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Abstract: Accurate polyp segmentation is of great importance for the diagnosis and treatment of
colon cancer. Convolutional neural networks (CNNs) have made significant strides in the processing
of medical images in recent years. The limited structure of convolutional operations prevents
CNNs from learning adequately about global and long-range semantic information interactions,
despite the remarkable performance they have attained. Therefore, the GCCSwin-UNet framework
is suggested in this study. Specifically, the model utilizes an encoder–decoder structure, using the
patch-embedding layer for feature downsampling and the CSwin Transformer block as the encoder
for contextual feature extraction. To restore the feature map’s spatial resolution during upsampling
operations, a symmetric decoder and patch expansion layer are also created. In order to help the
backbone module to do better feature learning, we also create a global context module (GCM) and a
local position-enhanced module (LPEM). We conducted extensive experiments on the Kvasir-SEG
and CVC-ClinicDB datasets, and compared them with existing methods. GCCSwin-UNet reached
remarkable results with Dice and MIoU of 86.37% and 83.19% for Kvasir-SEG, respectively, and
91.26% and 84.65% for CVC-ClinicDB, respectively. Finally, quantitative analysis and statistical tests
are applied to further demonstrate the validity and plausibility of our method.

Keywords: deep learning; colorectal cancer; colonoscopy images; vision transformer; medical
image segmentation

1. Introduction

Colorectal cancer (CRC) is the third most prevalent, and the deadliest, cancer world-
wide [1]. Therefore, early detection and accurate diagnosis and treatment are key to
effective treatment and reduced mortality [2,3]. As one of the most obvious precursors
in CRC, accurate localization and segmentation play a key role in early diagnosis and
treatment [2,4,5]. Currently, colonoscopy is the most common screening tool used in clinical
diagnosis to detect abnormal polyps in the colon [6]. However, the high rate of misdiagnosis
and high labour costs make colonoscopy ineffective in diagnosing early to mid-stage polyp
lesions [6,7]. To effectively enhance patient outcomes, radiologists can improve diagnostic
accuracy and efficiency through the use of computer-aided diagnostic procedures [8].

The different sizes and shapes of polyps present a significant obstacle for routine
colonoscopies [9]. The following difficulties with using deep learning for clinical diagnosis
were discovered by comparing polyp segmentation with traditional early segmentation
algorithms. (1) Traditional convolutional neural networks (CNNs) segmentation algorithms
only use global feature information from the last encoder block, which can lead to loss of
local feature information in the intermediate layers. (2) Traditional global self-attention
mechanisms are complex to compute, while local self-attention mechanisms can limit fea-
ture information interaction and do not allow for integrated global and local computation.
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(3) Traditional segmentation algorithms focus only on the overall mass distribution of the
lesion, ignoring edge and shadow trends, resulting in ambiguous segmentation results for
effective diagnosis.

With the aforementioned issues in mind, this research sought to suggest enhanced
strategies for improvement. In accordance with the literature [10,11], we contend that
global background features help in the segmentation of large polyps, while local back-
ground information is crucial for the identification of small polyps. Therefore, the network
model needs to have good feature information extraction capability. We used a CSwin
Transformer [12] as the foundation of the encoder and decoder for feature extraction to
address the first and second problems because we discovered that using a cross-shaped
window self-attention mechanism not only reduces computational costs, but also offers
powerful feature extraction capability. To prevent the loss of feature information, the GCM
is likewise positioned at the top of the encoder, and its output is sent to the upsampling
step. The LPEM, a module that directly projects position data onto the linear projection
and analyses it as a channel for greater attention to areas such as boundaries, is the tool we
use to solve the third challenge. Finally, all of the suggested modules are included in the
GCCSwin-UNet polyp segmentation baseline network, which has improved generalization
performance and improved detection accuracy. The following are this paper’s significant
contributions.

(1) We build a symmetric encoder–decoder architecture with a skip-connection structure
based on the CSwin Transformer. In the encoder, feature extraction is performed using
a cross-shaped window self-attention mechanism with the aim of better extraction of
feature information; in the decoder, a patch expansion layer is used to achieve upsam-
pling and feature dimensionality increase without using convolution or interpolation
operations to facilitate better polyp segmentation.

(2) We design a global context module with the aim of capturing the feature information
that is continuously lost during encoder downsampling and sequentially forwarding
it to the corresponding decoder module, with a view to better weighing the global
information.

(3) We design a local position-enhanced module that operates on the channel dimension
intending to enhance the segmentation of boundary regions by stepping important
position information in the feature map.

