Hydroxypropyl-β-Cyclodextrin-Glycerol-Assisted Extraction of Phenolics from Satureja montana L.: Optimization, Anti-Elastase and Anti-Hyaluronidase Properties of the Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Apparatus
2.2. Plant Material
2.3. Extraction Design and Optimization
2.4. Comparison of Cyclodextrin-Assisted Extraction with Conventional Solvents Extraction
2.5. Spectrophotometric Determination of Total Phenolic Content
2.6. Spectrophotometric Determination of Total Dihydroxycinnamic Acids Content
2.7. Spectrophotometric Determination of Total Flavonoid Content
2.8. HPLC Analysis
2.9. Elastase Inhibitory Activity
2.10. Hyaluronidase Inhibitory Activity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Box-Behnken Design
3.2. Extraction Optimization
3.3. Comparison of Cyclodextrin-Assisted Extraction and Conventional Solvents Extraction
3.4. Anti-Elastase and Anti-Hyaluronidase Activity of the Optimized Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin Anti-Aging Strategies. Dermatoendocrinol 2012, 4, 308–319. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Loizzo, M.R.; Bonesi, M.; Menichini, F. Potential Role of Natural Compounds against Skin Aging. Curr. Med. Chem. 2015, 22, 1515–1538. [Google Scholar] [CrossRef]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 60. [Google Scholar] [CrossRef]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as Natural Antioxidants in Cosmetics Applications. J. Cosmet. Dermatol. 2019, 19, 33–37. [Google Scholar] [CrossRef]
- Nichols, J.A.; Katiyar, S.K. Skin Photoprotection by Natural Polyphenols: Anti-Inflammatory, Antioxidant and DNA Repair Mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Jabs, H.-U. Elastase-Ziel Einer Neuen Anti-Aging Strategie Bei Hautalterung, Elastizitätsverlust Und Faltenbildung. Ästhetische Dermatol. 2014, 2012, 2–4. [Google Scholar]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [Green Version]
- Wolfson, A.; Dlugy, C.; Shotland, Y. Glycerol as a Green Solvent for High Product Yields and Selectivities. Environ. Chem. Lett. 2007, 5, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Jia, J.; He, J.; Li, J.; Cai, J. Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022, 11, 3871. [Google Scholar] [CrossRef]
- Kim, J.-S. Study of Flavonoid/Hydroxypropyl-β-Cyclodextrin Inclusion Complexes by UV-Vis, FT-IR, DSC, and X-Ray Diffraction Analysis. Prev. Nutr. Food Sci. 2020, 25, 449–456. [Google Scholar] [CrossRef]
- Kazlauskaite, J.A.; Ivanauskas, L.; Bernatoniene, J. Cyclodextrin-Assisted Extraction Method as a Green Alternative to Increase the Isoflavone Yield from Trifolium pratensis L. Extract. Pharmaceutics 2021, 13, 620. [Google Scholar] [CrossRef]
- Cai, R.; Yuan, Y.; Cui, L.; Wang, Z.; Yue, T. Cyclodextrin-Assisted Extraction of Phenolic Compounds: Current Research and Future Prospects. Trends Food Sci. Technol. 2018, 79, 19–27. [Google Scholar] [CrossRef]
