Pectin from Three Vietnamese Seagrasses: Isolation, Characterization and Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pectin Isolation
2.3. Physicochemical Characterizations
2.3.1. Total Carbohydrate
2.3.2. Equivalent Weight
2.3.3. Methoxyl Content (MeO)
2.3.4. Anhydrouronic Acid Content (AUA)
2.3.5. Degree of Esterification (DE)
2.3.6. Molecular Mass Distribution
2.3.7. FTIR Spectroscopy
2.4. Antioxidant Assay
2.4.1. Total Antioxidant Activity
2.4.2. DPPH Free-Radical Scavenging Activity
2.4.3. Ferric-Reducing Antioxidant Power (FRAP) Assay
3. Results and Discussion
3.1. Pectin Isolation
3.2. Physicochemical Characterizations
3.3. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olivé, I.; Brun, F.G.; Vergara, J.J.; Pérez-Lloréns, J.L. Effects of light and biomass partitioning on growth, photosynthesis and carbohydrate content of the seagrass Zostera noltii Hornem. J. Exp. Mar. Biol. Ecol. 2007, 345, 90–100. [Google Scholar] [CrossRef]
- Yuvaraj, N.; Arul, V. Sulfated polysaccharides of seagrass Halophila ovalis suppresses tumor necrosis factor-α-induced chemokine interleukin-8 secretion in HT-29 cell line. Indian J. Pharmacol. 2018, 50, 336. [Google Scholar] [CrossRef]
- Gono, C.M.P.; Ahmadi, P.; Hertiani, T.; Septiana, E.; Putra, M.Y.; Chianese, G. A comprehensive update on the bioactive compounds from seagrasses. Mar. Drugs 2022, 20, 406. [Google Scholar] [CrossRef]
- Zidorn, C. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function. Phytochemistry 2016, 124, 5–28. [Google Scholar] [CrossRef]
- Pfeifer, L.; Classen, B. The cell wall of seagrasses: Fascinating, peculiar and a blank canvas for future research. Front. Plant Sci. 2020, 11, 588754. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Proctor, A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem. 2000, 68, 327–332. [Google Scholar] [CrossRef]
- Seggiani, M.; Puccini, M.; Pierini, M.; Giovando, S.; Forneris, C. Effect of different extraction and precipitation methods on yield and quality of pectin. Int. J. Food Sci. Technol. 2009, 44, 574–580. [Google Scholar] [CrossRef]
- Abid, M.; Cheikhrouhou, S.; Renard, C.M.; Bureau, S.; Cuvelier, G.; Attia, H.; Ayadi, M. Characterization of pectins extracted from pomegranate peel and their gelling properties. Food Chem. 2017, 215, 318–325. [Google Scholar] [CrossRef]
- Minzanova, S.T.; Mironov, V.F.; Arkhipova, D.M.; Khabibullina, A.V.; Mironova, L.G.; Zakirova, Y.M.; Milyukov, V.A. Biological activity and pharmacological application of pectic polysaccharides: A review. Polymers 2018, 10, 1407. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, H. Extraction and characterization of pectin from grapefruit peels. MOJ Food Process. Technol. 2016, 2, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Chauhan, G.S. Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydr. Polym. 2010, 82, 454–459. [Google Scholar] [CrossRef]
- Sergushchenko, I.; Kovalev, V.; Bednyak, V.; Khotimchenko, Y.S. A comparative evaluation of the metal-binding activity of low-esterified pectin from the seagrass Zostera marina and other sorbents. Russ. J. Mar. Biol. 2004, 30, 70–72. [Google Scholar] [CrossRef]
