Instant Controlled Pressure Drop (DIC) Processing to Reduce 3-Monochloropropane-1,2-diol Concentration in Palm Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Technological Alternatives for Vegetable Oil Refining
2.3. MCPD Determination
2.3.1. GC/MS/MS Instrumentation
2.3.2. Sample Preparation
2.3.3. Determination of 3-MCPD
2.4. Tocopherol Determination
2.4.1. HPLC Instrumentation
2.4.2. Sample Preparation
2.5. Design of Experiments (DoE)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Method Performance (3-MCPD)
3.2. Regression Model and Statistical Analysis
3.3. Analysis of the Response Surface
3.4. Impact of DIC Treatments on Palm Oil Quality
3.4.1. DIC’s Effect on 3-MCPD Removal
3.4.2. DIC’s Effect on Total and Individual Tocopherols
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gharby, S. Refining Vegetable Oils: Chemical and Physical Refining. Sci. World J. 2022, 11, 6627013. [Google Scholar] [CrossRef] [PubMed]
- Gunstone, F.D. Composition and Properties of Edible Oils in Edible Oil Processing; Hamm, W., Hamilton, R.J., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Zhang, Z.; Gao, B.; Zhang, X.; Jiang, Y.; Xu, X.; Yu, L. Formation of 3-monochloro-1,2propanediol (3-MCPD) di- and monoesters from tristearoylglycerol (TSG) and the potential catalytic effect of Fe2+ and Fe3+. J. Agric. Food Chem. 2015, 63, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Razak, R.A.A.; Kuntom, A.; Siew, W.L.; Ibrahim, N.A.; Ramli, M.R.; Hussein, R.; Nesaretnam, K. Detection and monitoring of 3-monochloropropane-1, 2-diol (3-MCPD) esters in cooking oils. Food Control. 2012, 25, 355–360. [Google Scholar] [CrossRef]
- Wei, T.; Liu, W.; Zheng, Z.; Chen, Y.; Shen, M.; Li, C. Bibliometric Analysis of Research Trends on 3-Monochloropropane-1, 2-Diol Esters in Foods. J. Agric. Food Chem. 2022, 70, 15347–15359. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, Y.; Inagaki, R.; Oike, M.; Dong, B.; Gong, W.; Masuda, S. Glycidol Fatty Acid Ester and 3-Monochloropropane-1, 2-Diol Fatty Acid Ester in Commercially Prepared Foods. Foods 2021, 10, 2905. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.; Liu, H.; Yang, W.; Hu, C.; He, D. Effects of roasting and eodorizationn on 3-monochloropropane-1, 2-diol esters, 3, 4-benzopyrene and trans fatty acids in peanut oil. Food Addit. Contam. Part A 2022, 39, 451–461. [Google Scholar] [CrossRef]
- Huang, G.; Xue, J.; Sun, X.; Wang, J.; Yu, L.L. Necroptosis in 3-chloro-1, 2-propanediol (3-MCPD)-dipalmitate-induced acute kidney injury in vivo and its repression by miR-223-3p. Toxicology 2018, 406, 33–43. [Google Scholar] [CrossRef]
- Ozcagli, E.; Alpertunga, B.; Fenga, C.; Berktas, M.; Tsitsimpikou, C.; Wilks, M.F.; Tsatsakis, A.M. Effects of 3-monochloropropane-1, 2-diol (3-MCPD) and its metabolites on DNA damage and repair under in vitro conditions. Food Chem. Toxicol. 2016, 89, 1–7. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand (FSANZ). Tests Show More Soy Sauces Are Unsafe; Food Standards Australia New Zealand: Kingston, Australia, 2001.