- Pinho, E.; Grootveld, M.; Soares, G.; Henriques, M. Cyclodextrins as Encapsulation Agents for Plant Bioactive Compounds. Carbohydr. Polym. 2014, 101, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Kolling, J.; Kolling, J.; Franceschi, I.D.D.; Nishihira, V.S.K.; Baldissera, M.D.; Pinto, C.G.; Mezzomo, N.J.; Carmo, G.M.D.; Feksa, L.R.; Fernandes, L.S.; et al. Resveratrol and Resveratrol-Hydroxypropyl-β-Cyclodextrin Complex Recovered the Changes of Creatine Kinase and Na+, K+-ATPase Activities Found in the Spleen from Streptozotocin-Induced Diabetic Rats. An. Acad. Bras. Cienc. 2019, 91, e20181330. [Google Scholar] [CrossRef]
- Ferreira, L.; Mascarenhas-Melo, F.; Rabaça, S.; Mathur, A.; Sharma, A.; Giram, P.S.; Pawar, K.D.; Rahdar, A.; Raza, F.; Veiga, F.; et al. Cyclodextrin-Based Dermatological Formulations: Dermopharmaceutical and Cosmetic Applications. Colloids Surf. B Biointerfaces 2023, 221, 113012. [Google Scholar] [CrossRef]
- Spada, G.; Gavini, E.; Cossu, M.; Rassu, G.; Carta, A.; Giunchedi, P. Evaluation of the Effect of Hydroxypropyl-β-Cyclodextrin on Topical Administration of Milk Thistle Extract. Carbohydr. Polym. 2013, 92, 40–47. [Google Scholar] [CrossRef]
- Kyriakidou, K.; Mourtzinos, I.; Biliaderis, C.G.; Makris, D.P. Optimization of a Green Extraction/Inclusion Complex Formation Process to Recover Antioxidant Polyphenols from Oak Acorn Husks (Quercus Robur) Using Aqueous 2-Hydroxypropyl-β-Cyclodextrin/Glycerol Mixtures. Environments 2016, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Mourtzinos, I.; Anastasopoulou, E.; Petrou, A.; Grigorakis, S.; Makris, D.; Biliaderis, C.G. Optimization of a Green Extraction Method for the Recovery of Polyphenols from Olive Leaf Using Cyclodextrins and Glycerin as Co-Solvents. J. Food Sci. Technol. 2016, 53, 3939–3947. [Google Scholar] [CrossRef] [Green Version]
- Jafari, F.; Ghavidel, F.; Zarshenas, M.M. A Critical Overview on the Pharmacological and Clinical Aspects of Popular Satureja Species. J. Acupunct. Meridian Stud. 2016, 9, 118–127. [Google Scholar] [CrossRef] [Green Version]
- Tepe, B.; Cilkiz, M. A Pharmacological and Phytochemical Overview on Satureja. Pharm. Biol. 2016, 54, 375–412. [Google Scholar] [CrossRef] [Green Version]
- Oalđe Pavlović, M.; Kolarević, S.; Đorđević, J.; Jovanović Marić, J.; Lunić, T.; Mandić, M.; Kračun Kolarević, M.; Živković, J.; Alimpić Aradski, A.; Marin, P.D.; et al. A Study of Phytochemistry, Genoprotective Activity, and Antitumor Effects of Extracts of the Selected Lamiaceae Species. Plants 2021, 10, 2306. [Google Scholar] [CrossRef]
- Süntar, I.; Küpeli Akkol, E.; Keles, H.; Yesilada, E.; Sarker, S.D.; Arroo, R.; Baykal, T. Efficacy of Daphne Oleoides Subsp. Kurdica Used for Wound Healing: Identification of Active Compounds through Bioassay Guided Isolation Technique. J. Ethnopharmacol. 2012, 141, 1058–1070. [Google Scholar] [CrossRef]
- Juszczak, A.M.; Jakimiuk, K.; Czarnomysy, R.; Strawa, J.W.; Zovko Končić, M.; Bielawski, K.; Tomczyk, M. Wound Healing Properties of Jasione Montana Extracts and Their Main Secondary Metabolites. Front. Pharmacol. 2022, 13, 894233. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Rosmarinic Acid: Modes of Action, Medicinal Values and Health Benefits. Anim. Health Res. Rev. 2017, 18, 167–176. [Google Scholar] [CrossRef]
