Composites of Layered Double Hydroxides and ANA-Type Zeolite Synthesized from Hazardous Secondary Aluminum Dross for Cationic Dye Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of LDH@zeolite Composites
2.2.1. Synthesis of Zeolite
2.2.2. Synthesis of MgAl−LDHs and LDHs@ANA Composite
2.3. Batch Experiments and Adsorption Kinetics
2.4. Equilibrium Isotherm
2.5. Characterization Method
3. Results
3.1. Extraction of Aluminum Elements from SAD
3.1.1. Characterization of Raw SAD
3.1.2. Extraction of Aluminum from SAD
3.2. Structure of Synthetic Mg/Al−LDHs, Zeolite, and LDHs@zeolite Composites
3.2.1. Characterization of Mg/Al−LDHs and Zeolite
3.2.2. Characterization of LDHs@zeolite Composites
3.3. Factors Affecting MB Adsorption
3.3.1. Effect of Adsorbent Concentration on MB Adsorption
3.3.2. Effect of Initial Concentration on MB Adsorption
3.3.3. Effect of PH on MB Adsorption
3.3.4. Effect of Adsorbent Types on MB Adsorption
3.4. Adsorption Kinetics
3.5. Equilibrium Isotherm
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahinroosta, M.; Allahverdi, A. A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross. J. Clean. Prod. 2018, 179, 93–102. [Google Scholar] [CrossRef]
- Meshram, A.; Singh, K.K. Recovery of valuable products from hazardous aluminum dross: A review. Resour. Conserv. Recycl. 2018, 130, 95–108. [Google Scholar] [CrossRef]
- Mahinroosta, M.; Allahverdi, A. Hazardous aluminum dross characterization and recycling strategies: A critical review. J. Environ. Manag. 2018, 223, 452–468. [Google Scholar] [CrossRef]
- Hu, K.; Reed, D.; Robshaw, T.J.; Smith, R.M.; Ogden, M.D. Characterisation of aluminium black dross before and after stepwise salt-phase dissolution in non-aqueous solvents. J. Hazard. Mater. 2021, 401, 123351. [Google Scholar] [CrossRef] [PubMed]
- David, E.; Kopac, J. Aluminum recovery as a product with high added value using aluminum hazardous waste. J. Hazard. Mater. 2013, 261, 316–324. [Google Scholar] [CrossRef]
- He, L.; Shi, L.; Huang, Q.; Hayat, W.; Shang, Z.; Ma, T.; Wang, M.; Yao, W.; Huang, H.; Chen, R. Extraction of alumina from aluminum dross by a non-hazardous alkaline sintering process: Dissolution kinetics of alumina and silica from calcined materials. Sci. Total Environ. 2021, 777, 146123. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Q.; Zhang, G.; Shi, Q.; Feng, H. Investigation of leaching kinetics of aluminum extraction from secondary aluminum dross with use of hydrochloric acid. Hydrometallurgy 2019, 187, 158–167. [Google Scholar] [CrossRef]
- Jiménez, A.; Rives, V.; Vicente, M.A.; Gil, A. A comparative study of acid and alkaline aluminum extraction valorization procedure for aluminum saline slags. J. Environ. Chem. Eng. 2022, 10, 107546. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A. Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Alghamdi, W.M.; El Mannoubi, I. Investigation of seeds and peels of Citrullus colocynthis as efficient natural adsorbent for methylene blue dye. Processes 2021, 9, 1279. [Google Scholar] [CrossRef]
- Preetha, B.K.; Vishalakshi, B. Microwave assisted synthesis of karaya gum based montmorillonite nanocomposite: Characterisation, swelling and dye adsorption studies. Int. J. Biol. Macromol. 2020, 154, 739–750. [Google Scholar] [CrossRef] [PubMed]
- EL-Mekkawi, D.M.; Ibrahim, F.A.; Selim, M.M. Removal of methylene blue from water using zeolites prepared from Egyptian kaolins collected from different sources. J. Environ. Chem. Eng. 2016, 4, 1417–1422. [Google Scholar] [CrossRef]
- Lin, S.; Song, Z.; Che, G.; Ren, A.; Li, P.; Liu, C.; Zhang, J. Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution. Microporous Mesoporous Mater. 2014, 193, 27–34. [Google Scholar] [CrossRef]
- Öden, M.K. Investigation of the success of physical and chemically modified process waste in heavy metal removal from synthetic wastewater. J. Fac. Eng. Archit. Gaz. 2020, 35, 39–49. [Google Scholar]