- Pal, U.S.; Patra, R.K.; Sahoo, N.R.; Bakhara, C.K.; Panda, M.K. Effect of refining on quality and composition of sunflower oil. J. Food Sci. Technol. 2015, 52, 4613–4618. [Google Scholar] [CrossRef] [Green Version]
- Erickson, D.R. Chapter 5–Overview of Modern Soybean Processing and Links Between Processes. In Practical Handbook of Soybean Processing and Utilization; Erickson, D.R., Ed.; AOCS Press: Urbana, IL, USA, 1995; pp. 56–64. [Google Scholar]
- Ergönül, P.G.; Köseoğlu, O. Changes in α-, β-, γ- and δ-tocopherol contents of mostly consumed vegetable oils during refining process. CyTA. J. Food 2013, 12, 199–202. [Google Scholar]
- Alpaslan, M.; Tepe, S.; Simsek, O. Effect of refining processes on the total and individual tocopherol content in sunflower oil. Int. J. Food Sci. Technol. 2001, 36, 737–739. [Google Scholar] [CrossRef]
- Rane, R.; Marar, T.; Sonawane, S.K.; Dabade, A. A review on Instant Controlled Pressure Drop Technology (DIC) associated with Drying technology and effect on quality characteristics. Food Chem. Adv. 2022, 1, 100114. [Google Scholar] [CrossRef]
- Mannaï, A.; Jableoui, C.; Hamrouni, L.; Allaf, K.; Jamoussi, B. DIC as a pretreatment prior to ultrasonic extraction for the improvement of rebaudioside A yield and preservation of vitamin B1 and B6. J. Food Meas. Charact. 2019, 13, 2764–2772. [Google Scholar] [CrossRef]
- Allaf, T.; Besombes, C.; Mih, I.; Lefevre, L.; Allaf, K. Decontamination of Solid and Powder Foodstuffs using DIC Technology. In Advances in Computer Science and Engineering; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Allaf, T.; Mounir, S.H.; Tomao, V.; Chemat, F. Instant Controlled Pressure Drop Combined to Ultrasounds as Innovative Extraction Process Combination: Fundamental Aspects. Procedia Eng. 2012, 42, 1061–1078. [Google Scholar] [CrossRef] [Green Version]
- Allaf, T.; Fine, F.; Tomao, V.; Nguyen, C.; Ginies, C.; Chemat, F. Impact of instant controlled pressure drop pre-treatment on solvent extraction of edible oil from rapeseed seeds. OCL Oilseeds Fats Crops Lipids 2014, 21, A301. [Google Scholar] [CrossRef] [Green Version]
- Allaf, T.; Tomao, V.; Ruiz, K.; Bachari, K.; Maataoui, M.; Chemat, F. Deodorization by instant controlled pressure drop auto-vaporization of rosemary leaves prior to solvent extraction of antioxidants. LWT Food Sci. Technol. 2013, 55, 111–119. [Google Scholar] [CrossRef]
- Chemat, F.; Vorobiev, E. Green Food Processing Techniques: Preservation, Transformation and Extraction; Academic Press: Cambridge, MA, USA; Elsevier Inc.: London, UK, 2019; ISBN 9780128154434. [Google Scholar]