- Ciganović, P.; Jakimiuk, K.; Tomczyk, M.; Zovko Končić, M. Glycerolic Licorice Extracts as Active Cosmeceutical Ingredients: Extraction Optimization, Chemical Characterization, and Biological Activity. Antioxidants 2019, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Nicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.-L.; Rock, E.; Michel, H.; Amouroux, P.; Remesy, C. Characterisation and Variation of Antioxidant Micronutrients in Lettuce (Lactuca sativa Folium). J. Sci. Food Agric. 2004, 84, 2061–2069. [Google Scholar] [CrossRef]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant Activity of Propolis of Various Geographic Origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Marijan, M.; Tomić, D.; Strawa, J.W.; Jakupović, L.; Inić, S.; Jug, M.; Tomczyk, M.; Zovko Končić, M. Optimization of Cyclodextrin-Assisted Extraction of Phenolics from Helichrysum Italicum for Preparation of the Extracts with Anti-Elastase and Anti-Collagenase Properties. Metabolites 2023, 13, 257. [Google Scholar] [CrossRef]
- Bose, B.; Choudhury, H.; Tandon, P.; Kumaria, S. Studies on Secondary Metabolite Profiling, Anti-Inflammatory Potential, in Vitro Photoprotective and Skin-Aging Related Enzyme Inhibitory Activities of Malaxis Acuminata, a Threatened Orchid of Nutraceutical Importance. J. Photochem. Photobiol. B 2017, 173, 686–695. [Google Scholar] [CrossRef]
- Jiratchayamaethasakul, C.; Ding, Y.; Hwang, O.; Im, S.-T.; Jang, Y.; Myung, S.-W.; Lee, J.M.; Kim, H.-S.; Ko, S.-C.; Lee, S.-H. In Vitro Screening of Elastase, Collagenase, Hyaluronidase, and Tyrosinase Inhibitory and Antioxidant Activities of 22 Halophyte Plant Extracts for Novel Cosmeceuticals. Fish. Aquat. Sci. 2020, 23, 6. [Google Scholar] [CrossRef] [Green Version]
- González-Silva, N.; Nolasco-González, Y.; Aguilar-Hernández, G.; Sáyago-Ayerdi, S.G.; Villagrán, Z.; Acosta, J.L.; Montalvo-González, E.; Anaya-Esparza, L.M. Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium Cattleianum Leaves: Optimization Using the Response Surface Methodology. Molecules 2022, 27, 3557. [Google Scholar] [CrossRef]
- Mehta, N.; Kumar, P.; Verma, A.K.; Umaraw, P.; Khatkar, S.K.; Khatkar, A.B.; Pathak, D.; Kaka, U.; Sazili, A.Q. Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022, 11, 2973. [Google Scholar] [CrossRef]
- Tsvetov, N.; Paukshta, O.; Fokina, N.; Volodina, N.; Samarov, A. Application of Natural Deep Eutectic Solvents for Extraction of Bioactive Components from Rhodiola rosea (L.). Molecules 2023, 28, 912. [Google Scholar] [CrossRef] [PubMed]
- Martín-García, B.; De Montijo-Prieto, S.; Jiménez-Valera, M.; Carrasco-Pancorbo, A.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 558. [Google Scholar] [CrossRef]
- Sanou, A.; Konaté, K.; kabakdé, K.; Dakuyo, R.; Bazié, D.; Hemayoro, S.; Dicko, M.H. Modelling and Optimisation of Ultrasound-Assisted Extraction of Roselle Phenolic Compounds Using the Surface Response Method. Sci. Rep. 2023, 13, 358. [Google Scholar] [CrossRef]
