Development and Experimental Evaluation of Some Silver Nanoparticles with Antimicrobial Potential
Abstract
:1. Introduction
2. Synthesis and Characterization of AgNp with Antimicrobial Potential
2.1. Materials and Methods
2.2. Results
2.3. Discussion
3. Acute Toxicity Studies following Single-Dose p.o. Administration of Silver Nanoparticles in Small Rodents
3.1. Introduction
3.2. Materials and Methods
- the mice in Group I received 10 μL/g of AgNp suspension;
- the mice in Group II received 15 μL/g of AgNp suspension;
- the mice in Group III received 20 μL/g of AgNp suspension.
3.3. Results
3.3.1. Observational Analysis of Animals during the First Eight Hours after Administration of Silver Nanoparticle Suspension
3.3.2. Effects of AgNp on Body Weight Dynamics
3.4. Discussion
4. Studies on the Pharmacokinetics of AgNp after Single-Dose Administration in Rodents
4.1. Introduction
4.2. Matherials and Methods
4.3. Results
4.4. Discussion
5. Influence of Topical Treatment with AgNp Suspension on the Course of Burn-Type Lesions in Experimental Animals
5.1. Introduction
5.2. Materials and Methods
- the control group—untreated animals, NaCl (six animals);
- the reference group—animals treated with silver sulfadiazine cream, SAg (eight animals);
- the treatment group—animals treated with a suspension of silver nanoparticles, AgNp (eight animals).
5.3. Results
5.4. Discussion
6. Analysis of Hematological Parameters
6.1. Introduction
6.2. Materials and Methods
6.3. Results
6.4. Discussion
7. Discussion
- the size of the nanoparticles in suspension was 9.49 nm;
- the AgNp suspension was exceptionally stable;
- the Ag concentration in the suspension was 0.103 mg/mL.
- the linear metabolic variations were recorded for Group I (0.00103 mg of Ag per gram of body weight, R2 = 0.9215) and Group II (0.001545 mg of Ag per gram of body weight, R2 = 0.9818); it can be stated that the dose administered to Group II of mice resulted in a uniform increase in the body mass of the animals
- in Group III, which was administered 0.00206 mg of Ag per gram of body weight, the variation was biphasic: on days 1 and 2 of the experiment there was a sharp decrease, but on days 3 to 14, a linear increase (R2 = 0.9838) was observed
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almatroudi, A. Silver nanoparticles: Synthesis, characterisation and biomedical applications. Open Life Sci. 2020, 15, 819–839. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014, 9, 223–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skomorokhova, E.A.; Sankova, T.P.; Orlov, I.A.; Savelev, A.N.; Magazenkova, D.N.; Pliss, M.G.; Skvortsov, A.N.; Sosnin, I.M.; Kirilenko, D.A.; Grishchuk, I.V.; et al. Size-Dependent Bioactivity of Silver Nanoparticles: Antibacterial Properties, Influence on Copper Status in Mice, and Whole-Body Turnover. Nanotechnol. Sci. Appl. 2020, 13, 137–157. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, F.; Kiarostami, K.; Mahmoudi Khatir, N.; Rezania, S.; Muhamad, I.I. Green synthesis of Mg0.99 Zn0.01O nanoparticles for the fabrication of κ-Carrageenan/NaCMC hydrogel in order to deliver catechin. Polymers 2020, 12, 861. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). 2020 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis. Available online: https://www.who.int/publications/i/item/9789240021303 (accessed on 8 March 2023).