- Gloaguen, V.; Brudieux, V.; Closs, B.; Barbat, A.; Krausz, P.; Sainte-Catherine, O.; Kraemer, M.; Maes, E.; Guerardel, Y. Structural characterization and cytotoxic properties of an apiose-rich pectic polysaccharide obtained from the cell wall of the marine phanerogam Zostera marina. J. Nat. Prod. 2010, 73, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Shan, X.; Zhao, X.; Cai, C.; Zhao, X.; Lang, Y.; Zhu, H.; Yu, G. Extraction, isolation, structural characterization and anti-tumor properties of an apigalacturonan-rich polysaccharide from the sea grass Zostera caespitosa Miki. Mar. Drugs 2015, 13, 3710–3731. [Google Scholar] [CrossRef] [Green Version]
- Khozhaenko, E.; Kovalev, V.; Podkorytova, E.; Khotimchenko, M. Removal of the metal ions from aqueous solutions by nanoscaled low molecular pectin isolated from seagrass Phyllospadix iwatensis. Sci. Total Environ. 2016, 565, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Khotimchenko, Y.; Khozhaenko, E.; Kovalev, V.; Khotimchenko, M. Cerium binding activity of pectins isolated from the seagrasses Zostera marina and Phyllospadix iwatensis. Mar. Drugs 2012, 10, 834–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khasina, E.; Kolenchenko, E.; Sgrebneva, M.; Kovalev, V.; Khotimchenko, Y.S. Antioxidant activities of a low etherified pectin from the seagrass Zostera marina. Russ. J. Mar. Biol. 2003, 29, 259–261. [Google Scholar] [CrossRef]
- Kim, D.H.; Mahomoodally, M.F.; Sadeer, N.B.; Seok, P.G.; Zengin, G.; Palaniveloo, K.; Khalil, A.A.; Rauf, A.; Rengasamy, K.R. Nutritional and bioactive potential of seagrasses: A review. S. Afr. J. Bot. 2021, 137, 216–227. [Google Scholar] [CrossRef]
- Yang, X.; Wang, R.; Zhang, S.; Zhu, W.; Tang, J.; Liu, J.; Chen, P.; Zhang, D.; Ye, W.; Zheng, Y. Polysaccharides from Panax japonicus CA Meyer and their antioxidant activities. Carbohydr. Polym. 2014, 101, 386–391. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, P.; Zhao, H.; Qiu, J.; Mac Regenstein, J.; Yang, X. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis. Carbohydr. Polym. 2021, 251, 117078. [Google Scholar] [CrossRef]
- Ning, X.; Liu, Y.; Jia, M.; Wang, Q.; Sun, Z.; Ji, L.; Mayo, K.H.; Zhou, Y.; Sun, L. Pectic polysaccharides from Radix Sophorae Tonkinensis exhibit significant antioxidant effects. Carbohydr. Polym. 2021, 262, 117925. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, X.V.; Phan, T.T.H.; Cao, V.L.; Nguyen, N.N.T.; Nguyen, T.H.; Nguyen, X.T.; Lau, V.K.; Hoang, C.T.; Nguyen, T.M.N.; Nguyen, M.H. Current advances in seagrass research: A review from Viet Nam. Front. Plant Sci. 2022, 13, 991865. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, X.-V.; Lau, V.-K.; Nguyen-Nhat, N.-T.; Nguyen, T.-H.; Phan, K.-H.; Dao, V.-H.; Ho-Dinh, D.; Hayashizaki, K.-I.; Fortes, M.D.; Papenbrock, J. Update of seagrass cover and species diversity in Southern Viet Nam using remote sensing data and molecular analyses. Reg. Stud. Mar. Sci. 2021, 44, 101803. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Ngo, T.D.; Vu, V.D.; Du, Q.V.V. Establishing distribution maps and structural analysis of seagrass communities based on high-resolution remote sensing images and field surveys: A case study at Nam Yet Island, Truong Sa Archipelago, Vietnam. Landsc. Ecol. Eng. 2022, 18, 405–419. [Google Scholar] [CrossRef]
- Nguyen, V.; Dang, N.; Nguyen, H. Seagrasses in Viet Nam; Natural Science and Technology Publisher: Ha Noi, Vietnam, 2002. [Google Scholar]
- Mettwally, W.S.; Ragab, T.I.; Hamdy, A.-H.A.; Helmy, W.A.; Hassan, S.A. Preliminary study on the possible impact of Thalassodendron ciliatum (Forss.) den Hartog acidic polysaccharide fractions against TAA induced liver failure. Biomed. Pharmacother. 2021, 138, 111502. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.; Ali, M.; Akter, M.S.; Rahman, M.J.; Ahmed, M. Isolation and characterization of pectin extracted from lemon pomace during ripening. J. Food Nutr. Sci. 2014, 2, 30–35. [Google Scholar] [CrossRef]
