A Novel Isolated Intelligent Adjustable Buck-Boost Converter with Hill Climbing MPPT Algorithm for Solar Power Systems
Abstract
:1. Introduction
2. Conventional SEPIC Converter
3. An Isolated Intelligent Adjustable Buck-Boost Converter Is Proposed
3.1. Topology Analysis and Intelligent Control Strategy
3.2. Topology Analysis
3.3. Hill-Climbing Algorithm
- (1)
- With its disturbance characteristics, it will cause power loss and lower the system’s performance.
- (2)
- It is not suitable for partially shaded environments; it will operate at the local maximum power point, resulting in low system efficiency.
4. Simulation and Experimental Results
Simulation Result
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meena Devi, R.; Geetha, V.; Meenakshi, V. Speed Control of SEPIC Converter-Based Induction Motor Drive System. In Emerging Solutions for e-Mobility and Smart Grids; Springer: Singapore, 2021; pp. 15–23. [Google Scholar] [CrossRef]
- Nguimfack-Ndongmo, J.D.D.; Kenné, G.; Kuate-Fochie, R.; Tchouani Njomo, A.F.; Mbaka Nfah, E. Adaptive neuro-synergetic control technique for SEPIC converter in PV systems. Int. J. Dyn. Control 2022, 10, 203–216. [Google Scholar] [CrossRef]
- Sivamani, D.; Ramkumar, R.; Ali, A.N.; Shyam, D. Design and implementation of highly efficient UPS charging system with single-stage power factor correction using SEPIC converter. Mater. Today Proc. 2021, 45, 1809–1819. [Google Scholar] [CrossRef]
- Faizan, M.; Sabir, B.; Tahir, M.; Rahman, K.; Ashraf, I. Analysis of Five Level H-Bridge Inverter Using Bipolar Switching Schemes. In Proceedings of the 2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Maroti, P.K.; Padmanaban, S.; Holm-Nielsen, J.B.; Bhaskar, M.S.; Meraj, M.; Iqbal, A. A new structure of high voltage gain SEPIC converter for renewable energy applications. IEEE Access 2019, 7, 89857–89868. [Google Scholar] [CrossRef]
- Maroti, P.K.; Esmaeili, S.; Iqbal, A.; Meraj, M. High step-up single switch quadratic modified SEPIC converter for DC microgrid applications. IET Power Electron. 2020, 13, 3717–3726. [Google Scholar] [CrossRef]
- Mosconi Ewerling, M.V.; Brunelli Lazzarin, T.; Illa Font, C.H. Proposal of an Isolated Two-Switch DC-DC SEPIC Converter. In Proceedings of the 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), Santos, Brazil, 1–4 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Natchimuthu, S.; Chinnusamy, M.; Mark, A.P. Experimental investigation of PV based modified SEPIC converter fed hybrid electric vehicle (PV-HEV). Int. J. Circ. Theor. Appl. 2020, 48, 980–996. [Google Scholar] [CrossRef]
- Majstorović, M.; Mršević, D.; Đurić, B.; Milešević, M.; Stević, Z.; Despotović, Ž.V. Implementation of MPPT Methods with SEPIC Converter. In Proceedings of the 2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 18–20 March 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mouslim, S.; Kourchi, M.; Ajaamoum, M. Simulation and analyses of SEPIC converter using linear PID and fuzzy logic controller. Mater. Today Proc. 2020, 27, 3199–3208. [Google Scholar] [CrossRef]
- Kravetz, F.I.; Gules, R. Soft-Switching High Static Gain Modified SEPIC Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6739–6747. [Google Scholar] [CrossRef]
- Sivaramkrishnan, M.; Marthanda, A.V.G.A.; Prasad, K.L.; Mujeer, S.A.; Durairaj, U.; Salim, M. Simulation of PV and WECS using CUK and SEPIC converter. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Kumari, R.; Pandit, M.; Sherpa, K. Modelling and Comparison of Conventional SEPIC Converter with Cascaded Boost–SEPIC Converter. J. Inst. Eng. India Ser. B 2021, 102, 99–109. [Google Scholar] [CrossRef]