- Jablaoui, C.; Besombes, C.; Jamoussi, B.; Rhazi, L.; Allaf, K. Comparison of expander and Instant Controlled Pressure-Drop DIC technologies as thermomechanical pretreatments in enhancing solvent extraction of vegetal soybean oil. Arab. J. Chem. 2020, 13, 7235–7246. [Google Scholar] [CrossRef]
- Bouallegue, K.; Allaf, T.; Van, C.N.; Ben, R. Impact of texturing/cooling by Instant controlled pressure drop DIC on pressing and/or solvent extraction of vegetal oil. Int. J. Eng. Res. 2016, 2, 12. [Google Scholar]
- Bouallegue, K.; Allaf, T.; Younes, R.B.; Téllez-Pérez, C.; Besombes, C.; Allaf, K. Pressure, temperature and processing time in enhancing Camelina sativa oil extraction by Instant Controlled Pressure-Drop (DIC) texturing pre-treatment. Grasas Y Aceites 2020, 71, e365. [Google Scholar] [CrossRef]
- Destaillats, F.; Craft, B.D.; Sandoz, L.; Nagy, K. Formation mechanisms of monochloropropanediol (MCPD) fatty acid diesters in refined palm (Elaeis guineensis) oil and related fractions. Food Addit. Contam. Part A 2012, 29, 29–37. [Google Scholar] [CrossRef]
- Craft, B.D.; Nagy, K.; Sandoz, L.; Destaillats, F. Factors impacting the formation of monochloropropanediol (MCPD) fatty acid diesters during palm (Elaeis guineensis) oil production. Food Addit. Contam. Part A 2012, 29, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Ben Hammouda, I.; Zribi, A.; Ben Mansour, A.; Matthäus, B.; Bouaziz, M. Effect of deep-frying on 3-MCPD esters and glycidyl esters contents and quality control of refined olive pomace oil blended with refined palm oil. Eur. Food Res. Technol. 2017, 243, 1219–1227. [Google Scholar] [CrossRef]
- Stauff, A.; Schneider, E.; Heckel, F. 2-MCPD, 3-MCPD and fatty acid esters of 2-MCPD, 3-MCPD and glycidol in fine bakery wares. Eur. Food Res. Technol. 2020, 246, 1945–1953. [Google Scholar] [CrossRef]
- Pech-Almeida, J.L.; Téllez-Pérez, C.; Alonzo-Macías, M.; Teresa-Martínez, G.D.; Allaf, K.; Allaf, T.; Cardador-Martínez, A. An Overview on Food Applications of the Instant Controlled Pressure-Drop Technology, an Innovative High Pressure-Short Time Process. Molecules 2021, 26, 6519. [Google Scholar] [CrossRef] [PubMed]
- Jablaoui, C.; Zeaiter, A.; Bouallegue, K.; Jamoussi, B.; Besombes, C.; Allaf, T.; Allaf, K. Instant controlled pressure drop as new intensification ways for vegetal oil extraction. In Green Food Processing Techniques; Academic Press: Cambridge, MA, USA, 2019; pp. 221–244. [Google Scholar]
- Jamoussi, B.; Jablaoui, C.; Hajri, A.K.; Chakroun, R.; Al-Mur, B.; Allaf, K. Deodorization process of vegetal soybean oil using Thermomechanical Multi-Flash Autovaporization (MFA). LWT Food Sci. Technol. 2022, 167, 113823. [Google Scholar] [CrossRef]
