A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems
Abstract
:1. Introduction
2. Integration of Maximum Power Point Tracker with the Proposed HVGSU DC–DC Converter
3. Structure of the Proposed Converter
3.1. Operation of Proposed HVGSU Converter Configuration (Mode 1: SW Turn On)
3.2. Operation of Proposed HVGSU Converter Configuration (Mode 2: SW Turn Off)
- Existence of steady-state circumstances.
- The inductor current is uninterrupted (always positive).
- The switching period is T, and the switch is closed for DT and open for (1 − D) T.
- The components are ideal.
- The capacitor is extremely large, and the output voltage is maintained at Vo.
4. Simulation and Experimental Results
4.1. Simulation Results
4.2. Hardware Results
4.3. Comparison of the Ideal Voltage Gain of the High-Gain DC–DC Boost Converter
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rezaie, M.; Abbasi, V.; Kerekes, T. High step-up DC-DC converter composed of quadratic boost converter and switched capacitor. IET Power Electron. 2020, 13, 4008–4018. [Google Scholar] [CrossRef]
- He, L.; Xu, X.; Chen, J.; Sun, J.; Guo, D.; Zeng, T. A plug-play active resonant soft switching for current-auto-balance interleaved high step-up DC/DC converter. IEEE Trans. Power Electron. 2018, 34, 7603–7616. [Google Scholar] [CrossRef]
- Packnezhad, M.; Farzanehfard, H.; Adib, E. Integrated soft switching cell and clamp circuit for interleaved high-step-up converters. IET Power Electron. 2019, 12, 430–437. [Google Scholar] [CrossRef]
- Nouri, T.; Vosoughi, N.; Hosseini, S.H.; Babaei, E.; Sabahi, M. An interleaved high step-up converter with coupled inductor and built-in transformer voltage multiplier cell techniques. IEEE Trans. Ind. Electron. 2018, 66, 1894–1905. [Google Scholar] [CrossRef]
- Yang, J.; Yu, D.; Cheng, H.; Zan, X.; Wen, H. Dual-coupled inductors-based high step-up DC/DC converter without input electrolytic capacitor for PV application. IET Power Electron. 2017, 10, 646–656. [Google Scholar] [CrossRef]
- Hasanpour, S.; Siwakoti, Y.P.; Mostaan, A.; Blaabjerg, F. New semiquadratic high step-up dc/dc converter for renewable energy applications. IEEE Trans. Power Electron. 2020, 36, 433–446. [Google Scholar] [CrossRef]
- He, L.; Liao, Y. An advanced current-autobalance high step-up converter with a multicoupled inductor and voltage multiplier for a renewable power generation system. IEEE Trans. Power Electron. 2015, 31, 6992–7005. [Google Scholar]
- Tseng, K.-C.; Cheng, C.-A.; Chen, C.-T. High step-up interleaved boost converter for distributed generation using renewable and alternative power sources. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 713–722. [Google Scholar] [CrossRef]
- Tseng, K.C.; Lin, J.T.; Huang, C.C. High step-up converter with three-winding coupled inductor for fuel cell energy source applications. IEEE Trans. Power Electron. 2014, 30, 574–581. [Google Scholar] [CrossRef]
- Tarzamni, H.; Kurdkandi, N.V.; Gohari, H.S.; Lehtonen, M.; Husev, O.; Blaabjerg, F. Ultra-High Step-Up DC-DC Converters Based on Center-Tapped Inductors. IEEE Access 2021, 9, 136373–136383. [Google Scholar] [CrossRef]
- Zaoskoufis, K.; Tatakis, E.C. An improved boost-based dc/dc converter with high-voltage step-up ratio for DC microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 1837–1853. [Google Scholar] [CrossRef]
- Guepfrih, M.F.; Waltrich, G.; Lazzarin, T.B. High step-up DC-DC converter using built-in transformer voltage multiplier cell and dual boost concepts. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6700–6712. [Google Scholar] [CrossRef]
- Hasanpour, S.; Siwakoti, Y.; Blaabjerg, F. New Single-Switch quadratic boost DC/DC converter with Low voltage stress for renewable energy applications. IET Power Electron. 2020, 13, 4592–4600. [Google Scholar] [CrossRef]