(4) To verify the segmentation performance of our GCCSwin-UNet, we conduct experi-
ments on two public datasets. The results show that our proposed network not only
performs best in polyp segmentation but also achieves state-of-the-art results in two
public datasets.

2. Related Work

CNN-based methods: Early methods for polyp segmentation were mainly based
on morphology and traditional machine learning classifier algorithms [13–15], which
required clearly labelled lesion outlines and large polyp masses, and are not as effective
at segmenting small polyps in the early stages and those with fuzzy borders. In recent
years, with the development of deep CNNs, UNet [15] was proposed and widely used
for medical image segmentation. Due to its good segmentation performance and simple
and efficient structure, its translation to polyp segmentation tasks has also been a huge
success [16]. Subsequently, various UNet-like methods have emerged, such as SegNet [17],
SFANet [18], ResUNet [19], etc., all of which continue to improve polyp segmentation
accuracy and efficiency.

Vision transformers: Transformer was initially suggested for machine translation jobs;
it was then widely applied in the field of NLP and produced cutting-edge outcomes in a
variety of difficulties [20]. Inspired by the success of Transformer, researchers innovatively
designed Vision Transformers (ViT) [21], which achieved high accuracy and robustness
in image recognition tasks. The major disadvantage of ViT in comparison to CNN-based
techniques is the extremely tough pre-training phase that necessitates enormous datasets.
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In recent years, researchers have attempted to address the numerous problems of ViT
training and quantification and migrated to the field of medical image segmentation. For
example, Swin-UNet [22], MedT [23] UTNet [24], etc., have made great advances in medical
segmentation and real-time detection. Therefore, inspired by the cross-shaped window
displacement mechanism, we try to use a CSwin Transformer as the backbone of feature
extraction and add other auxiliary modules to enhance the accuracy of polyp segmentation.

Global Context and Local Position: Because of the feature map’s continuous down-
sampling, which removes feature information, there is a bias in the localization of polyps.
Researchers have devised spatial pyramid pooling [25] for feature compensation, and
have demonstrated through extensive experiments that this method not only mitigates
feature information loss but also improves the robustness of the model to the overall po-
sition and layout of the object by extracting spatial information of different sizes. The
location information of the markers is disregarded during model training [26] as a result
of the invariance of the self-attentive mechanism [27], which leads to hazy local detail
segmentation of polyps. Researchers have designed position encoding techniques to be
applied in Transformer to enhance the local detail information. Common local position
encoding is absolute position encoding (APE) [20], relative position encoding (RPE) [28],
and conditional position encoding (CPE) [29]. APE and RPE are usually defined as a series
of learnable parameters or frequency functions that generate position encoding with a fixed
feature input as the input, making it more difficult to handle inputs of different resolutions.
CPE can generate position encoding for arbitrary CPE and can generate position codes for
any input resolution, and the generated position codes are then added to the input features.

3. Method

In this section, we describe the architecture of the GCCSwin-UNet and the details
of the constituent modules, including the CSwin Transformer block, the global context
module (GCM), and the local position enhanced module (LPEM).

3.1. Overall Architecture

The architecture of the GCCSwin-UNet we designed is shown in Figure 1. It is modified
from the U-Net and FPN [30]. The architecture uses a symmetrical segmentation system
and is accompanied by a skip-connection, the basic unit of which is the CSwin Transformer
block. For the encoder, to serialize the input processing, we segment the polyp lesion
images into non-overlapping patches, all of 4 × 4 sizes. A patch-embedding layer is added
to adjust the dimensionality of the feature map. The two are used in combination, with the
CSwin Transformer block responsible for feature learning and the patch-embedding layer
responsible for downsampling and dimensionality adjustment. For the decoder, it consists
of a CSwin Transformer block and a patch extension layer.

The extracted contextual features are fused with the multi-scale feature output from
the GCM by hopping connections to complement the loss of spatial information due
to downsampling. In contrast to the patch-embedding layer, the patch extension layer is
specifically designed to perform upsampling. The patch extension layer reshapes the feature
map of adjacent dimensions into a large feature map with L times (L is the corresponding
downsampling multiplier) the upsampling resolution, and this operation restores the
feature map to the original input resolution (W × H). Finally, the pixel-level segmentation
prediction is output through a linear mapping layer. It is worth noting that we use the
CSwin Transformer block with a similar structure to the total of different multi-headed
self-attentive mechanisms, but with two changes: (1) using the cross-shaped window
displacement mechanism instead of the original attention mechanism, and (2) adding
LPEM to each block to enhance local extraction.
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Figure 1. The overall architecture of our GCCSwin-UNet for polyp segmentation.