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Bloukh, S.H.; Edis, Z.; Shaikh, A.A.; Pathan, H.M. A Look Behind the Scenes at COVID-19: National Strategies of Infection Control and Their Impact on Mortality. Int. J. Environ. Res. Public Health 2020, 17, 5616. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Rabiee, N.; Ahmadi, S.; Fatahi, Y.; Rabiee, M.; Bagherzadeh, M.; Dinarvand, R.; Bagheri, B.; Zarrintaj, P.; Saeb, M.R.; Webster, T.J. Nanotechnology-assisted microfluidic systems: From bench to bedside. Nanomedicine 2020, 16, 237–258. [Google Scholar] [CrossRef]
- Eleraky, N.E.; Allam, A.; Hassan, S.B.; Omar, M.M. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020, 12, 142. [Google Scholar] [CrossRef] [Green Version]
- Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. 2018, 19, 444. [Google Scholar] [CrossRef] [Green Version]
- Hamed, S.M.; Mostafa, A.M.A.; Abdel-Raouf, N.; Ibraheem, I.B.M. Biosynthesis of silver and silver chloride nanoparticles by Parachlorella kessleri SAG 211-11 and evaluation of its nematicidal potential against the root-knot nematode; Meloidogyne incognita. Aust. J. Basic Appl. Sci. 2016, 10, 354–364. [Google Scholar]
- Gudkov, S.V.; Serov, D.A.; Astashev, M.E.; Semenova, A.A.; Lisitsyn, A.B. Ag2O Nanoparticles as a Candidate for Antimicrobial Compounds of the New Generation. Pharmaceuticals 2022, 15, 968. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.T.; Wu, C.; Piekiel, N.W.; Gaskell, K.; Zachariah, M.R. Synthesis and reactivity of nano-Ag2O as an oxidizer for energetic systems yielding antimicrobial products. Combust. Flame 2013, 160, 438–446. [Google Scholar] [CrossRef]
- Bruskov, V.I.; Karp, O.E.; Garmash, S.A.; Shtarkman, I.N.; Chernikov, A.V.; Gudkov, S.V. Prolongation of oxidative stress by long-lived reactive protein species induced by X-ray radiation and their genotoxic action. Free. Radic. Res. 2012, 46, 1280–1290. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J. Gen. Appl. Microbiol. 2017, 63, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Ocsoy, I.; Paret, M.L.; Ocsoy, M.A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against Xanthomonas perforans. ACS Nano 2013, 7, 8972–8980. [Google Scholar] [CrossRef] [Green Version]
- Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2011, 6, 933–940. [Google Scholar] [CrossRef]
- El-Kahky, D.; Attia, M.; Easa, S.M.; Awad, N.M.; Helmy, E.A. Interactive Effects of Biosynthesized Nanocomposites and Their Antimicrobial and Cytotoxic Potentials. Nanomaterials 2021, 11, 903. [Google Scholar] [CrossRef]
- Fanoro, O.T.; Oluwafemi, O.S. Bactericidal Antibacterial Mechanism of Plant Synthesized Silver, Gold and Bimetallic Nanoparticles. Pharmaceutics 2020, 12, 1044. [Google Scholar] [CrossRef]
- Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S.R.K.; Muniyandi, J.; Hariharan, N.; Eom, S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces 2009, 74, 328–335. [Google Scholar] [CrossRef]