- Kalantari, S.; Roufegarinejad, L.; Pirsa, S.; Gharekhani, M. Green Extraction of Bioactive Compounds of Pomegranate Peel Using β-Cyclodextrin and Ultrasound. Main Group Chem. 2020, 19, 61–80. [Google Scholar] [CrossRef]
- Fumić, B.; Končić, M.Z.; Jug, M. Therapeutic Potential of Hydroxypropyl-β-Cyclodextrin-Based Extract of Medicago Sativa in the Treatment of Mucopolysaccharidoses. Planta Med. 2017, 83, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Fumić, B.; Končić, M.Z.; Jug, M. Development of Cyclodextrin-Based Extract of Lotus Corniculatus as a Potential Substrate Reduction Therapy in Mucopolysaccharidoses Type III. J. Incl. Phenom. Macrocycl. Chem. 2018, 92, 369–379. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Syukri, M.S.M.; Rahman, R.A.; Mohamad, Z.; Illias, R.M.; Mahmood, N.A.N.; Jaafar, N.R. Optimization Strategy for Laccase Immobilization on Polyethylene Terephthalate Grafted with Maleic Anhydride Electrospun Nanofiber Mat. Int. J. Biol. Macromol. 2021, 166, 876–883. [Google Scholar] [CrossRef]
- Weremfo, A.; Abassah-Oppong, S.; Adulley, F.; Dabie, K.; Seidu-Larry, S. Response Surface Methodology as a Tool to Optimize the Extraction of Bioactive Compounds from Plant Sources. J. Sci. Food Agric. 2023, 103, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Liu, M.; Yan, H.; Zhao, Y.; Shi, Y.; Guo, Q.; Pei, W.; Han, J.; Wang, Z. A Combined Calorimetric, Spectroscopic and Molecular Dynamic Simulation Study on the Inclusion Complexation of (E)-Piceatannol with Hydroxypropyl-β-Cyclodextrin in Various Alcohol + water Cosolvents. J. Chem. Thermodyn. 2019, 132, 341–351. [Google Scholar] [CrossRef]
- Bodor, N.; Drustrup, J.; Wu, W. Effect of Cyclodextrins on the Solubility and Stability of a Novel Soft Corticosteroid, Loteprednol Etabonate. Pharmazie 2000, 55, 206–209. [Google Scholar] [PubMed]
- Hegge, A.B.; Másson, M.; Kristensen, S.; Tønnesen, H.H. Investigation of Curcumin-Cyclodextrin Inclusion Complexation in Aqueous Solutions Containing Various Alcoholic Co-Solvents and Alginates Using an UV-VIS Titration Method. Studies of Curcumin and Curcuminoides, XXXV. Pharmazie 2009, 64, 382–389. [Google Scholar]
- Jovanović, M.S.; Krgović, N.; Šavikin, K.; Živković, J. Ultrasound-Assisted Water Extraction of Gentiopicroside, Isogentisin, and Polyphenols from Willow Gentian “Dust” Supported by Hydroxypropyl-β-Cyclodextrin as Cage Molecules. Molecules 2022, 27, 7606. [Google Scholar] [CrossRef]
- Momchev, P.; Ciganović, P.; Jug, M.; Marguí, E.; Jablan, J.; Zovko Končić, M. Comparison of Maceration and Ultrasonication for Green Extraction of Phenolic Acids from Echinacea Purpurea Aerial Parts. Molecules 2020, 25, 5142. [Google Scholar] [CrossRef]