3.2. CSwin Transformer Block

The multi-headed self-attentive mechanism [20] and the multilayer perceptron
(MLP) [31] are the encoder’s main building blocks in the standard ViT model. These
two components are connected in series by LayerNorm (LN) [32] layers and residual struc-
tures, ensuring the stability of the data distribution and the success of the deep network
training. In Swin-UNet, a window-based multi-headed self-attentive mechanism and a
shifted window-based multi-headed attention mechanism are employed in a two-layer
nesting model to gather diverse location information and improve the feature interac-
tion capacity. The comparative analysis shows that although the standard ViT has strong
long-range context modeling capability, its multi-headed self-attentive computational com-
plexity is too large, and the computational overheads and training period are huge for
high-resolution medical images. Despite the fact that Swin-UNet is enhanced by the shifted
window method, each Transformer block still has a high number of attention regions
that must be computed more than once, and global feature extraction is accomplished
by continually stacking sliding windows. Figure 2 shows the different structures of the
three methods.
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Figure 2. The architecture of three different Transformer structures: (a) represents the illustration
of the original ViT; (b) represents the illustration of the Swin-Transformer; (c) the illustration of the
CSwin Transformer block.

In order to expand the attention area and extract global feature information more
efficiently, a cross-shaped window self-attentiveness mechanism is used in the CSwin
Transformer. This module not only reduces the complexity of the computation, but also
effectively enhances the information interaction between patches. Specifically, it forms
a cross-shaped window by dividing the input features into equal-width stripes. The
calculation of weights in the horizontal and vertical directions is performed by translating
the sliding cross window. Figure 3 shows a schematic of the operation of the cross-shaped
sliding window. Its calculation formula is as follows.

Yi
k = Attention(XiWQ

k , XiWK
k , XiWV

k )
H − Attentionk(X)/V − Attentionk(X) = [Y1

k , Y2
k , . . . , YM

k ]
(1)

CSwin− Attention(X) = Concat(head1, . . . , headk)Wo

where headk =

{
H − Attention k(X) k = 1, . . . , K

2
V − Attention k(X) k = K

2 + 1, . . . , K
(2)

where M = H
sw , Xi ∈ R(sw×W)×C denotes the input eigenvalues, sw denotes the width of

the cross-shaped window, and W
◦ ∈ RC×c denotes the projection matrix for projecting

the results of self-attentiveness to the target output dimension. Self-attentive weights are
calculated for H-Attention (X) and V-Attention (X) in the horizontal and vertical directions,
respectively. The computational complexity is as follows.

Ω(CSwin) = HWC× (4C + sw× H + sw×W) (3)

Given that H and W will be greater than C in the early stages and smaller than C in
the later stages, we choose a small sw in the early stages and a large sw in the latter stages
for the high-resolution input. The ability to successfully increase the region of focus for
each marker in the later phases is specifically provided by altering the sw.
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3.3. Global Context Module (GCM)

The GCM is designed for the problem of loss of feature information in encoder down-
sampling operations. The module improves the performance and robustness of multi-scale
feature extraction by continuously collecting intermediate layer losses and refining them
for transfer to the corresponding upsampling layers.

Figure 4 illustrates the structure of the GCM, which uses a multi-branch design for
better extraction of information at different feature maps. Specifically, the module consists
of a 1 × 1 Conv, three 3 × 3 Atrous Conv [33,34] with different rates and an adaptive
level pooling branch [25]. With the feature information collected from the encoder, the
GCM uses the above branches to perform extraction and channel concatenate the feature
maps at different scales to obtain a global feature map, which is sequentially upsampled
and assigned to the CSwin block of the corresponding decoder. The advantage of this
mechanism is that it increases the perceptual field while minimising information loss, so
that each convolutional output contains more feature information.
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3.4. Local Position Enhanced Module (LPEM)