- Mavani, K.; Shah, M. Synthesis of Silver Nanoparticles by using Sodium Borohydride as a Reducing Agent. international J. Eng. Res. Technol. 2013, 2, 8648. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Ratyakshi, R.P. Chauhan, Colloidal Synthesis of Silver Nano Particles. Asian J. Chem. 2009, 21, 113–116. [Google Scholar]
- Fierascu, I.; Fierascu, R.C.; Somoghi, R.; Ion, R.M.; Moanta, A.; Avramescu, S.M. Tuned apatitic materials: Synthesis, characterization and potential antimicrobial applications. Appl. Surf. Sci. 2018, 438, 127–135. [Google Scholar] [CrossRef]
- Güzel, R.; Erdal, G. Synthesis of Silver Nanoparticles; InTech: London, UK, 2018. [Google Scholar]
- Fierascu, I.B.I.R.; Fierascu, R.C.; Ion, R.M.; Dinu-Pirvu, C.E.; Nuta, D. Characterization and antioxidant activity of phytosynthesised silver nanoparticles using Calendula officinalis extract. Farmacia 2014, 62, 129–136. [Google Scholar]
- Fierascu, R.C.; Fierascu, I.; Lungulescu, E.M.; Nicula, N.; Somoghi, R.; Diţu, L.M.; Ungureanu, C.; Sutan, A.N.; Drăghiceanu, O.A.; Paunescu, A.; et al. Phytosynthesis and radiation-assisted methods for obtaining metal nanoparticles. J. Mater. Sci. 2020, 55, 1915–1932. [Google Scholar] [CrossRef]
- Faqi, A.S. Chapter 1—Introduction. In A Comprehensive Guide to Toxicology in Preclinical Drug Development; Faqi, A.S., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 1–2. [Google Scholar]
- Hyung-Gun, K.; Yoon-Gyoon, K.; Aryal, B.; Tae-Hyun, K. A comparative study of the pharmacokinetics of traditional and automated dosing/blood sampling systems using gabapentin. Indian J. Pharmacol. 2011, 43, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Mathur, P.; Jha, S.; Ramteke, S.; Jain, N.K. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S1), 115–126. [Google Scholar] [CrossRef] [Green Version]
- Alalaiwe, A. The clinical pharmacokinetics impact of medical nanometals on drug delivery system. Nanomed. Nanotechnol. Biol. Med. 2019, 17, 47–61. [Google Scholar] [CrossRef]
- Van der Zande, M.; Vandebriel, R.J.; Van Doren, E.; Kramer, E.; Rivera, Z.H.; Serrano-Rojero, C.S.; Gremmer, E.R.; Mast, J.; Peters, R.J.B.; Hollman, P.C.H.; et al. Distribution, Elimination, and Toxicity of Silver Nanoparticles and Silver Ions in Rats after 28-Day Oral Exposure. ACS Nano 2012, 6, 7427–7442. [Google Scholar] [CrossRef]
- Munger, M.A.; Hadlock, G.; Stoddard, G.; Slawson, M.H.; Wilkins, D.G.; Cox, N.; Rollins, D. Assessing orally bioavailable commercial silver nanoparticle product on human cytochrome P450 enzyme activity. Nanotoxicology 2014, 9, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Alkilany, A.M.; Murphy, C.J. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanoparticle Res. 2010, 12, 2313–2333. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Monteiro ÄêRiviere, N.A.; Riviere, J.E. Pharmacokinetics of metallic nanoparticles. Wiley Interdisci-Plinary Rev. Nanomed. Nanobiotechnol. 2015, 7, 189–217. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, P.; Yoon, J.; Lee, B.; Choi, K.; Kil, K.-H.; Park, K. Serum kinetics, distribution and excretion of silver in rabbits following 28 days after a single intravenous injection of silver nanoparticles. Nanotoxicology 2012, 7, 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhang, S.; Huang, Y.; Zhang, T.; Liu, X.; Hu, Y. Acute toxic effects and gender-related biokinetics of silver nano-particles following an intravenous injection in mice. J. Appl. Toxicol. 2012, 32, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, M.D.; Imam, M.S.; Paredes, A.M.; Bryant, M.S.; Cunningham, C.K.; Felton, R.P.; Jones, M.Y.; Davis, K.J.; Olson, G.R. Differential Effects of Silver Nanoparticles and Silver Ions on Tissue Accumulation, Distribution, and Toxicity in the Sprague Dawley Rat Following Daily Oral Gavage Administration for 13 Weeks. Toxicol. Sci. 2016, 150, 131–160. [Google Scholar] [CrossRef] [Green Version]
- Shankar, S.; Chorachoo, J.; Jaiswal, L.; Voravuthikunchai, S.P. Effect of reducing agent concentrations and temperature on characteristics and antimicrobial activity of silver nanoparticles. Mater. Lett. 2014, 137, 160–163. [Google Scholar] [CrossRef]
- Percival, S.; Bowler, P.; Russell, D. Bacterial resistance to silver in wound care. J. Hosp. Infect. 2005, 60, 1–7. [Google Scholar] [CrossRef]
- Jiang, H.; Manolache, S.; Wong, A.C.L.; Denes, F.S. Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 2004, 93, 1411–1422. [Google Scholar] [CrossRef]
- Farooqui, M.D.A.; Chauhan, P.S.; Krishnamoorthy, P.; Shaik, J. Extraction of silver nanoparticles from the left extracts of Clerodendrum incerme. Dig. J. Nanomater Biostruct. 2010, 5, 43–49. [Google Scholar]
- Ip, M.; Lui, S.L.; Poon, V.K.M.; Lung, I.; Burd, A. Antimicrobial activities of silver dressings: An in vitro comparison. J. Med. Microbiol. 2006, 55, 59–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulthong, K.; Srisung, S.; Boonpavanitchakul, K.; Kangwansupamonkon, W.; Maniratanachote, R. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol. 2010, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.M.; Kumar, S.; Ahamed, M.; Alrokayan, S.; AlSalhi, M.S. Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res. Lett. 2011, 6, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa-Cristobal, L.F.; Martinez-Castañon, G.A.; Loyola-Rodriguez, J.P.; Patiño-Marin, N.; Reyes-Macías, J.F.; Vargas-Morales, J.M.; Ruiz, F. Toxicity, distribution, and accumulation of silver nanoparticles in Wistar rats. J. Nanoparticle Res. 2013, 15, 1702. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.S.; Cho, H.S.; Rha, D.S.; Kim, J.M.; Park, J.D.; Choi, B.S.; Lim, R.; Chang, H.K.; Chung, Y.H.; et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2008, 20, 575–583. [Google Scholar] [CrossRef]