- Aina, V.; Barau, M.M.; Mamman, O.; Zakari, A.; Haruna, H.; Umar, M.H.; Abba, Y.B. Extraction and characterization of pectin from peels of lemon (Citrus limon), grape fruit (Citrus paradisi) and sweet orange (Citrus sinensis). Br. J. Pharmacol. Toxicol. 2012, 3, 259–262. [Google Scholar]
- Joel, J.; Barminas, J.; Riki, E.; Yelwa, J.; Edeh, F. Extraction and characterization of hydrocolloid pectin from goron tula (Azanza garckeana) fruit. World Sci. News 2018, 101, 157–171. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M.; Hassan, F.A. Purification, characterization and antioxidant activity of polysaccharides extracted from the fibrous pulp of Mangifera pajang fruits. LWT-Food Sci. Technol. 2012, 48, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Adebiyi, O.E.; Olayemi, F.O.; Ning-Hua, T.; Guang-Zhi, Z. In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Suef Univ. J. Basic Appl. Sci. 2017, 6, 10–14. [Google Scholar] [CrossRef]
- Ovodova, R.; Vaskovsky, V.; Ovodov, Y.S. The pectic substances of Zosteraceae. Carbohydr. Res. 1968, 6, 328–332. [Google Scholar] [CrossRef]
- Khotimchenko, M.Y. Lipid-lowering activity of low-esterified pectins in experimental ethanol-induced liver injury. Russ. J. Mar. Biol. 2009, 35, 351–354. [Google Scholar] [CrossRef]
- Ceylan, Ç.; Bayraktar, O.; Atçı, E.; Sarrafi, Ş. Extraction and characterization of pectin from fresh globe artichoke and canned artichoke waste. GIDA 2017, 42, 568–576. [Google Scholar] [CrossRef]
- Yuvaraj, N.; Kanmani, P.; Satishkumar, R.; Paari, A.; Pattukumar, V.; Arul, V. Antinociceptive and anti-inflammatory activities of Sargassum wightii and Halophila ovalis sulfated polysaccharides in experimental animal models. J. Med. Food 2013, 16, 740–748. [Google Scholar] [CrossRef]
- Kolenchenko, E.; Khotimchenko, M.Y.; Khozhaenko, E.; Khotimchenko, Y.S. Strontium sorption by pectins isolated from the Sea grasses Zostera marina and Phyllospadix iwatensis. Russ. J. Mar. Biol. 2012, 38, 346–350. [Google Scholar] [CrossRef]
- Kute, A.B.; Mohapatra, D.; Kotwaliwale, N.; Giri, S.K.; Sawant, B. Characterization of pectin extracted from orange peel powder using microwave-assisted and acid extraction methods. Agric. Res. 2020, 9, 241–248. [Google Scholar] [CrossRef]
- Mesbahi, G.; Jamalian, J.; Farahnaky, A. A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocoll. 2005, 19, 731–738. [Google Scholar] [CrossRef]
- Ptichkina, N.; Markina, O.; Rumyantseva, G. Pectin extraction from pumpkin with the aid of microbial enzymes. Food Hydrocoll. 2008, 22, 192–195. [Google Scholar] [CrossRef]
- Smirnov, V.V.; Golovchenko, V.V.; Vityazev, F.V.; Patova, O.A.; Selivanov, N.Y.; Selivanova, O.G.; Popov, S.V. The antioxidant properties of pectin fractions isolated from vegetables using a simulated gastric fluid. J. Chem. 2017, 2017, 5898594. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, K.; Zahari, N.I.M.; Gannasin, S.P.; Adzahan, N.M.; Bakar, J. High methoxyl pectin from dragon fruit (Hylocereus polyrhizus) peel. Food Hydrocoll. 2014, 42, 289–297. [Google Scholar] [CrossRef]