- Ahmad, J.; Zaid, M.; Sarwar, A.; Tariq, M.; Sarwer, Z. A new transformerless quadratic boost converter with high voltage gain. Smart Sci. 2020, 8, 163–183. [Google Scholar] [CrossRef]
- Samadian, A.; Hosseini, S.H.; Sabahi, M.; Maalandish, M. A new coupled inductor nonisolated high step-up quasi Z-source DC–DC converter. IEEE Trans. Ind. Electron. 2019, 67, 5389–5397. [Google Scholar] [CrossRef]
- Hu, X.; Liu, X.; Ma, P.; Jiang, S. An ultrahigh voltage gain hybrid-connected boost converter with ultralow distributed voltage stress. IEEE Trans. Power Electron. 2020, 35, 10385–10395. [Google Scholar] [CrossRef]
- Kothapalli, K.R.; Ramteke, M.R.; Suryawanshi, H.M.; Reddi, N.K.; Kalahasthi, R.B. A coupled inductor based high step-up converter for DC microgrid applications. IEEE Trans. Ind. Electron. 2020, 68, 4927–4940. [Google Scholar] [CrossRef]
- Ardi, H.; Ajami, A. Study on a high voltage gain SEPIC-based DC–DC converter with continuous input current for sustainable energy applications. IEEE Trans. Power Electron. 2018, 33, 10403–10409. [Google Scholar] [CrossRef]
- Alavi, P.; Mohseni, P.; Babaei, E.; Marzang, V. An ultra-high step-up dc–dc converter with extendable voltage gain and soft-switching capability. IEEE Trans. Ind. Electron. 2019, 67, 9238–9250. [Google Scholar] [CrossRef]
- Salehi, S.M.; Dehghan, S.M.; Hasanzadeh, S. Interleaved-input series-output ultra-high voltage gain DC–DC converter. IEEE Trans. Power Electron. 2018, 34, 3397–3406. [Google Scholar] [CrossRef]
- Rostami, S.; Abbasi, V.; Kerekes, T. Switched capacitor-based Z-source DC–DC converter. IET Power Electron. 2019, 12, 3582–3589. [Google Scholar] [CrossRef]
- Rezaie, M.; Abbasi, V. Effective combination of quadratic boost converter with voltage multiplier cell to increase voltage gain. IET Power Electron. 2020, 13, 2322–2333. [Google Scholar] [CrossRef]
- Liu, T.; Lin, M.; Ai, J. High step-up interleaved dc–dc converter with asymmetric voltage multiplier cell and coupled inductor. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 4209–4222. [Google Scholar] [CrossRef]
- Tarzamni, H.; Sabahi, M.; Rahimpour, S.; Lehtonen, M.; Dehghanian, P. Operation and Design Consideration of an Ultrahigh Step-Up DC–DC Converter Featuring High Power Density. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6113–6123. [Google Scholar] [CrossRef]
- Nouri, T.; Shaneh, M.; Benbouzid, M.; Kurdkandi, N.V. An interleaved ZVS high step-up converter for renewable energy systems Applications. IEEE Trans. Ind. Electron. 2021, 69, 4786–4800. [Google Scholar] [CrossRef]
- Mohseni, P.; Mohammadsalehian, S.; Islam, R.; Muttaqi, K.M.; Sutanto, D.; Alavi, P. Ultrahigh Voltage Gain DC–DC Boost Converter with ZVS Switching Realization and Coupled Inductor Extendable Voltage Multiplier Cell Techniques. IEEE Trans. Ind. Electron. 2021, 69, 323–335. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Ionel, D.M. Renewable energy devices and systems–state-of-the-art technology, research and development, challenges and future trends. Electr. Power Compon. Syst. 2015, 43, 1319–1328. [Google Scholar] [CrossRef]
- Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-up DC–DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
- Kanamarlapudi, V.R.K.; Wang, B.; Kandasamy, N.K.; So, P.L. A new ZVS full-bridge DC–DC converter for battery charging with reduced losses over full-load range. IEEE Trans. Ind. Appl. 2017, 54, 571–579. [Google Scholar] [CrossRef]
- Jou, H.-L.; Huang, J.-J.; Wu, J.-C.; Wu, K.-D. Novel isolated multilevel DC–DC power converter. IEEE Trans. Power Electron. 2015, 31, 2690–2694. [Google Scholar] [CrossRef]
- Forouzesh, M.; Yari, K.; Baghramian, A.; Hasanpour, S. Single-switch high step-up converter based on coupled inductor and switched capacitor techniques with quasi-resonant operation. IET Power Electron. 2017, 10, 240–250. [Google Scholar] [CrossRef]