- Hossain, M.B.; Brunton, N.P.; Patras, A.; Tiwari, B.; O’Donnell, C.P.; Martin-Diana, A.B.; Barry-Ryan, C. Optimization of Ultrasound Assisted Extraction of Antioxidant Compounds from Marjoram (Origanum majorana L.) Using Response Surface Methodology. Ultrason. Sonochem 2012, 19, 582–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Zu, G.; Zhang, R.; Yang, L.; Ma, C.; Zu, Y.; Wang, W.; Zhao, C. Ultrasound-Assisted Extraction of Carnosic Acid and Rosmarinic Acid Using Ionic Liquid Solution from Rosmarinus Officinalis. Int. J. Mol. Sci. 2012, 13, 11027–11043. [Google Scholar] [CrossRef] [Green Version]
- Miyaji, A.; Kohno, M.; Inoue, Y.; Baba, T. Hydroxyl Radical Generation by Dissociation of Water Molecules during 1.65 MHz Frequency Ultrasound Irradiation under Aerobic Conditions. Biochem. Biophys. Res. Commun. 2017, 483, 178–182. [Google Scholar] [CrossRef]
- Qiao, L.; Ye, X.; Sun, Y.; Ying, J.; Shen, Y.; Chen, J. Sonochemical Effects on Free Phenolic Acids under Ultrasound Treatment in a Model System. Ultrason. Sonochemistry 2013, 20, 1017–1025. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Piacente, S. Metabolite Profiling of Helichrysum Italicum Derived Food Supplements by 1H-NMR-Based Metabolomics. Molecules 2021, 26, 6619. [Google Scholar] [CrossRef]
- Bagheri, Y.; Keshtmand, Z.; Rahbarghazi, R.; Gharamaleki, M.N.; Barati, A.; Bagheri, S.; Rezaie, J.; Rezabakhsh, A.; Ahmadi, M.; Delashoub, M. Salvia Officinalis Hydroalcoholic Extract Improved Reproduction Capacity and Behavioral Activity in Rats Exposed to Immobilization Stress. Anim. Sci. J. 2020, 91, e13382. [Google Scholar] [CrossRef]
- Serrano, C.; Matos, O.; Teixeira, B.; Ramos, C.; Neng, N.; Nogueira, J.; Nunes, M.L.; Marques, A. Antioxidant and Antimicrobial Activity of Satureja montana L. Extracts. J. Sci. Food Agric. 2011, 91, 1554–1560. [Google Scholar] [CrossRef]
- Kamarudin, N.; Biak, D.R.A.; Abidin, Z.Z.; Cardona, F.; Sapuan, S.M. Dissolution of Condensed Tannin Powder-Based Polyphenolic Compound in Water-Glycerol-Acid Solution. BioResources 2021, 16, 1798–1815. [Google Scholar] [CrossRef]
- Song, B.; Fan, X.; Gu, H. Chestnut-Tannin-Crosslinked, Antibacterial, Antifreezing, Conductive Organohydrogel as a Strain Sensor for Motion Monitoring, Flexible Keyboards, and Velocity Monitoring. ACS Appl. Mater. Interfaces 2022, 15, 2147–2162. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.; Li, S.; Shi, W.; Li, S.; Zhang, Y. Preparation of Antibacterial Nanofibers by Electrospinning Polyvinyl Alcohol Containing a Luteolin Hydroxypropyl-β-Cyclodextrin Inclusion Complex. New J. Chem. 2022, 46, 2360–2367. [Google Scholar] [CrossRef]
- Grigorakis, S.; Benchennouf, A.; Halahlah, A.; Makris, D.P. High-Performance Green Extraction of Polyphenolic Antioxidants from Salvia Fruticosa Using Cyclodextrins: Optimization, Kinetics, and Composition. Appl. Sci. 2020, 10, 3447. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic Acid: A Key Molecule in Skin Aging. Dermatoendocrinol 2012, 4, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Duan, E. Fighting against Skin Aging: The Way from Bench to Bedside. Cell Transplant. 2018, 27, 729–738. [Google Scholar] [CrossRef]