- Wenzyl, T.; Samara, V.; Giri, A.; Butttinger, G.; Karasek, L.; Zelinkova, Z. Development and Validation of Analytical Methods for the Analysis of 3-MCPD (Both in Free and Ester Form) and Glycidyl Esters in Various Food Matrices and Performance of an Ad-Hoc Survey on Specific Food Groups in Support to a Scientific Opinion on Comprehensive Risk Assessment on the Presence of 3-MCPD and Glycidyl Esters in Food; EN-799; EFSA Supporting Publications: Parma, Italy, 2015. [Google Scholar]
- Hamzaoui, A.H.; Jamoussi, B.; M’nif, A. Lithium recovery from highly concentrated solutions: Response surface methodology (RSM) process parameters optimization. Hydrometallurgy 2008, 90, 1–7. [Google Scholar] [CrossRef]
- Elboughdiri, N.; Ghernaout, D.; Kriaa, K.; Jamoussi, B. Enhancing the Extraction of Phenolic Compounds from Juniper Berries Using the Box-Behnken Design. ACS Omega 2020, 5, 27990–28000. [Google Scholar] [CrossRef]
- Jamoussi, B.; Jablaoui, C.; Hajri, A.K.; Chakroun, R.; Al-Mur, B.; Allaf, K. Thermomechanical Autovaporization (MFA) as a Deodorization Process of Palm Oil. Foods 2022, 11, 3952. [Google Scholar] [CrossRef]
- Nidzam, M.S.; Hossain, M.S.; Ismail, N.; Abdul Latip, R.; Mohammad Ilias, M.K.; Mobin Siddique, M.B.; Zulkifli, M. Influence of the Degumming Process Parameters on the Formation of Glyceryl Esters and 3-MCPDE in Refined Palm Oil: Optimization and Palm Oil Quality Analyses. Foods 2022, 11, 124. [Google Scholar] [CrossRef]
- Zulkurnain, M.; Lai, O.M.; Latip, R.A.; Nehdi, I.A.; Ling, T.C.; Tan, C.P. The effects of physical refining on the formation of 3-monochloropropane-1,2-diol esters in relation to palm oil minor components. Food Chem. 2012, 135, 799–805. [Google Scholar] [CrossRef]
- Hew, K.S.; Asis, A.J.; Tan, T.B.; Yusoff, M.M.; Lai, O.M.; Nehdi, I.A.; Tan, C.P. Revising degumming and bleaching processes of palm oil refining for the mitigation of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) contents in refined palm oil. Food Chem. 2020, 307, 125545. [Google Scholar] [CrossRef]
- Almoselhya, R.I.M.; Eida, M.M.; Abd El-Baseta, W.S.; Aboelhassan, A.F.A. Determination of 3-MCPD in Some Edible Oils using GC-MS/MS. Egypt. J. Chem. 2021, 64, 1639–1652. [Google Scholar]
- Melki, D.; Hedhili, L.; Hamrouni, L.; Negm, M.; Jamoussi, B.; Allaf, K. Towards Include Preservation of Vitamins in Fenugreek and Carob Seeds by the Instant Controlled Pressure-Drop Process (DIC Process). Food Nutr. Sci. 2018, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Suliman, T.E.M.A.; Jıang, J.; Lıu, Y. Chemical refining of sunflower oil: Effect on oil stability, total tocopherol, free fatty acids, and colour. Int. J. Eng. Sci. Technol. 2013, 5, 449–454. [Google Scholar]
Raw Palm Oil | Density (g/cm3) | Acid Value (mg KOH/g) | Viscosity at 40 °C (mm2/s) |
---|---|---|---|
Palm oil 1 | 0.864 | 2.08 | 3.5 |
Palm oil 2 | 0.859 | 1.634 | 3.4 |
Variable | Symbol | Level | ||||