- Khan, S.; Mahmood, A.; Tariq, M.; Zaid, M.; Khan, I.; Rahman, S. Improved dual switch non-isolated high gain boost converter for DC microgrid application. In Proceedings of the 2021 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 2–5 February 2021; pp. 1–6. [Google Scholar]
- Zaid, M.; Ahmad, J.; Sarwar, A.; Sarwer, Z.; Tariq, M.; Alam, A. A Transformerless Quadratic Boost High Gain DC-DC Converter. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–6. [Google Scholar]
- Ahmad, J.; Lin, C.-H.; Zaid, M.; Sarwar, A.; Ahmad, S.; Sharaf, M.; Zaindin, M.; Firdausi, M. A new high voltage gain DC to DC converter with low voltage stress for energy storage system application. Electronics 2020, 9, 2067. [Google Scholar] [CrossRef]
- Kadri, R.; Gaubert, J.-P.; Champenois, G.; Mostefai, M. Performance analysis of transformless single switch quadratic boost converter for grid connected photovoltaic systems. In Proceedings of the XIX International Conference on Electrical Machines-ICEM 2010, Rome, Italy, 6–8 September 2010; pp. 1–7. [Google Scholar]
- Chub, A.; Vinnikov, D.; Liivik, E.; Jalakas, T. Multiphase quasi-Z-source DC–DC converters for residential distributed generation systems. IEEE Trans. Ind. Electron. 2018, 65, 8361–8371. [Google Scholar] [CrossRef]
- Meraj, M.; Bhaskar, M.S.; Iqbal, A.; Al-Emadi, N.; Rahman, S. Interleaved multilevel boost converter with minimal voltage multiplier components for high-voltage step-up applications. IEEE Trans. Power Electron. 2020, 35, 12816–12833. [Google Scholar] [CrossRef]
- Abdel-Rahim, O.; Funato, H.; Haruna, J. A comprehensive study of three high-gain DC-DC topologies based on Cockcroft-Walton voltage multiplier for reduced power PV applications. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 642–651. [Google Scholar] [CrossRef]
- Maroti, P.K.; Padmanaban, S.; Holm-Nielsen, J.B.; Bhaskar, M.S.; Meraj, M.; Iqbal, A. A new structure of high voltage gain SEPIC converter for renewable energy applications. IEEE Access 2019, 7, 89857–89868. [Google Scholar] [CrossRef]
- Banaei, M.R.; Ghabeli Sani, S. Analysis and implementation of a new SEPIC-based single-switch buck–boost DC–DC converter with continuous input current. IEEE Trans. Power Electron. 2018, 33, 10317–10325. [Google Scholar] [CrossRef]
- Pahlavani, A.; Reza, M.; Asl, E.S. DC–DC SIDO converter with low-voltage stress on switches: Analysis of operating modes and design considerations. IET Power Electron. 2020, 13, 233–247. [Google Scholar] [CrossRef]
- Farhadi-Kangarlu; Mohammad; Khiavi, A. M.; Neyshabouri, Y. A non-isolated single-input dual-output boost DC–DC converter. IET Power Electron. 2021, 14, 936–945. [Google Scholar] [CrossRef]
- Khan, S.; Zaid, M.; Mahmood, A.; Ahmad, J.; Alam, A. A single switch high gain DC-DC converter with reduced voltage stress. In Proceedings of the 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India, 27–29 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Khan, S.; Mahmood, A.; Zaid, M.; Tariq, M.; Lin, C.-H.; Ahmad, J.; Alamri, B.; Alahmadi, A. A high step-up dc-dc converter based on the voltage lift technique for renewable energy applications. Sustainability 2021, 13, 11059. [Google Scholar] [CrossRef]
- Andrade, A.M.S.S.; Faistel, T.M.K.; Guisso, R.A.; Toebe, A. Hybrid high voltage gain transformerless DC–DC converter. IEEE Trans. Ind. Electron. 2021, 69, 2470–2479. [Google Scholar] [CrossRef]
- Zaid, M.; Khan, S.; Siddique, M.D.; Sarwar, A.; Ahmad, J.; Sarwer, Z.; Iqbal, A. A transformerless high gain dc–dc boost converter with reduced voltage stress. Int. Trans. Electr. Energy Syst. 2021, 31, e12877. [Google Scholar] [CrossRef]