Although cross-shaped window self-attention effectively establishes a long-range
dependency between patches, pixel-level features in the patches are ignored. However,
this detailed information is particularly important for small polyp samples and edge
segmentation. In addition, the fine-grained nature of the feature information can also be
enhanced by this method, with coarse-grained features being more easily captured by
large patches and fine-grained features being more effective for small patches. In Figure 5,
we show some typical location enhancement mechanisms and compare them with our
proposed local location enhancement mechanism. Specifically, APE and CPE add location
information to the input tokens before the input transformer block, whereas RPE and our
LPEM add location information to each transformer block. However, unlike RPE, which
adds location information to the attention calculation, we consider a more direct way of
imposing location information on the linear projection values. Additionally, we note that
RPE introduces bias on a per-attentional-head basis, whereas our LPEM introduces bias
on a per-channel basis, which is more intuitive for the positional embedding effect. The
formula for its calculation is as follows.

zi =
n
∑

j=1
aijνj, aij = exp(

qT
i kj√

d
)

zk
i =

n
∑

j=1
(αk

ij + βk
ij)ν

k
j

(4)

where qi, ki, vi denote the queue, key and value obtained by performing a linear change
and self-attentive mechanism on the input xi. The position-enhanced bias of individual
elements is obtained by Equation (4). zk

i denotes the vector zi calculation. Therefore, after
the weighted bias calculation of the LPEM, the output of the CSwin Transformer block is
defined as.

X̂l = CSwin− Attention(LN(Xl−1)) + Xl−1

Xl = MLP(LN(X̂l)) + X̂l (5)

where Xl represents the output of the Transformer block of the current layer or the output
of the corresponding previous convolutional layer.
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3.5. Mixed Loss Function

The polyp segmentation task is often thought of as a pixel-level classification problem.
Each pixel in a high-resolution colonoscopic image will be classified as a polyp or non-polyp
site. In general, we use a binary cross-entropy loss function to solve this problem, which is
formulated as follows.
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LBEC = − 1
N

N

∑
n=1

(
yn log

(
y′n
)
+ (1− yn) log

(
1− y′n

))
(6)

However, in high-resolution colonoscopic images, the majority of pixels are back-
ground or non-focal areas, especially many small and discrete polyps. This means that
there is a large difference in the proportion of pixels in these two categories, and if the
binary cross-entropy loss function is used uniformly for parameter optimization, the final
prediction results will move towards the non-focal direction, thus falling into a local opti-
mum and leading to a decrease in the accuracy of the real polyp segmentation results. To
solve this problem, we redesigned the loss function with the following formula.

LDICE = 1− 1
N


2

N
∑

n=1
yny′n + o

N
∑

n=1
yn +

N
∑

n=1
y′n + o

+

2
N
∑

n=1
(1− yn)(1− y′n) + o

N
∑

n=1
(1− yn) +

N
∑

n=1
(1− y′n) + o

 (7)

Loss = λ1LBCE(yn, yn
′) + λ2LDICE(yn, yn

′) (8)

where LDICE denotes Dice loss, yn denotes the true value and y′n denotes the actual output
of the model. λ1, λ2 are the ratio coefficients.

4. Experiment

In this section, we first introduce the two public polyp datasets and common evaluation
metrics, present the experimental results on two polyp datasets, and then interpret the
effectiveness of the proposed modules through statistical analysis and visualization.

4.1. Datasets

According to the study of [11], we selected the currently popular datasets, Kvasir [35]
and CVC-ClinicDB [36], for a fair comparison with other methods, and used reasonable
data augmentation methods to optimize the dataset in order to further enhance the model.

CVC-ClinicDB: The CVC-ClinicDB dataset contains 612 images cut from 31 colonoscopy
videos with an image size of 384 × 288 and polyps in different scales and color.

Kvasir: The Kvasir dataset contains 1000 images of different sizes, with polyps varying
widely in shape, size, angle and texture.

4.2. Evaluation Metrics

We used three standard metrics to evaluate the segmentation performance of the
model, including Dice, MIoU and accuracy. Accuracy represents the proportion of correctly
segmented polyp pixels out of all detected sample results, and Dice and MIoU are used to
measure the similarity of the network segmentation results to the correct result Mask. The
formulae for their calculation are as follows.