- Dey, M.D.; Das, S.; Kumar, R.; Doley, R.; Bhattacharya, S.S.; Mukhopadhyay, R. Vermiremoval of methylene blue using Eisenia fetida: A potential strategy for bioremediation of synthetic dye-containing effluents. Ecol. Eng. 2017, 106, 200–208. [Google Scholar] [CrossRef]
- Oden, M.K. Treatment of CNC industry wastewater by electrocoagulation technology: An application through response surface methodology. Int. J. Environ. Anal. Chem. 2020, 100, 1–19. [Google Scholar] [CrossRef]
- Alpert, S.M.; Knappe, D.R.; Ducoste, J.J. Modeling the UV/hydrogen peroxide advanced oxidation process using computational fluid dynamics. Water Res. 2010, 44, 1797–1808. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef]
- Vial, S.; Prevot, V.; Leroux, F.; Forano, C. Immobilization of urease in ZnAl layered double hydroxides by soft chemistry routes. Microporous Mesoporous Mater. 2008, 107, 190–201. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, C.; Rad, S.; He, H.; Qin, L. A comprehensive review of layered double hydroxide-based carbon composites as an environmental multifunctional material for wastewater treatment. Processes 2022, 10, 617. [Google Scholar] [CrossRef]
- Goh, K.-H.; Lim, T.-T.; Dong, Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42, 1343–1368. [Google Scholar] [CrossRef] [PubMed]
- Lafi, R.; Charradi, K.; Djebbi, M.A.; Amara, A.B.H.; Hafiane, A. Adsorption study of Congo red dye from aqueous solution to Mg–Al–layered double hydroxide. Adv. Powder. Technol. 2016, 27, 232–237. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Zhang, J.; Li, W.; Zhou, J.; Shao, L.; Qian, G. Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater. J. Hazard. Mater. 2012, 243, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wu, T.; He, W.; Sun, L.; Li, Y.; Sun, D. Adsorption properties of dodecylsulfate-intercalated layered double hydroxide for various dyes in water. Colloid Surf. A 2013, 436, 726–731. [Google Scholar] [CrossRef]
- Marangoni, R.; Bouhent, M.; Taviot-Guého, C.; Wypych, F.; Leroux, F. Zn2Al layered double hydroxides intercalated and adsorbed with anionic blue dyes: A physico-chemical characterization. J. Colloid Interface Sci. 2009, 333, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, F.; Zhang, C.; Zeng, G.; Tan, X.; Yu, Z.; Zhong, Y.; Wang, H.; Cui, F. Utilization of LDH-based materials as potential adsorbents and photocatalysts for the decontamination of dyes wastewater: A review. RSC Adv. 2016, 6, 79415–79436. [Google Scholar] [CrossRef]
- Sharifi-Bonab, M.; Aber, S.; Salari, D.; Khodam, F. Synthesis of CoZnAl-layered double hydroxide/graphene oxide nanocomposite for the removal of methylene blue: Kinetic, thermodynamic, and isotherm studies. Environ. Prog. Sustain. Energy 2020, 39, e13316. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Y.; Sun, S.; Zhang, C.; Wang, H. Removal of methylene blue from aqueous solution using Mg-Fe, Zn-Fe, Mn-Fe layered double hydroxide. Water Sci. Technol. 2020, 81, 2522–2532. [Google Scholar] [CrossRef]
- Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L. Purification mechanism of sewage from constructed wetlands with zeolite substrates: A review. J. Clean. Prod. 2020, 258, 120760. [Google Scholar] [CrossRef]
- Kosinov, N.; Gascon, J.; Kapteijn, F.; Hensen, E.J. Recent developments in zeolite membranes for gas separation. J. Membr. Sci. 2016, 499, 65–79. [Google Scholar] [CrossRef]
- Li, Y.; Wu, M.; Wu, J.; Wang, Y.; Zheng, Z.; Jiang, Z. Mechanistic insight and rapid co-adsorption of nitrogen pollution from micro-polluted water over MgAl-layered double hydroxide composite based on zeolite. Sep. Purif. Technol. 2022, 297, 121484. [Google Scholar] [CrossRef]
- Wu, Y.; Song, L.; Shi, M.; Gu, C.; Zhang, J.; Lv, J.; Xuan, L. Ca/Fe-layered double hydroxide–zeolite composites for the control of phosphorus pollution in sediments: Performance, mechanisms, and microbial community response. Chem. Eng. J. 2022, 450, 138277. [Google Scholar] [CrossRef]