- Heydrnejad, M.S.; Samani, R.J.; Aghaeivanda, S. Toxic Effects of Silver Nanoparticles on Liver and Some Hematological Parameters in Male and Female Mice (Mus musculus). Biol. Trace Element Res. 2015, 165, 153–158. [Google Scholar] [CrossRef]
- Wen, H.; Dan, M.; Yang, Y.; Lyu, J.; Shao, A.; Cheng, X.; Chen, L.; Xu, L. Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS ONE 2017, 12, e0185554. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, M.; Slavchov, R. Nanotechnology in Medicine. In Drug Discovery and Evaluation: Methods in Clinical Pharmacology; Hock, F., Gralinski, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 533–546. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Klevens, R.M.; Morrison, M.A.; Nadle, J.; Petit, S.; Gershman, K.; Ray, S.; Harrison, L.H.; Lynfield, R.; Dumyati, G.; Townes, J.M.; et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007, 298, 1763–1771. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.; Barrett, S.; Polasky, S.; Galaz, V.; Folke, C.; Engström, G.; Ackerman, F.; Arrow, K.; Carpenter, S.; Chopra, K.; et al. Looming global-scale failures and missing institutions. Science 2009, 325, 1345–1346. [Google Scholar] [CrossRef]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Seppälä, H.; Klaukka, T.; Vuopio-Varkila, J.; Muotiala, A.; Helenius, H.; Lager, K.; Huovinen, P. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. N. Engl. J. Med. 1997, 337, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Long, K.S.; Vester, B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob. Agents Chemother. 2012, 56, 603–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imani, M.; Halimi, M.; Khara, H. Effects of silver nanoparticles (AgNPs) on hematological parameters of rainbow trout, Oncorhynchus mykiss. Comp. Clin. Pathol. 2014, 24, 491–495. [Google Scholar] [CrossRef]
- Qin, G.; Tang, S.; Li, S.; Lu, H.; Wang, Y.; Zhao, P.; Li, B.; Zhang, J.; Peng, L. Toxicological evaluation of silver nanoparticles and silver nitrate in rats following 28 days of repeated oral exposure. Environ. Toxicol. 2016, 32, 609–618. [Google Scholar] [CrossRef]
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | |
---|---|---|---|---|---|---|---|---|
Group I 10 μL/g | 0.35 mL | 0.41 mL | 0.37 mL | 0.36 mL | 0.39 mL | 0.39 mL | 0.37 mL | 0.43 mL |
Weight (g) | 34.6 | 41.1 | 36.51 | 36.1 | 39 | 38.5 | 36.5 | 42.6 |
Group II 15 μL/g | 0.52 mL | 0.57 mL | 0.57 mL | 0.59 mL | 0.58 mL | 0.57 mL | 0.59 mL | 0.61 mL |
Weight (g) | 35 | 38 | 38 | 39 | 38.5 | 38.3 | 39.4 | 40.5 |
Group III 20 μL/g | 0.82 mL | 0.7 mL | 0.72 mL | 0.7 mL | 0.75 mL | 0.73 mL | 0.76 mL | 0.78 mL |
Weight (g) | 41 | 35 | 36 | 35 | 37.5 | 36.4 | 38 | 38.9 |
A1 (μg/L) | A2 (μg/L) | A3 (μg/L) | A4 (μg/L) | A5 (μg/L) | Average ± DS (μg/L) | |