- Lu, S.-D.; Lin, C.-H.; Huang, L.-Y.; Lee, Y.-L.; Liu, H.-D.; Liao, P.-C.; Gao, G.-J.; Hsu, C.-M. Novel Global-MPPT Control Strategy Considering the Variation in the Photovoltaic Module Output Power and Loads for Solar Power Systems. Processes 2022, 10, 367. [Google Scholar] [CrossRef]
- Balaji, C.; Anuradha, C.; Chellammal, N.; Bharadwaj, R. An extendable high-efficiency triple-port SEPIC–SEPIC converter with continuous input currents for DC microgrid applications. Int. Trans. Electr. Energy Syst. 2021, 31, e13121. [Google Scholar] [CrossRef]
- Alili, A.; Camara, M.B.; Dakyo, B. Vienna Rectifier-Based Control of a PMSG Wind Turbine Generator. Processes 2022, 10, 413. [Google Scholar] [CrossRef]
- Zunnurain, I.A.; Yumi, K.M.; Faisal, M.H. Performance Analysis of Single-Phase Inverter Using SEPIC Converter. In Proceedings of the 6th International Conference on Electrical, Control and Computer Engineering; Md. Zain, Z., Sulaiman, M.H., Mohamed, A.I., Bakar, M.S., Ramli, M.S., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2022; Volume 842. [Google Scholar] [CrossRef]
- Ghamari, S.M.; Gholizadeh-Narm, H.; Khavari, F. Robust Adaptive Controller Design for DC-DC SEPIC Converter in Photo Voltaic Application. In Proceedings of the 2019 6th International Conference on Control, Instrumentation and Automation (ICCIA), Sanandaj, Iran, 30–31 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Islam, N.; Mohammad, K.; Khan, R.A.; Sarwer, Z.; Sarwar, A. Symmetrical and Asymmetrical Multilevel Inverter Topologies with Reduced Device Count: A Review. In Proceedings of the 2nd International Conference for Emerging Technology (INCET), Belagavi, India, 21–23 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Yadav, A.; Verma, A. Modeling and Analysis of Modified SEPIC Converter Fed by Solar PV System. In Proceedings of the 2nd International Conference on Advances in Computing, Communication Control and Networking, Greater Noida, India, 18–19 December 2020; pp. 633–638. [Google Scholar] [CrossRef]
- Nowdeh, S.A.; Moghaddam, M.J.H.; Babanezhad, M.; Davoodkhani, I.F.; Kalam, A.; Ahmadi, A.; Abdelaziz, A.Y. A novel maximum power point tracking method for photovoltaic application using secant incremental gradient based on Newton Raphson. In Solar Photovoltaic Power Plants: Advanced Control and Optimization Techniques; Springer: Singapore, 2019; pp. 71–96. [Google Scholar]
- Arabi Nowdeh, S.; Moghaddam, M.J.H.; Nasri, S.; Abdelaziz, A.Y.; Ghanbari, M.; Faraji, I. A new hybrid moth flame optimizer-perturb and observe method for maximum power point tracking in photovoltaic energy system. In Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems; Springer: Cham, Switzerland, 2020; pp. 401–420. [Google Scholar]
- Davoodkhani, F.; Nowdeh, S.A.; Abdelaziz, A.Y.; Mansoori, S.; Nasri, S.; Alijani, M. A New Hybrid Method Based on Gray Wolf Optimizer-Crow Search Algorithm for Maximum Power Point Tracking of Photovoltaic Energy System. In Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems; Springer: Cham, Switzerland, 2019; pp. 421–438. [Google Scholar]
- Nasri, S.; Nowdeh, S.A.; Davoudkhani, I.F.; Moghaddam, M.J.H.; Kalam, A.; Shahrokhi, S.; Zand, M. Maximum power point tracking of photovoltaic renewable energy system using a new method based on turbulent flow of water-based optimization (TFWO) under Partial Shading Conditions. In Fundamentals and Innovations in Solar Energy; Springer: Singapore, 2021; pp. 285–310. [Google Scholar]