Dice =
2|X ∩Y|
|X|+|Y| =

2TP
2TP + FP + FN

(9)

MIoU =
1
k

k

∑
i=0

X ∩Y
X ∪Y

=
1
k

k

∑
i=0

TP
TP + FP + FN

(10)

Accuracy =
TP + TN

TP + FP + FN + TN
(11)

where X is predicted images, Y is the ground-truth, TP is true positive, TN is true negative,
FP is false positive and FN is false negative, and k = 2 denotes the weighted category.
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4.3. Training Strategies

In the training phase, we used data augmentation to expand the training set, including
random horizontal and vertical flipping, rotation and scaling [25]. The processing and
training strategy of the literature [11] was followed, and to ensure that the final results
are convincing, comparative experiments were conducted using five-fold cross-validation
for the two data sets mentioned above. Specifically, 80% of this data was used for model
training, 10% for parameter optimisation and validation, and 10% for results testing. In
addition during training, the LambdaLR function was designed and implemented to control
adaptive changes in the learning rate to prevent overfitting of the model, which is calculated
as follows.

lr = init_lr× (1− epoch
nEpoch

)
power

(12)

where init_lr = 1× 10−3, nEpoch = 300, and power = 0.9. and pre-trained weights were
pre-trained using a CSwin Transformer [12].

4.4. Ablation Experiments

We used various distinct GCCSwin-UNet variations for ablation tests in order to
evaluate the efficacy of the suggested approach. The results are displayed in Table 1.

Table 1. Ablation Experiments on Kvasir-SEG.

Setting Dice% MIoU% Acc%

Baseline 79.50 78.33 81.68
Baseline + CSwin 82.45 80.14 83.21
Baseline + GCM 80.78 78.92 82.56
Baseline + LPEM 81.39 79.27 82.75

Baseline + CSwin + LPEM 83.86 82.06 84.54
Baseline + CSwin + GCM 82.93 81.28 84.32

Baseline + GCM + LPEM + CSwin 86.37 83.19 85.94

First, using only the Transformer-UNet of the base self-attention yielded Dice and
MIoU of 79.50% and 78.33%, respectively.

The ablation experiment was conducted for the CSwin Transformer block, and con-
sidering the changing relationship between input HW and C for high resolution, we were
able to flexibly expand the attention area of each marker effectively in the later stages
by adjusting the sw. Four stages of the sw were set to 1, 2, 8 and 8 based on previous
practical experience. After adding the CSwin, the Transformer Dice and MIoU improved
significantly, by 2.9% and 1.8%, respectively. It can be seen that feature extraction via a
cross-shaped sliding window can substantially improve the segmentation performance of
the polyp region.

The ablation experiments were carried out for GCM and LPEM, which are auxiliary
function modules with relatively small-effect improvement for single use. The LPEM is
used for spatial detail enhancement, with Dice and MIoU improved by 1.9% and 0.9%,
respectively; the GCM is used for network downsampling for feature compensation, and if
the moduleitself is relatively poor in feature extraction, the effect of this module will also
be greatly weakened, with Dice and MIoU improved by 1.3% and 0.6%, respectively.

When the auxiliary modules GCM and LPEM are used in conjunction with the CSwin
Transformer, the segmentation performance can be further improved by enhancing feature
extraction while considering channel and detail supplementation. When used with GCM,
Dice and MIoU are improved by 3.4% and 2.9%, respectively; when used with LPEM, their
Dice and MIoU are improved by 4.3% and 3.7%, respectively. Finally, the best results were
achieved when the three were used in unison, with tuning and pre-training operations,
with Dice and MIoU of 86.37% and 83.19%, respectively, and a corresponding increase in
accuracy of 85.94%.
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To verify the effectiveness of the proposed network in our experiments, we validated
the model predictions using statistical methods (including Bland–Altman, Pearson and
Kappa consistency tests). The results demonstrate that Ppearson = 0.873, PKappa = 0.829,
and the 95% confidence interval is (0.833, 0.906), indicating that the predicted images are
strongly correlated with the ground-truth. In summary, there was no significant difference
between GCCSwin-UNet and manual segmentation (ρ > 0.05).

4.5. Comparative Experiments

(a) Quantitative analysis

Table 2 shows the results of the quantitative analysis of GCCSwin-UNet against other
models, including PraNet [11], UNet [15], SFANet [18], ResUNet [19], Swin-Unet [22] and
PNS-Net [37], where PraNet, UNet, SFANet and ResUNet are traditional CNNs methods
and Swin-Unet and PNS-Net are Transformer-based methods. During the experiment, all
models used the same data augmentation strategy and parameter settings to ensure the
fairness of the comparison experiment. The results show that GCCSwin-UNet had the
best accuracy (Dice = 86.37, MIoU = 83.19 on Kvasir-SEG, Dice = 91.26, MIoU = 84.65 on
CVC-ClinicDB) in both experimental datasets compared to other methods.

Table 2. The comparison of other state-of-the-art networks with our method.

