE/g) | ABTS Radical Scavenging Activity (mg TE/g) | |
NF | 11.42 ± 0.11 a | 14.37 ± 0.07 a |
OHMT120 | 2.59 ± 0.06 g | 2.07 ± 0.06 d |
OHMT125 | 2.77 ± 0.07 f | 1.84 ± 0.04 e |
OHMT130 | 3.06 ± 0.06 e | 1.92 ± 0.05 e |
OHMT220 | 2.47 ± 0.05 g | 1.69 ± 0.05 f |
OHMT225 | 2.29 ± 0.05 h | 1.39 ± 0.05 g |
OHMT230 | 1.97 ± 0.07 i | 0.87 ± 0.04 h |
AHMT120 | 3.61 ± 0.05 b | 2.60 ± 0.05 b |
AHMT125 | 3.71 ± 0.04 b | 2.42 ± 0.06 c |
AHMT130 | 3.64 ± 0.04 b | 2.47 ± 0.08 bc |
AHMT220 | 3.64 ± 0.04 b | 2.20 ± 0.08 d |
AHMT225 | 3.37 ± 0.07 c | 2.34 ± 0.04 c |
AHMT230 | 3.23 ± 0.03 c | 2.18 ± 0.06 d |
TPC | TAC | DPPH | ABTS | |
---|---|---|---|---|
TPC | 1.000 | 0.849 * | 0.979 * | 0.964 * |
TAC | 1.000 | 0.858 * | 0.813 * | |
DPPH | 1.000 | 0.993 * | ||
ABTS | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuwech, M.; Rakariyatham, N.; Tinoi, J.; Suwitchayanon, P.; Chandet, N. Effect of Heat–Moisture Treatment on Crystallinity, Digestibility Properties, Bioactive Compounds, and Antioxidant Activity of Purple Rice (Oryza sativa L. indica) Flour. Processes 2023, 11, 969. https://doi.org/10.3390/pr11030969
Chuwech M, Rakariyatham N, Tinoi J, Suwitchayanon P, Chandet N. Effect of Heat–Moisture Treatment on Crystallinity, Digestibility Properties, Bioactive Compounds, and Antioxidant Activity of Purple Rice (Oryza sativa L. indica) Flour. Processes. 2023; 11(3):969. https://doi.org/10.3390/pr11030969
Chicago/Turabian StyleChuwech, Methus, Nuansri Rakariyatham, Jidapha Tinoi, Prapaipit Suwitchayanon, and Nopakarn Chandet. 2023. "Effect of Heat–Moisture Treatment on Crystallinity, Digestibility Properties, Bioactive Compounds, and Antioxidant Activity of Purple Rice (Oryza sativa L. indica) Flour" Processes 11, no. 3: 969. https://doi.org/10.3390/pr11030969
APA StyleChuwech, M., Rakariyatham, N., Tinoi, J., Suwitchayanon, P., & Chandet, N. (2023). Effect of Heat–Moisture Treatment on Crystallinity, Digestibility Properties, Bioactive Compounds, and Antioxidant Activity of Purple Rice (Oryza sativa L. indica) Flour. Processes, 11(3), 969. https://doi.org/10.3390/pr11030969