- Sonina, L.; Khotimchenko, M.Y. Effectiveness of pectin extracted from the eelgrass Zostera marina for alleviating lead-induced liver injury. Russ. J. Mar. Biol. 2007, 33, 204–206. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Wathoni, N.; Shan, C.Y.; Shan, W.Y.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon 2019, 5, e02299. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.I.; Araujo-Andrade, C.; Tymczyszyn, E.E.; Gómez-Zavaglia, A. Determination of amorphous/rubbery states in freeze-dried prebiotic sugars using a combined approach of near-infrared spectroscopy and multivariate analysis. Food Res. Int. 2014, 64, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Van, T.T.T.; Hieu, V.M.N.; Vi, T.N.H.; Ly, B.M.; Thuy, T.T.T. Antioxidant activities and total phenolic content of macroalgae from central coast of Vietnam. Asian J. Chem. 2013, 25, 6639. [Google Scholar]
- Xu, H.; Tai, K.; Wei, T.; Yuan, F.; Gao, Y. Physicochemical and in vitro antioxidant properties of pectin extracted from hot pepper (Capsicum annuum L. var. acuminatum (Fingerh.)) residues with hydrochloric and sulfuric acids. J. Sci. Food Agric. 2017, 97, 4953–4960. [Google Scholar] [CrossRef]
- Qadir, S.; Abidi, S.; Azhar, I.; Mahmood, Z.A. Antioxidant Activity and Cytotoxicity of PECTIN extracted from orange peels. Pak. J. Pharmacol. 2019, 36, 15–24. [Google Scholar]
- Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022, 11, 2683. [Google Scholar] [CrossRef]
- Kolenchenko, E.; Sonina, L.; Khotimchenko, Y.S. Comparative in vitro assessment of antioxidant activities of low-etherified pectin from the eelgrass Zostera marina and antioxidative medicines. Russ. J. Mar. Biol. 2005, 31, 331–334. [Google Scholar] [CrossRef]
- Ro, J.; Kim, Y.; Kim, H.; Jang, S.B.; Lee, H.J.; Chakma, S.; Jeong, J.H.; Lee, J. Anti-oxidative activity of pectin and its stabilizing effect on retinyl palmitate. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2013, 17, 197. [Google Scholar] [CrossRef] [PubMed]
- Urias-Orona, V.; Huerta-Oros, J.; Carvajal-Millán, E.; Lizardi-Mendoza, J.; Rascón-Chu, A.; Gardea, A.A. Component analysis and free radicals scavenging activity of Cicer arietinum L. husk pectin. Molecules 2010, 15, 6948–6955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pectin | Extraction Yields (%) | MW (kDa) | Total Carbohydrate (%) | AUA (%) | MeO (%) | EW | DE (%) |
---|---|---|---|---|---|---|---|
H. ovalis | 19.14 | 56.6 | 29.43 | 79.4 | 3.26 | 1928.6 | 33.25 |
T. hemprichii | 20.04 | 173 | 24.68 | 65.5 | 6.15 | 1253.4 | 43.31 |
E. acoroides | 24.15 | 127 | 27.28 | 68.1 | 4.65 | 1480.5 | 27.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thinh, P.D.; Hang, C.T.T.; Trung, D.T.; Nguyen, T.-D. Pectin from Three Vietnamese Seagrasses: Isolation, Characterization and Antioxidant Activity. Processes 2023, 11, 1054. https://doi.org/10.3390/pr11041054
Thinh PD, Hang CTT, Trung DT, Nguyen T-D. Pectin from Three Vietnamese Seagrasses: Isolation, Characterization and Antioxidant Activity. Processes. 2023; 11(4):1054. https://doi.org/10.3390/pr11041054
Chicago/Turabian StyleThinh, Pham Duc, Cao Thi Thuy Hang, Dinh Thanh Trung, and Thanh-Danh Nguyen. 2023. "Pectin from Three Vietnamese Seagrasses: Isolation, Characterization and Antioxidant Activity" Processes 11, no. 4: 1054. https://doi.org/10.3390/pr11041054
APA StyleThinh, P. D., Hang, C. T. T., Trung, D. T., & Nguyen, T. -D. (2023). Pectin from Three Vietnamese Seagrasses: Isolation, Characterization and Antioxidant Activity. Processes, 11(4), 1054. https://doi.org/10.3390/pr11041054