Dataset Method Dice% MIoU% Acc%

Kvasir-SEG

U-Net [15] 81.80 74.60 82.17
Residual U-Net [19] 79.10 76.38 73.12

SFANet [18] 72.35 61.15 ——
PraNet [11] 83.80 81.20 86.14

PNS-Net [37] 84.00 79.50 83.56
Swin-Unet [22] 82.31 81.62 85.61

GCCSwin-UNet(ours) 86.37 83.19 85.94

CVC-ClinicDB

U-Net [15] 87.62 75.50 87.36
Residual U-Net [19] 86.73 76.17 87.48

SFANet [18] 70.05 60.75 ——
PraNet [11] 89.82 83.20 91.72

PNS-Net [37] 87.30 80.00 90.39
Swin-Unet [22] 88.96 80.71 91.57

GCCSwin-UNet(ours) 91.26 84.65 92.13
Bold indicates the best result; ’——’ denotes that the corresponding value is not reported.

In summary, the GCCSwin-UNet model has a stronger ability to interact with semantic
information globally and over long distances, and is better than other methods for detail
extraction, resulting in better segmentation results.

(b) Qualitative analysis

Figure 6 shows the polyp segmentation results of the GCCSwin-UNet method and
some conventional methods on the Kvasir-SEG test set. Our model is able to accurately
locate and segment polyps in a variety of challenging situations, such as different sizes,
different regions, the presence of noise such as blood mucosa, different textures and
different numbers of polyps.

Finally, we screened some colonoscopic images with lesion features for testing. The re-
sults are shown in Figure 7. When faced with noise such as blood mucosa, its segmentation
results are accurate and clear with intact edges, proving its superiority.
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4.6. Discussion

Quantitative analysis showed that the Transformer-based segmentation structure per-
forms better than the traditional CNNs approach. In contrast to Swin-UNet and PNS-Net,
which also uses the Transformer block as the backbone structure, the actual segmenta-
tion results for polyp lesion images are significantly better. Quantitative experimental
results show that conventional methods suffer from poor segmentation and blurred and
incomplete edge segmentation for large polyps, and blurred boundaries and poor shape
prediction and error noise for small polyps. In contrast, the GCCSwin-UNet segmentation
is more precise, covering the lesion area more comprehensively and with well-defined
edges. In summary, the GCCSwin-UNet model has a stronger ability to interact with
semantic information globally and over long distances, and is better than other methods
for detail extraction, resulting in better segmentation results.

The GCCSwin-UNet has demonstrated that it is highly competitive with traditional
methods in terms of result accuracy and segmentation effectiveness through numerous
comparisons and ablation experiments. However, there are still some uncertainties associ-
ated with the model. First, although performance tests have been conducted on publicly
available datasets, the models have not yet been applied to clinical validation. Therefore,
more realistic and valid clinical data need to be collected for generalisation experiments.
Second, GCCSwin-UNet requires long training periods using high performance computing
resources, which are not conducive to a lightweight clinical environment.

In the future we will further optimize model performance and improve generalizability
in two ways. From the model structure perspective, redundant pruning operations through
model quantization and distillation techniques and integration of HD hardware devices
will improve clinical utility; from the clinical application perspective, we will consider the
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complex and variable state of intestinal polyps, such as polyps that are submerged from
bruised secretions or obscured by overlays, to further promote its clinical value.

5. Conclusions

This paper presents a framework called GCCSwin-UNet for polyp segmentation
based on Vision Transformer. Unlike in traditional CNNs approaches, we incorporate
the Transformer idea into the encoder–decoder structure and use the CSwin-Transformer
block for representation learning, which not only enhances the information interaction
between patches, but also reduces the computational complexity. The auxiliary modules
GCM and LPEM are designed. GCM fuses multi-scale feature information at the encoder
end to compensate for the loss of global information during downsampling and improve
the accuracy of polyp localisation; LPEM acts directly on the channel dimension to focus on
the target detail location during feature extraction and thus improve the edge segmentation
of the polyp region. In the experimental section analysis, the quantitative and qualitative
comparison experiments and the statistical tests of our method are conducted. The results
show that our method achieves the best performance (Dice = 86.37, MIoU = 83.19 on
Kvasir-SEG, Dice = 91.26, MIoU = 84.65 on CVC-ClinicDB) and that it is statistically
significant (ρ > 0.05). Finally, we visualize the segmentation results to demonstrate the
effectiveness of our proposed method. We hope that this study will provide an inspiration
for future clinical polyp segmentation research as well as to explore ever more powerful
segmentation models.
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