- Syrigos, S.P.; Christidis, G.C.; Mouselinos, T.P.; Tatakis, E.C. A non-isolated DC-DC converter with low voltage stress and high step-down voltage conversion ratio. IET Power Electron. 2021, 14, 1219–1235. [Google Scholar] [CrossRef]
- Shanthi, T.; Prabha, S.U.; Sundaramoorthy, K. Non-isolated n-stage high step-up DC-DC converter for low voltage DC source integration. IEEE Trans. Energy Convers. 2021, 36, 1625–1634. [Google Scholar] [CrossRef]
- Bhaskar, M.S.; Gupta, N.; Selvam, S.; Almakhles, D.J.; Sanjeevikumar, P.; Ali, J.S.M.; Umashankar, S. A new hybrid zeta-boost converter with active quad switched inductor for high voltage gain. IEEE Access 2021, 9, 20022–20034. [Google Scholar] [CrossRef]
- Sadaf, S.; Al-Emadi, N.; Maroti, P.K.; Iqbal, A. A new high gain active switched network-based boost converter for DC microgrid application. IEEE Access 2021, 9, 68253–68265. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, D. Switched-capacitor high voltage gain Z-source converter with common ground and reduced passive component. IEEE Access 2021, 9, 21395–21407. [Google Scholar] [CrossRef]
- Bao, D.; Kumar, A.; Pan, X.; Xiong, X.; Beig, A.R.; Singh, S.K. Switched inductor double switch high gain DC-DC converter for renewable applications. IEEE Access 2021, 9, 14259–14270. [Google Scholar] [CrossRef]
- Jalilzadeh, T.; Babaei, E.; Maalandish, M. High step-up DC-DC converter with reduced voltage stress on devices. Int. Trans. Electr. Energy Syst. 2019, 29, e2789. [Google Scholar]
- Kwon, J.-M.; Nam, K.-H.; Kwon, B.-H. High-efficiency module-integrated photovoltaic power conditioning system. IET Power Electron. 2009, 2, 410–420. [Google Scholar] [CrossRef]
- Li, W.; Li, W.; Ma, M.; Deng, Y.; He, X. A non-isolated high step-up converter with built-in transformer derived from its isolated counterpart. In Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 3173–3178. [Google Scholar]
- Cha, W.-J.; Cho, Y.-W.; Kwon, J.-M.; Kwon, B.-H. Highly efficient microinverter with soft-switching step-up converter and single-switch-modulation inverter. IEEE Trans. Ind. Electron. 2014, 62, 3516–3523. [Google Scholar]
- Gu, B.; Dominic, J.; Chen, B.; Zhang, L.; Lai, J.-S. Hybrid transformer ZVS/ZCS DC–DC converter with optimized magnetics and improved power devices utilization for photovoltaic module applications. IEEE Trans. Power Electron. 2014, 30, 2127–2136. [Google Scholar] [CrossRef]
- Chen, S.-M.; Liang, T.-J.; Yang, L.-S.; Chen, J.-F. A cascaded high step-up DC–DC converter with single switch for microsource applications. IEEE Trans. Power Electron. 2010, 26, 1146–1153. [Google Scholar] [CrossRef]
- Barreto, L.H.S.C.; Coelho, E.A.A.; Farias, V.J.; de Oliveira, J.C.; de Freitas, L.C.; Vieira, J.B., Jr. A quasi-resonant quadratic boost converter using a single resonant network. IEEE Trans. Ind. Electron. 2005, 52, 552–557. [Google Scholar] [CrossRef]
- Maksimovic, D.; Cuk, S. Switching converters with wide DC conversion range. IEEE Trans. Power Electron. 1991, 6, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Saadat, P.; Abbaszadeh, K. A single-switch high step-Up DC-DC converter based on quadratic boost. IEEE Trans. Ind. Electron. 2016, 63, 7733–7742. [Google Scholar] [CrossRef]
- Vighetti, S.; Ferrieux, J.-P.; Lembeye, Y. Optimization and design of a cascaded DC/DC converter devoted to grid-connected photovoltaic systems. IEEE Trans. Power Electron. 2011, 27, 2018–2027. [Google Scholar] [CrossRef]
- Ye, Y.; Cheng, K.W.E. Quadratic boost converter with low buffer capacitor stress. IET Power Electron. 2014, 7, 1162–1170. [Google Scholar] [CrossRef]
- Silveira, G.C.; Tofoli, F.L.; Santos Bezerra, L.D.; Torrico-Bascopé, R.P. A nonisolated DC–DC boost converter with high voltage gain and balanced output voltage. IEEE Trans. Ind. Electron. 2014, 61, 6739–6746. [Google Scholar] [CrossRef]