- Karatoprak, G.Ş.; Göger, F.; Çelik, İ.; Budak, Ü.; Akkol, E.K.; Aschner, M. Phytochemical Profile, Antioxidant, Antiproliferative, and Enzyme Inhibition-Docking Analyses of Salvia Ekimiana Celep & Doğan. S. Afr. J. Bot. 2022, 146, 36–47. [Google Scholar] [CrossRef]
- Yücel, Ç.; Şeker Karatoprak, G.; Değim, İ.T. Anti-Aging Formulation of Rosmarinic Acid-Loaded Ethosomes and Liposomes. J. Microencapsul. 2019, 36, 180–191. [Google Scholar] [CrossRef]
- Chaiyana, W.; Anuchapreeda, S.; Punyoyai, C.; Neimkhum, W.; Lee, K.-H.; Lin, W.-C.; Lue, S.-C.; Viernstein, H.; Mueller, M. Ocimum Sanctum Linn. as a Natural Source of Skin Anti-Ageing Compounds. Ind. Crop. Prod. 2019, 127, 217–224. [Google Scholar] [CrossRef]
- Aoshima, H.; Miyase, T.; Warashina, T. Caffeic Acid Oligomers with Hyaluronidase Inhibitory Activity from Clinopodium Gracile. Chem. Pharm. Bull. 2012, 60, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Facino, R.M.; Carini, M.; Aldini, G.; Marinello, C.; Arlandini, E.; Franzoi, L.; Colombo, M.; Pietta, P.; Mauri, P. Direct Characterization of Caffeoyl Esters with Antihyaluronidase Activity in Crude Extracts from Echinacea Angustifolia Roots by Fast Atom Bombardment Tandem Mass Spectrometry. Farmaco 1993, 48, 1447–1461. [Google Scholar]
Compound | Average RT (min) | CV RT (%) | Calibration Curve | R2 | LOD μg/mL | LOQ μg/mL |
---|---|---|---|---|---|---|
Luteolin-7-O-glucoside | 24.4. | 0.78 | y = 1333.62x + 9.73 | 0.9999 | 0.008 | 0.028 |
Rosmarinic acid | 28.5 | 0.83 | y = 1945.38x + 16.34 | 0.9999 | 0.007 | 0.025 |
S | R | X1 | X2 | X3 | X4 | X5 | X6 | TP | TDCA | TF | RA | LG |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(%, w:w) | (mmol) | (°C) | (g) | (min) | (W) | (mg/mL) | (mg/mL) | (mg/mL) | (μg/mL) | (μg/mL) | ||
41 | 1 | 0 | 0.2 | 20 | 0.55 | 15 | 144 | 3.23 | 0.82 | 0.58 | <LOD | 111.67 |
22 | 2 | 35 | 0.2 | 70 | 0.3 | 15 | 720 | 1.6 | 1.59 | 0.28 | 158.13 | 132.82 |
12 | 3 | 35 | 0.4 | 70 | 0.55 | 5 | 432 | 2.92 | 2.5 | 0.67 | 263.31 | 122.11 |
47 | 4 | 0 | 0.2 | 70 | 0.55 | 15 | 720 | 2.43 | 1.84 | 0.56 | 14.49 | 135.11 |
21 | 5 | 35 | 0.2 | 20 | 0.3 | 15 | 720 | 1.49 | 1.13 | 0.26 | 25.34 | 98.63 |
32 | 6 | 70 | 0.2 | 45 | 0.8 | 25 | 432 | 4.92 | 3.57 | 0.68 | 783.47 | 226.10 |
34 | 7 | 35 | 0.4 | 45 | 0.55 | 5 | 144 | 3.55 | 1.85 | 0.4 | 21.80 | 187.61 |
11 | 8 | 35 | 0 | 70 | 0.55 | 5 | 432 | 3.08 | 2.22 | 0.63 | 76.94 | 135.16 |
39 | 9 | 35 | 0 | 45 | 0.55 | 25 | 720 | 2.65 | 0.88 | 0.45 | <LOD | 128.67 |
42 | 10 | 70 | 0.2 | 20 | 0.55 | 15 | 144 | 3.22 | 3.2 | 0.39 | 518.51 | 196.25 |
10 | 11 | 35 | 0.4 | 20 | 0.55 | 5 | 432 | 3.04 | 2.14 | 0.38 | 213.93 | 196.21 |
37 | 12 | 35 | 0 | 45 | 0.55 | 5 | 720 | 2.62 | 0.58 | 0.43 | <LOD | 83.02 |
49 | 13 | 35 | 0.2 | 45 | 0.55 | 15 | 432 | 3.48 | 1.11 | 0.42 | 7.84 | 118.25 |
13 | 14 | 35 | 0 | 20 | 0.55 | 25 | 432 | 3.33 | 1.28 | 0.39 | 37.81 | 131.23 |
18 | 15 | 35 | 0.2 | 70 | 0.3 | 15 | 144 | 1.81 | 1.2 | 0.29 | 129.73 | 164.84 |
3 | 16 | 0 | 0.4 | 45 | 0.3 | 15 | 432 | 1.89 | 0.44 | 0.25 | <LOD | 63.43 |
31 | 17 | 0 | 0.2 | 45 | 0.8 | 25 | 432 | 3.73 | 0.68 | 0.55 | <LOD | 123.83 |