- Lee, Y.-L.; Liu, H.-D. A Novel MPPT Heating Control Strategy Applied to the Induction Heating System. Processes 2022, 10, 1151. [Google Scholar] [CrossRef]
- Liu, H.-D.; Lu, S.-D.; Lee, Y.-L.; Lin, C.-H. A Novel Photovoltaic Module Quick Regulate MPPT Algorithm for Uniform Irradiation and Partial Shading Conditions. Processes 2021, 9, 2213. [Google Scholar] [CrossRef]
- Gules, R.; Santos, W.M.D.; Reis, F.A.D.; Romaneli, E.F.R.; Badin, A.A. A modified SEPIC converter with high static gain for renewable applications. IEEE Trans. Power Electron. 2014, 29, 5860–5871. [Google Scholar] [CrossRef]
- Banaei, M.R.; Sani, S.G. Analysis and implementation of a new SEPIC-based single switch buck-boost dc-dc converter with continuous input current. IEEE Trans. Power Electron. 2018, 33, 10317–10325. [Google Scholar] [CrossRef]
- Banaei, M.R.; Ardi, H.; Farakhor, A. Analysis and implementation of a new single-switch buck–boost DC/DC converter. IET Power Electron. 2014, 7, 1906–1914. [Google Scholar] [CrossRef] [Green Version]
- Banaei, M.R.; Bonab, H.A.F. A novel structure for singleswitch nonisolated transformerless buck–boost DC–DC converter. IEEE Trans. Ind. Electron. 2017, 64, 198–205. [Google Scholar] [CrossRef]
Component/Parameter | Specification | Quantity |
---|---|---|
Solar PV simulator output voltage (Vpv) | 20–40 V | -- |
Switching frequency | 20 kHz | -- |
Rated power | 200 W | -- |
Capacitor (CA, CB) | 220 µF, 500 µF | 2 |
Inductors (LA, LB, LC, LD, LE) | 1 mH | 5 |
Output voltage (Vo) | 48 V | -- |
References | Parameters | ||||
---|---|---|---|---|---|
Voltage Gain | Number of Switches | Number of Diodes | Number of Inductors | Continous Input Current | |
Proposed | 4 | 2 | 5 | Yes | |
SEPIC | 1 | 2 | 2 | Yes | |
Boost | 1 | 1 | 1 | Yes | |
[27] | 1 | 2 | 2 | Yes | |
[28] | 1 | 2 | 2 | Yes | |
[29] | 1 | 2 | 2 | No | |
[30] | 1 | 3 | 3 | No |
Parameters | Specification |
---|---|
Open circuit voltage (Voc) | 50 V |
Short circuit current (Isc) | 5.5 A |
Maximum power point voltage (Vmpp) | 40 V |
Maximum power point current (Impp) | 5 A |
Maximum power point (Pmpp) | 200 W |
Number of Inductors | Vpv | Vo | D | Efficiency |
---|---|---|---|---|
N = 1 | 20 V | 48 V | 0.70 | 92% |
30 V | 48 V | 0.62 | 94% | |
40 V | 48 V | 0.55 | 96% | |
N = 2 | 20 V | 48 V | 0.55 | 96% |
30 V | 48 V | 0.47 | 98% | |
40 V | 48 V | 0.38 | 99% | |
N = 3 | 20 V | 48 V | 0.45 | 98% |
30 V | 48 V | 0.35 | 99% | |
40 V | 48 V | 0.30 | 99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabir, B.; Lu, S.-D.; Liu, H.-D.; Lin, C.-H.; Sarwar, A.; Huang, L.-Y. A Novel Isolated Intelligent Adjustable Buck-Boost Converter with Hill Climbing MPPT Algorithm for Solar Power Systems. Processes 2023, 11, 1010. https://doi.org/10.3390/pr11041010
Sabir B, Lu S-D, Liu H-D, Lin C-H, Sarwar A, Huang L-Y. A Novel Isolated Intelligent Adjustable Buck-Boost Converter with Hill Climbing MPPT Algorithm for Solar Power Systems. Processes. 2023; 11(4):1010. https://doi.org/10.3390/pr11041010
Chicago/Turabian StyleSabir, Bushra, Shiue-Der Lu, Hwa-Dong Liu, Chang-Hua Lin, Adil Sarwar, and Liang-Yin Huang. 2023. "A Novel Isolated Intelligent Adjustable Buck-Boost Converter with Hill Climbing MPPT Algorithm for Solar Power Systems" Processes 11, no. 4: 1010. https://doi.org/10.3390/pr11041010
APA StyleSabir, B., Lu, S. -D., Liu, H. -D., Lin, C. -H., Sarwar, A., & Huang, L. -Y. (2023). A Novel Isolated Intelligent Adjustable Buck-Boost Converter with Hill Climbing MPPT Algorithm for Solar Power Systems. Processes, 11(4), 1010. https://doi.org/10.3390/pr11041010