- Zhang, N.; Sutanto, D.; Muttaqi, K.M.; Zhang, B.; Qiu, D. High-voltage-gain quadratic boost converter with voltage multiplier. IET Power Electron. 2015, 8, 2511–2519. [Google Scholar] [CrossRef]
- Mahmoud, Y.; Xiao, W.; Zeineldin, H.H. A simple approach to modeling and simulation of photovoltaic modules. IEEE Trans. Sustain. Energy 2011, 3, 185–186. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Ran, H. A maximum power point tracking algorithm based on gradient descent method. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–5. [Google Scholar]
- Khan, A.I.; Khan, R.A.; Farooqui, S.A.; Sarfraz, M. Artificial Neural Network-Based Maximum Power Point Tracking Method with the Improved Effectiveness of Standalone Photovoltaic System. In AI and Machine Learning Paradigms for Health Monitoring System; Springer: Singapore, 2021; pp. 459–470. [Google Scholar]
- Farooqui, S.A.; Shees, M.M.; Alsharekh, M.F.; Alyahya, S.; Khan, R.A.; Sarwar, A.; Islam, M.; Khan, S. Crystal Structure Algorithm (CryStAl) Based Selective Harmonic Elimination Modulation in a Cascaded H-Bridge Multilevel Inverter. Electronics 2021, 10, 3070. [Google Scholar] [CrossRef]
- Khan, R.A.; Sabir, B.; Sarwar, A.; Liu, H.-D.; Lin, C.-H. Reptile Search Algorithm (RSA)-Based Selective Harmonic Elimination Technique in Packed E-Cell (PEC-9) Inverter. Processes 2022, 10, 1615. [Google Scholar] [CrossRef]
- Khan, R.A.; Farooqui, S.A.; Sarwar, M.I.; Ahmad, S.; Tariq, M.; Sarwar, A.; Zaid, M.; Ahmad, S.; Mohamed, A.S.N. Archimedes Optimization Algorithm Based Selective Harmonic Elimination in a Cascaded H-Bridge Multilevel Inverter. Sustainability 2021, 14, 310. [Google Scholar] [CrossRef]
- Farooqui, S.A.; Khan, R.A.; Islam, N.; Ahmed, N. Cuckoo Search Algorithm and Artificial Neural Network-based MPPT: A Comparative Analysis. In Proceedings of the 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Dehradun, India, 11–13 November 2021; pp. 1–5. [Google Scholar]
Parameter | Specification |
---|---|
PV module output voltage source | 20 V–40 V |
Capacitors (C1, C2, C3, C4, Co) | 150 µF, 240 µF, 250 µF, 250 µF, 100 µF |
Inductor (L1, L2, L3) | 300 μH, 600 μH, 600 μH |
Load (R load) | 100 Ω |
Parameter | Value |
---|---|
Voc | 50 V |
Isc | 4.3 A |
Vmp | 40 V |
Imp | 3.75 A |
Pmp | 150 W |
Components | Specification |
---|---|
Capacitors (C1, C2, C3, C4, Co) | 150 µF, 240 µF, 250 µF, 250 µF, 100 µF |
Inductor (L1, L2, L3) | 300 μH, 600 μH, and 600 μH |
Microcontroller (Texas instruments) | F28004xC2000 |
Diode | 52N50C3 HFV138 |
MOSFET | PFCD86G |
Gate Driver IC | TLP250H |
Solar PV Simulator | Chroma, 62100H-600S |
Load Resistance (DC Electronic load) | Chroma, 63204A-600-280 |
Condition | VPV (V) | Vo (V) | Duty Cycle | Efficiency |
---|---|---|---|---|
1 | 20 | 380 | 0.54 | 90% |
2 | 25 | 380 | 0.48 | 91% |
3 | 30 | 380 | 0.44 | 93% |
4 | 35 | 380 | 0.39 | 94% |
5 | 40 | 380 | 0.35 | 96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, R.A.; Liu, H.-D.; Lin, C.-H.; Lu, S.-D.; Yang, S.-J.; Sarwar, A. A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems. Processes 2023, 11, 1087. https://doi.org/10.3390/pr11041087
Khan RA, Liu H-D, Lin C-H, Lu S-D, Yang S-J, Sarwar A. A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems. Processes. 2023; 11(4):1087. https://doi.org/10.3390/pr11041087
Chicago/Turabian StyleKhan, Rashid Ahmed, Hwa-Dong Liu, Chang-Hua Lin, Shiue-Der Lu, Shih-Jen Yang, and Adil Sarwar. 2023. "A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems" Processes 11, no. 4: 1087. https://doi.org/10.3390/pr11041087
APA StyleKhan, R. A., Liu, H. -D., Lin, C. -H., Lu, S. -D., Yang, S. -J., & Sarwar, A. (2023). A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems. Processes, 11(4), 1087. https://doi.org/10.3390/pr11041087