36 | 18 | 35 | 0.4 | 45 | 0.55 | 25 | 144 | 3.48 | 1.72 | 0.4 | 100.66 | 184.01 |
20 | 19 | 35 | 0.2 | 70 | 0.8 | 15 | 144 | 4.02 | 2.96 | 0.6 | 224.4 | 168.30 |
46 | 20 | 70 | 0.2 | 20 | 0.55 | 15 | 720 | 4.11 | 2.67 | 0.41 | 484.94 | 185.25 |
9 | 21 | 35 | 0 | 20 | 0.55 | 5 | 432 | 3.48 | 1.86 | 0.41 | 60.13 | 130.39 |
50 | 22 | 35 | 0.2 | 45 | 0.55 | 15 | 432 | 3.85 | 1.19 | 0.34 | 1.63 | 99.58 |
33 | 23 | 35 | 0 | 45 | 0.55 | 5 | 144 | 3.31 | 1.36 | 0.47 | 39.06 | 87.34 |
40 | 24 | 35 | 0.4 | 45 | 0.55 | 25 | 720 | 2.73 | 1.5 | 0.48 | 3.34 | 118.4 |
29 | 25 | 0 | 0.2 | 45 | 0.3 | 25 | 432 | 1.83 | 0.26 | 0.2 | <LOD | 47.47 |
53 | 26 | 35 | 0.2 | 45 | 0.55 | 15 | 432 | 4.03 | 1.5 | 0.38 | 27.80 | 126.81 |
45 | 27 | 0 | 0.2 | 20 | 0.55 | 15 | 720 | 2.68 | 0.86 | 0.45 | <LOD | 113.49 |
23 | 28 | 35 | 0.2 | 20 | 0.8 | 15 | 720 | 4.13 | 2.51 | 0.56 | 170.47 | 251.59 |
8 | 29 | 70 | 0.4 | 45 | 0.8 | 15 | 432 | 5.52 | 3.51 | 0.65 | 822.70 | 176.58 |
1 | 30 | 0 | 0 | 45 | 0.3 | 15 | 432 | 1.33 | 0.12 | 0.18 | <LOD | 20.06 |
35 | 31 | 35 | 0 | 45 | 0.55 | 25 | 144 | 3.44 | 0.89 | 0.37 | <LOD | 48.35 |
6 | 32 | 70 | 0 | 45 | 0.8 | 15 | 432 | 5.7 | 2.9 | 0.61 | 795.58 | 191.53 |
27 | 33 | 0 | 0.2 | 45 | 0.8 | 5 | 432 | 4.15 | 0.45 | 0.43 | <LOD | 92.56 |
19 | 34 | 35 | 0.2 | 20 | 0.8 | 15 | 144 | 4.43 | 3.1 | 0.52 | 258.94 | 208.14 |
24 | 35 | 35 | 0.2 | 70 | 0.8 | 15 | 720 | 3.54 | 2.8 | 0.94 | 57.43 | 205.64 |
38 | 36 | 35 | 0.4 | 45 | 0.55 | 5 | 720 | 2.99 | 1.9 | 0.5 | <LOD | 43.94 |
17 | 37 | 35 | 0.2 | 20 | 0.3 | 15 | 144 | 2.62 | 1.22 | 0.35 | 53.35 | 106.29 |
28 | 38 | 70 | 0.2 | 45 | 0.8 | 5 | 432 | 4.74 | 3.34 | 0.6 | 802.04 | 174.4 |
25 | 39 | 0 | 0.2 | 45 | 0.3 | 5 | 432 | 1.86 | 0.34 | 0.24 | <LOD | 48.34 |
51 | 40 | 35 | 0.2 | 45 | 0.55 | 15 | 432 | 4.04 | 1.27 | 0.44 | 11.75 | 121.85 |
5 | 41 | 0 | 0 | 45 | 0.8 | 15 | 432 | 3.25 | 0.2 | 0.31 | <LOD | 30.22 |
30 | 42 | 70 | 0.2 | 45 | 0.3 | 25 | 432 | 2.77 | 1.81 | 0.26 | 312.00 | 70.13 |
14 | 43 | 35 | 0.4 | 20 | 0.55 | 25 | 432 | 3.37 | 2.02 | 0.41 | 36.05 | 201.48 |
16 | 44 | 35 | 0.4 | 70 | 0.55 | 25 | 432 | 2.82 | 2.59 | 0.54 | 356.98 | 224.63 |
54 | 45 | 35 | 0.2 | 45 | 0.55 | 15 | 432 | 4.1 | 1.54 | 0.41 | 22.53 | 122.68 |
44 | 46 | 70 | 0.2 | 70 | 0.55 | 15 | 144 | 3.59 | 3.27 | 0.53 | 620.58 | 164.42 |
43 | 47 | 0 | 0.2 | 70 | 0.55 | 15 | 144 | 2.54 | 2.02 | 0.55 | 43.97 | 164.08 |
52 | 48 | 35 | 0.2 | 45 | 0.55 | 15 | 432 | 3.99 | 1.34 | 0.41 | 11.90 | 120.35 |
48 | 49 | 70 | 0.2 | 70 | 0.55 | 15 | 720 | 4.48 | 3.04 | 0.76 | 656.26 | 143.23 |
7 | 50 | 0 | 0.4 | 45 | 0.8 | 15 | 432 | 4.76 | 0.46 | 0.59 | <LOD | 133.9 |
2 | 51 | 70 | 0 | 45 | 0.3 | 15 | 432 | 2.78 | 1.35 | 0.32 | 317.77 | 96.78 |
4 | 52 | 70 | 0.4 | 45 | 0.3 | 15 | 432 | 1.87 | 1.96 | 0.18 | 336.97 | 67.33 |
15 | 53 | 35 | 0 | 70 | 0.55 | 25 | 432 | 2.73 | 1.87 | 0.58 | 83.71 | 161.58 |
26 | 54 | 70 | 0.2 | 45 | 0.3 | 5 | 432 | 1.77 | 1.94 | 0.38 | 324.72 | 69.77 |
TP | |||||
R2 | R2 = 0.9390, R2P = 0.8757, R2A = 0.6990 | ||||