---|---|---|---|---|---|---|
1 h | 1.159 | 0.568 | 0.685 | 0.476 | 0.840 | 0.746 ± 0.268 |
2 h | 0.550 | 0.701 | 0.414 | 0.606 | 0.628 | 0.580 ± 0.107 |
3 h | 0.409 | 0.441 | 0.535 | 0.416 | 0.507 | 0.462 ± 0.056 |
4 h | 0.441 | 0.525 | 0.418 | 0.503 | 0.627 | 0.503 ± 0.082 |
5 h | 0.614 | 0.589 | 0.501 | 0.757 | 0.873 | 0.667 ± 0.147 |
6 h | 0.520 | 1.027 | 0.448 | 0.598 | 0.376 | 0.594 ± 0.256 |
24 h | 1.068 | 0.413 | 0.324 | 0.389 | 0.328 | 0.504 ± 0.317 |
B1 (μg/L) | B2 (μg/L) | B3 (μg/L) | B4 (μg/L) | B5 (μg/L) | Average ± DS (μg/L) | |
---|---|---|---|---|---|---|
1 h | 0.933 | 0.635 | 0.528 | 1.605 | 1.445 | 1.029 ± 0.480 |
2 h | 1.081 | 0.536 | 0.568 | 1.066 | 1.653 | 0.981 ± 0.458 |
3 h | 0.711 | 2.032 | 0.485 | 3.199 | 1.655 | 1.616 ± 1.093 |
4 h | 1.174 | 0.645 | 0.443 | 0.990 | 1.548 | 0.960 ± 0.436 |
5 h | 1.324 | 0.534 | 0.244 | 0.860 | 0.888 | 0.770 ± 0.407 |
6 h | 0.898 | 0.894 | 0.290 | 1.037 | 1.379 | 0.900 ± 0.394 |
24 h | 0.492 | 0.586 | 0.303 | 0.548 | 1.882 | 0.762 ± 0.635 |
Pk Parameters/Mice | A1 | A2 | A3 | A4 | A5 | Average ± DS |
---|---|---|---|---|---|---|
Cmax (ng/mL) | 1.16 | 1.03 | 0.69 | 0.76 | 0.87 | 0.90 ± 0.19 |
Tmax (h) | 1 | 6 | 1 | 5 | 5 | 3.60 ± 2.41 |
AUC (μg × h/mL) | 3.39 | 15.46 | 9.65 | 11.8 | 9.95 | 10.05 ± 4.38 |
Lz (h−1) | 0.1029 | 0.0329 | 0.0207 | 0.0301 | 0.0331 | 0.043 ± 0.03 |
T1/2 (h) | 6.74 | 21.05 | 33.42 | 23.05 | 20.94 | 21.04 ± 9.51 |
MRT (h) | 10.1 | 30.85 | 48.91 | 35.39 | 31.9 | 31.43 ± 13.9 |
Clearance (mL/h × kg) | 5.6 | 1.53 | 1.51 | 1.59 | 2.38 | 2.52 ± 1.76 |
Vz (mL/kg) | 54.44 | 46.59 | 72.82 | 52.78 | 71.94 | 59.71 ± 11.93 |
Vss (mL/kg) | 56.61 | 47.31 | 73.86 | 56.17 | 75.98 | 61.99 ± 12.40 |
Pk Parameters/Rats | B1 | B2 | B3 | B4 | B5 | Average ± DS |
---|---|---|---|---|---|---|
Cmax (ng/mL) | 1.324 | 2.032 | 0.568 | 3.199 | 1.655 | 1.756 ± 0.97 |
Tmax (h) | 5 | 3 | 2 | 3 | 3 | 3.200 ± 1.1 |
AUC (μg * h/mL) | 17.791 | 17.822 | 7.739 | 21.808 | 7.847 | 14.601 ± 6.43 |
Lz (h−1) | 0.044 | 0.025 | 0.021 | 0.049 | 0.099 | 0.048 ± 0.03 |
T1/2 (h) | 15.81 | 27.36 | 32.71 | 14.11 | 7.04 | 19.40 ± 10.42 |
MRT (h) | 24.59 | 40.04 | 48.54 | 21.04 | 10.89 | 29.02 ± 15.12 |
Clearance (mL/h * kg) | 12.76 | 0.92 | 17.95 | 13.05 | 21.04 | 13.14 ± 7.66 |
Vz (mL/kg) | 290.93 | 36.37 | 846.82 | 265.56 | 213.61 | 330.66 ± 305.18 |
Vss (mL/kg) | 313.68 | 36.9 | 871.04 | 274.55 | 229.12 | 345.06 ± 312.66 |
CmaxA (ng/mL) | CmaxB (ng/mL) | ClearanceA (mL/hxkg) | ClearanceB (mL/hxkg) | VzA (mL/kg) | VzB (mL/kg) | VssA (mL/kg) | VssB (mL/kg) |
---|---|---|---|---|---|---|---|
1.16 | 1.324 | 5.6 | 12.76 | 4.44 | 290.93 | 6.61 | 313.68 |
1.03 | 2.032 | 1.53 | 0.92 | 6.59 | 36.37 | 7.31 | 36.9 |
0.69 | 0.568 | 1.51 | 17.95 | 2.82 | 846.82 | 3.86 | 871.04 |
0.76 | 3.199 | 1.59 | 13.05 | 2.78 | 265.56 | 6.17 | 274.55 |
0.87 | 1.655 | 2.38 | 21.04 | 1.94 | 213.61 | 5.98 | 229.12 |