- Mahinroosta, M.; Allahverdi, A. Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: Kinetic study. J. Environ. Manag. 2018, 212, 278–291. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Ray, S.K. Enhanced adsorption of synthetic dyes from aqueous solution by a semi-interpenetrating network hydrogel based on starch. J. Ind. Eng. Chem. 2014, 20, 3714–3725. [Google Scholar] [CrossRef]
- Jiménez, A.; Misol, A.; Morato, Á.; Rives, V.; Vicente, M.A.; Gil, A. Synthesis of pollucite and analcime zeolites by recovering aluminum from a saline slag. J. Clean. Prod. 2021, 297, 126667. [Google Scholar] [CrossRef]
- Murayama, N.; Maekawa, I.; Ushiro, H.; Miyoshi, T.; Shibata, J.; Valix, M. Synthesis of various layered double hydroxides using aluminum dross generated in aluminum recycling process. Int. J. Miner. Process. 2012, 110, 46–52. [Google Scholar] [CrossRef]
- Sánchez-Hernández, R.; López-Delgado, A.; Padilla, I.; Galindo, R.; López-Andrés, S. One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste. Microporous Mesoporous Mater. 2016, 226, 267–277. [Google Scholar] [CrossRef]
- Sali, R.; Naik, L.; Mohan, S. Optical and Microstructural Changes in 5 (6)-Carboxyfluorescein Doped PVA. J. Polym. Compos. 2016, 4, 45–51. [Google Scholar]
- Atta, A.; Jibril, B.; Aderemi, B.; Adefila, S. Preparation of analcime from local kaolin and rice husk ash. Appl. Clay. Sci. 2012, 61, 8–13. [Google Scholar] [CrossRef]
- Šontevska, V.; Jovanovski, G.; Makreski, P.; Raškovska, A.; Šoptrajanov, B. Minerals from Macedonia. XXI. Vibrational spectroscopy as identificational tool for some phyllosilicate minerals. Acta Chim. Slov. 2008, 55, 757–766. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Wang, J.; Fu, D.; Ren, B.; Song, X.; Kan, K.; Zhang, X. Anchored growth of highly dispersed LDHs nanosheets on expanded graphite for fluoride adsorption properties and mechanism. J. Hazard. Mater. 2023, 442, 130068. [Google Scholar] [CrossRef] [PubMed]
Element | Contents (%) | Element | Contents (%) |
---|---|---|---|
Al | 48.63 | Cu | 0.74 |
O | 21.32 | Ti | 0.63 |
Mg | 4.55 | Mn | 0.54 |
Fe | 3.69 | Zn | 0.37 |
Si | 3.31 | Cr | 0.19 |
Cl | 2.88 | Ba | 0.43 |
F | 2.25 | S | 0.11 |
Ca | 1.62 | Sr | 0.04 |
Na | 1.19 | Ni | 0.02 |
K | 0.79 | - | - |
Oxide | Al2O3 | Na2O | SiO2 | Fe2O3 | CaO | ZnO | CuO |
---|---|---|---|---|---|---|---|
Content (wt.%) | 94.58 | 1.87 | 1.19 | 1.16 | 0.77 | 0.24 | 0.17 |
SBET (m2/g) | Vpore (cm3/g) | DBJH (nm) | |
---|---|---|---|
ANA | 27.4 | 0.011 | 30.4 |
MgAl−LDHs | 30.2 | 0.15 | 19.8 |
LDHs@ANA | 60.8 | 0.24 | 13.8 |
Models | Parameters | 20 °C | 30 °C | 40 °C |
---|---|---|---|---|
Langmuir | Qm | 65.27 | 59.60 | 59.63 |
KL | 0.2133 | 0.2210 | 0.1852 | |
R2 | 0.9893 | 0.9919 | 0.9806 | |
Freundlich | n | 4.189 | 4.701 | 4.869 |
KF | 21.83 | 21.92 | 21.81 | |
R2 | 0.9517 | 0.9503 | 0.9097 | |
Temkin | KT | 18.91 | 33.79 | 35.83 |
bT | 308.61 | 365.16 | 376.36 | |
R2 | 0.9684 | 0.9696 | 0.9351 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Wang, L.; Li, G.; Jin, Q. Composites of Layered Double Hydroxides and ANA-Type Zeolite Synthesized from Hazardous Secondary Aluminum Dross for Cationic Dye Wastewater Treatment. Processes 2023, 11, 1002. https://doi.org/10.3390/pr11041002
Zhu B, Wang L, Li G, Jin Q. Composites of Layered Double Hydroxides and ANA-Type Zeolite Synthesized from Hazardous Secondary Aluminum Dross for Cationic Dye Wastewater Treatment. Processes. 2023; 11(4):1002. https://doi.org/10.3390/pr11041002
Chicago/Turabian StyleZhu, Bin, Lina Wang, Guo Li, and Qiang Jin. 2023. "Composites of Layered Double Hydroxides and ANA-Type Zeolite Synthesized from Hazardous Secondary Aluminum Dross for Cationic Dye Wastewater Treatment" Processes 11, no. 4: 1002. https://doi.org/10.3390/pr11041002
APA StyleZhu, B., Wang, L., Li, G., & Jin, Q. (2023). Composites of Layered Double Hydroxides and ANA-Type Zeolite Synthesized from Hazardous Secondary Aluminum Dross for Cationic Dye Wastewater Treatment. Processes, 11(4), 1002. https://doi.org/10.3390/pr11041002