Source | SS | DF | MS | F Value | p-value |
Model | 53,261,408.58 | 27 | 1,972,644.76 | 14.82 | <0.0001 |
Lack of Fit | 3,194,717.35 | 21 | 152,129.40 | 2.87 | 0.1227 |
Pure Error | 265,202.59 | 5 | 53,040.51 | ||
TDCA | |||||
R2 | R2 = 0.9563, R2P = 0.9110, R2A = 0.7837 | ||||
Source | SS | DF | MS | F Value | p-value |
Model | 44,788,384.08 | 27 | 1,658,829.04 | 21.10 | <0.0001 |
Lack of Fit | 1,899,168.22 | 21 | 90,436.58 | 3.13 | 0.1046 |
Pure Error | 144,644.88 | 5 | 28,928.98 | ||
TF | |||||
R2 | R2 = 0.9451, R2P = 0.8881, R2A = 0.7322 | ||||
Source | SS | DF | MS | F Value | p-value |
Model | 1,148,595.53 | 27 | 42,540.58 | 16.58 | <0.0001 |
Lack of Fit | 60,594.57 | 21 | 2885.46 | 2.36 | 0.1731 |
Pure Error | 6112.95 | 5 | 1222.59 | ||
RA | |||||
R2 | R2 = 0.9698, R2P = 0.9385, R2A = 0.8507 | ||||
Source | SS | DF | MS | F Value | p-value |
Model | 4098.25 | 27 | 151.79 | 30.97 | <0.0001 |
Lack of Fit | 118.26 | 21 | 5.63 | 3.08 | 0.1078 |
Pure Error | 9.15 | 5 | 1.83 | ||
LG | |||||
R2 | R2 = 0.9630, R2P = 0.9247, R2A = 0.8180 | ||||
Source | SS | DF | MS | F Value | p-value |
Model | 151,680.32 | 27 | 5617.79 | 25.10 | <0.0001 |
Lack of Fit | 5359.43 | 21 | 255.21 | 2.78 | 0.1297 |
Pure Error | 458.82 | 5 | 91.76 |
Extract | OR | Unit | AO | X1 (%, w:w) | X2 (mmol) | X3 (°C) | X4 (g) | X5 (min) | X6 (W) | PV | OV | RD (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
OPT 1 | TP | mg/mL | Max | 70 | 0 | 45 | 0.80 | 15 | 504 | 5.76 | 5.93 | 2.98 |
OPT 2 | TDCA and RA | mg/mL and μg/mL | Max | 70 | 0.15 | 20 | 0.77 | 9 | 288 | 4.19 and 1223.74 | 4.17 and 1163.33 | −0.64 and −4.88 |
OPT 3 | TF | mg/mL | Max | 70 | 0.20 | 65 | 0.77 | 25 | 720 | 1.02 | 0.991 | −2.36 |
OPT 4 | LG | μg/mL | Max | 57 | 0.34 | 20 | 0.80 | 14 | 288 | 286.47 | 283.95 | −0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marijan, M.; Jakupović, L.; Končić, M.Z. Hydroxypropyl-β-Cyclodextrin-Glycerol-Assisted Extraction of Phenolics from Satureja montana L.: Optimization, Anti-Elastase and Anti-Hyaluronidase Properties of the Extracts. Processes 2023, 11, 1117. https://doi.org/10.3390/pr11041117
Marijan M, Jakupović L, Končić MZ. Hydroxypropyl-β-Cyclodextrin-Glycerol-Assisted Extraction of Phenolics from Satureja montana L.: Optimization, Anti-Elastase and Anti-Hyaluronidase Properties of the Extracts. Processes. 2023; 11(4):1117. https://doi.org/10.3390/pr11041117
Chicago/Turabian StyleMarijan, Marijan, Lejsa Jakupović, and Marijana Zovko Končić. 2023. "Hydroxypropyl-β-Cyclodextrin-Glycerol-Assisted Extraction of Phenolics from Satureja montana L.: Optimization, Anti-Elastase and Anti-Hyaluronidase Properties of the Extracts" Processes 11, no. 4: 1117. https://doi.org/10.3390/pr11041117
APA StyleMarijan, M., Jakupović, L., & Končić, M. Z. (2023). Hydroxypropyl-β-Cyclodextrin-Glycerol-Assisted Extraction of Phenolics from Satureja montana L.: Optimization, Anti-Elastase and Anti-Hyaluronidase Properties of the Extracts. Processes, 11(4), 1117. https://doi.org/10.3390/pr11041117