p < 0.01 | p < 0.05 | p < 0.0001 | p < 0.0001 |
AgNp (%) | NaCl (%) | SAg (%) | |
---|---|---|---|
D1–D2 | +3.08 | +10.24 | +6.70 |
D2–D3 | −9.45 | −2.14 | −7.85 |
D3–D5 | −21.43 | −27.74 | −26.14 |
D5–D8 | −27.27 | −28.28 | −19.23 |
D8–D10 | −12.50 | −9.86 | −3.81 |
D10–D12 | −23.08 | −23.44 | −10.89 |
D12–D15 | −100.00 | −100.00 | −100.00 |
Group | PLT (Cells × 103/µL) | MPV (fL) | PCT (%) | PDWc (%) |
---|---|---|---|---|
AgNp | 1299.78 ± 177.20 | 7.53 ± 0.17 | 0.98 ± 0.13 | 34.5 ± 0.54 |
SAg | 1251 ± 237.73 | 7.33 ± 0.31 | 0.92 ± 0.18 | 35.2 ± 0.81 |
NaCl | 1131.6 ± 157.69 | 7.44 ± 0.15 | 0.84 ± 0.10 | 34.86 ± 0.88 |
Group | WBC (Cells × 103/µL) | LY (%) | MI (%) | GR (%) |
---|---|---|---|---|
AgNp | 5.42 ± 0.99 | 47.82 ± 1.22 | 12.41 ± 0.97 | 37.06 ± 1.37 |
SAg | 3.86 ± 0.40 | 54.99 ± 3.24 | 12.64 ± 0.66 | 30.76 ± 1.25 |
NaCl | 4.30 ± 0.93 | 55.1 ± 4.46 | 14.5 ± 1.72 | 29.9 ± 4.81 |
Group | RBC (Cells × 106/µL) | HGB (g/dL) | HCT (%) | MCV (fL) | RDWc (%) | MCH (pg/Cells) | MCHC (g/dL) |
---|---|---|---|---|---|---|---|
AgNp | 8.65 ± 0.42 | 8.39 ± 2.34 | 46.49 ± 2.33 | 53.78 ± 0.97 | 18.46 ± 0.38 | 10.14 ± 2.98 | 18.18 ± 5.31 |
SAg | 9.15 ± 0.60 | 14.6 ± 0.65 | 48.89 ± 3.46 | 53.43 ± 2.07 | 18.54 ± 0.70 | 18.2 ± 0.50 | 33.71 ± 1.61 |
NaCl | 8.34 ± 1.14 | 17.66 ± 0.61 | 45.34 ± 5.81 | 54.4 ± 1.14 | 18.16 ± 0.25 | 22.72 ± 0.66 | 42.14 ± 2.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velescu, B.Ș.; Ilie, M.I.; Amzăr, A.I.; Lupașcu, R.E.; Marandiuc, I.M.; Apetroaei, M.-M.; Arsene, A.L.; Blejan, E.I.; Nedea, O.A.; Fistos, T.; et al. Development and Experimental Evaluation of Some Silver Nanoparticles with Antimicrobial Potential. Processes 2023, 11, 1212. https://doi.org/10.3390/pr11041212
Velescu BȘ, Ilie MI, Amzăr AI, Lupașcu RE, Marandiuc IM, Apetroaei M-M, Arsene AL, Blejan EI, Nedea OA, Fistos T, et al. Development and Experimental Evaluation of Some Silver Nanoparticles with Antimicrobial Potential. Processes. 2023; 11(4):1212. https://doi.org/10.3390/pr11041212
Chicago/Turabian StyleVelescu, Bruno Ștefan, Marina Ionela Ilie, Anca Ioana Amzăr, Raluca Elisabeta Lupașcu, Ilinca Mihaela Marandiuc, Miruna-Maria Apetroaei, Andreea Letiția Arsene, Emilian Ionuț Blejan, Octvian Alexandru Nedea, Toma Fistos, and et al. 2023. "Development and Experimental Evaluation of Some Silver Nanoparticles with Antimicrobial Potential" Processes 11, no. 4: 1212. https://doi.org/10.3390/pr11041212
APA StyleVelescu, B. Ș., Ilie, M. I., Amzăr, A. I., Lupașcu, R. E., Marandiuc, I. M., Apetroaei, M. -M., Arsene, A. L., Blejan, E. I., Nedea, O. A., Fistos, T., Fierăscu, R. C., Bărbuceanu, F., Țoca, C., Fierăscu, I., Udeanu, D. I., Ghica, M., Drăgănescu, D., & Cobelschi, P. C. (2023). Development and Experimental Evaluation of Some Silver Nanoparticles with Antimicrobial Potential. Processes, 11(4), 1212. https://doi.org/10.3390/pr11041212