---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | ||
Pressure (kPa) | X1 | 200.00 | 236.61 | 325.00 | 413.39 | 450.00 |
Time (s/cycle) | X2 | 5.00 | 8.66 | 17.50 | 26.34 | 30.00 |
Concentration (μg/Kg) n = 6 | % Recovery | RSD (%) |
---|---|---|
3 | 96.8 | 8.23 |
5 | 105.6 | 5.34 |
50 | 102.5 | 4.15 |
75 | 103.9 | 3.22 |
Run | X1 | X2 | Yield (ng/mL) | |||
---|---|---|---|---|---|---|
3-MCPD (Oil-1) | 3-MCPD (Oil-2) | |||||
Actual | Predicted | Actual | Predicted | |||
1 | 325.0 | 17.50 | 6.41 | 6.10 | 6.95 | 6.99 |
2 | 450.0 | 17.50 | 5.10 | 5.53 | 5.13 | 6.21 |
3 | 325.0 | 30.00 | 5.08 | 5.38 | 5.18 | 6.84 |
4 | 325.0 | 17.50 | 5.46 | 6.10 | 5.68 | 6.99 |
5 | 413.4 | 26.34 | 5.30 | 4.85 | 5.44 | 3.94 |
6 | 413.4 | 8.66 | 6.61 | 6.34 | 9.84 | 9.17 |
7 | 325.0 | 17.50 | 6.61 | 6.10 | 8.09 | 6.99 |
8 | 236.6 | 8.66 | 7.10 | 7.21 | 14.61 | 13.95 |
9 | 236.6 | 26.34 | 6.84 | 6.76 | 14.68 | 13.19 |
10 | 325.0 | 17.50 | 6.58 | 6.10 | 7.18 | 6.99 |
11 | 200.0 | 17.50 | 7.59 | 7.49 | 15.07 | 16.13 |
12 | 325.0 | 5.00 | 6.70 | 6.74 | 10.60 | 11.08 |
13 | 325.0 | 17.50 | 5.46 | 6.10 | 7.08 | 6.99 |
Oil | Source | Sum Squares (Sum sq) | Degree of Freedom (Df) | Mean Square (Mean sq) | F-Value | p-Value |
---|---|---|---|---|---|---|
Oil-1 | X1: Pressure | 3.85211 | 1 | 3.85211 | 13.57 | *0.0078 |
X2: Time | 1.86339 | 1 | 1.86339 | 6.56 | *0.0374 | |
X1X1 | 0.297455 | 1 | 0.297455 | 1.05 | 0.3400 | |
X1X2 | 0.275625 | 1 | 0.275625 | 0.97 | 0.3572 | |
X2X2 | 0.00299067 | 1 | 0.00299067 | 0.01 | 0.9211 | |
Total error | 1.9869 | 7 | 0.283843 | |||
Total (corr.) | 8.29157 | 12 | ||||
R2 = 0.760371; R2(adj) = 0.589207; Standard error of estimate (SES) = 0.532769; Mean absolute error (MAE) = 0.334355; Durbin-Watson Statistics = 1.54084 (p = 0.4378) | ||||||
Oil-2 | X1:Pressure | 98.4715 | 1 | 98.4715 | 50.76 | *0.0002 |
X2:Time | 17.9845 | 1 | 17.9845 | 9.27 | *0.0187 | |
X1X1 | 30.3581 | 1 | 30.3581 | 15.65 | *0.0055 | |
X1X2 | 4.99523 | 1 | 4.99523 | 2.57 | 0.1526 | |
X2X2 | 6.73473 | 1 | 6.73473 | 3.47 | 0.1047 | |
Total error | 13.5795 | 7 | 1.93993 | |||
Total (corr.) | 168.973 | 12 | ||||
R2 = 0.919635; R2(adj) = 0.86 2232; Standard error of estimate (SES) = 1.39282; Mean absolute error (MAE) = 0.870076; Durbin-Watson Statistics = 1.11377 (p = 0.1315) |
3-MCPD (μg/kg) | 3-MCPD Maximum Level (μg/kg) Recommended by Commission Regulation (EU) 2020/1322 | |
---|---|---|
Palm Oil 1 (Raw) | 2.18 ± 0.16 | 1250 |
Palm Oil 1 (Finished) | 10.18 ± 0.21 | 1250 |
Palm Oil 1 (Refined) | 0.00 ± 0.01 | 1250 |
Palm Oil 2 (Raw) | 7.34 ± 0.08 | 1250 |
Palm Oil 2 (Finished) | 8.64 ± 0.11 | 1250 |
Palm Oil 2 (Refined) | 5.20 ± 0.24 | 1250 |
Run | Pressure (kPa) | Time (s) | Amount (mg/Kg) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oil-1 | Oil-2 | |||||||||||
α | β | γ | δ | Total | α | β | γ | δ | Total | |||
Raw | - | - | 224.5 | 134.5 | 134.5 | 136.5 | 630.0 | 231.4 | 127.4 | 127.4 | 141.3 | 627.5 |
Traditional treatment | - | - | 123.5 | n.d. | 10.3 | n.d. | 133.8 | 132.8 | n.d. | 8.9 | n.d. | 141.7 |
DIC-1 | 325.0 | 17.50 | 221.0 | 132.8 | 132.8 | 134.6 | 621.2 | 228.5 | 125.5 | 126.0 | 137.0 | 617.0 |
DIC-2 | 450.0 | 17.50 | 217.5 | 129.6 | 129.6 | 133.7 | 610.4 | 223.0 | 123.5 | 123.8 | 135.4 | 605.7 |
DIC-3 | 325.0 | 30.00 | 220.5 | 133.0 | 131.5 | 135.7 | 620.7 | 226.0 | 126.0 | 127.0 | 138.0 | 617.0 |
DIC-4 | 325.0 | 17.50 | 220.8 | 132.5 | 132.5 | 134.7 | 620.5 | 228.0 | 126.0 | 125.5 | 136.5 | 616.0 |
DIC-5 | 413.4 | 26.34 | 219.4 | 133.8 | 133.6 | 132.0 | 620.3 | 227.4 | 125.8 | 125.5 | 135.0 | 613.7 |
DIC-6 | 413.4 | 8.66 | 221.5 | 133.5 | 132.5 | 132.8 | 620.3 | 229.3 | 127.0 | 167.4 | 134.0 | 657.7 |
DIC-7 | 325.0 | 17.50 | 220.8 | 132.0 | 132.4 | 134.0 | 619.2 | 227.5 | 125.0 | 125.5 | 137.5 | 615.5 |
DIC-8 | 236.6 | 8.66 | 222.5 | 133.5 | 133.4 | 135.5 | 624.9 | 228.0 | 126.7 | 126.0 | 140.0 | 620.7 |
DIC-9 | 236.6 | 26.34 | 221.5 | 134.0 | 134.5 | 135.5 | 624.5 | 227.0 | 127.0 | 127.0 | 138.5 | 619.5 |
Standard deviation | 1.4 | 1.3 | 1.4 | 1.3 | 4.2 | 1.8 | 1.1 | 13.9 | 1.9 | 14.7 | ||
Average | 220.6 | 132.7 | 132.5 | 134.3 | 620.2 | 227.2 | 125.8 | 130.4 | 136.9 | 620.3 | ||
Coefficient of variance | 0.7 | 1.0 | 1.1 | 1.0 | 0.7 | 0.8 | 0.9 | 10.7 | 1.4 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, S.A.; Jamoussi, B.; Neamatallah, A.A.; Aloufi, F.A.; Halawani, R.F.; Chakroun, R.; Jablaoui, C. Instant Controlled Pressure Drop (DIC) Processing to Reduce 3-Monochloropropane-1,2-diol Concentration in Palm Oil. Processes 2023, 11, 1085. https://doi.org/10.3390/pr11041085
Alzahrani SA, Jamoussi B, Neamatallah AA, Aloufi FA, Halawani RF, Chakroun R, Jablaoui C. Instant Controlled Pressure Drop (DIC) Processing to Reduce 3-Monochloropropane-1,2-diol Concentration in Palm Oil. Processes. 2023; 11(4):1085. https://doi.org/10.3390/pr11041085
Chicago/Turabian StyleAlzahrani, Saleh A., Bassem Jamoussi, Abdullatif A. Neamatallah, Fahed A. Aloufi, Riyadh F. Halawani, Radhouane Chakroun, and Cherif Jablaoui. 2023. "Instant Controlled Pressure Drop (DIC) Processing to Reduce 3-Monochloropropane-1,2-diol Concentration in Palm Oil" Processes 11, no. 4: 1085. https://doi.org/10.3390/pr11041085
APA StyleAlzahrani, S. A., Jamoussi, B., Neamatallah, A. A., Aloufi, F. A., Halawani, R. F., Chakroun, R., & Jablaoui, C. (2023). Instant Controlled Pressure Drop (DIC) Processing to Reduce 3-Monochloropropane-1,2-diol Concentration in Palm Oil. Processes, 11(4), 1085. https://doi.org/10.3390/pr11041085