The Effect of Spray-Drying Conditions on the Characteristics of Powdered Pistacia lentiscus Leaf Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Preparation of the P. lentiscus Leaf Extracts
2.4. Spray Drying
2.5. Methods of Analysis
2.5.1. Product Yield
2.5.2. Moisture Content
2.5.3. Hygroscopicity
2.5.4. Solubility
2.5.5. Bulk Density
2.5.6. Extraction of the Phenolic Compounds from the Powders
2.5.7. Total Phenolic Content (TPC)
2.5.8. Antioxidant Activity (AOA)
2.6. Statistical Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Milia, E.; Bullitta, S.M.; Mastandrea, G.; Szotáková, B.; Schoubben, A.; Langhansová, L.; Quartu, M.; Bortone, A.; Eick, S. Leaves and Fruits Preparations of Pistacia Lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection. Antibiotics 2021, 10, 425. [Google Scholar] [CrossRef]
- Detti, C.; dos Santos Nascimento, L.B.; Brunetti, C.; Ferrini, F.; Gori, A. Optimization of a Green Ultrasound-Assisted Extraction of Different Polyphenols from Pistacia Lentiscus L. Leaves Using a Response Surface Methodology. Plants 2020, 9, 1482. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Kruk, V.; Martić, A.; Martić, I.; Zorić, Z.; Pedisić, S.; Dragović, S.; Dragović-Uzelac, V. Evaluation of Polyphenolic Profile and Antioxidant Activity of Pistacia Lentiscus L. Leaves and Fruit Extract Obtained by Optimized Microwave-Assisted Extraction. Foods 2020, 9, 1556. [Google Scholar] [CrossRef]
- Pacifico, S.; Piccolella, S.; Marciano, S.; Galasso, S.; Nocera, P.; Piscopo, V.; Fiorentino, A.; Monaco, P. LC-MS/Ms Profiling of a Mastic Leaf Phenol Enriched Extract and Its Effects on H2O2 and AΒ(25–35) Oxidative Injury in Sk-B-Ne(c)-2 Cells. J. Agric. Food Chem. 2014, 62, 11957–11966. [Google Scholar] [CrossRef] [PubMed]
- Botsaris, G.; Orphanides, A.; Yiannakou, E.; Gekas, V.; Goulas, V. Antioxidant and Antimicrobial Effects of Pistacia Lentiscus L. Extracts in Pork Sausages. Food Technol. Biotechnol. 2015, 53, 472–478. [Google Scholar] [CrossRef]
- Qabaha, K.; Ras, S.A.; Abbadi, J.; Al-Rimawi, F. Anti-Inflammatory Activity of Eucalyptus Spp. and Pistascia Lentiscus Leaf Extracts. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mehenni, C.; Atmani-Kilani, D.; Dumarçay, S.; Perrin, D.; Gérardin, P.; Atmani, D. Hepatoprotective and Antidiabetic Effects of Pistacia Lentiscus Leaf and Fruit Extracts. J. Food Drug Anal. 2016, 24, 653–669. [Google Scholar] [CrossRef] [PubMed]
- Iauk, L.; Ragusa, S.; Rapisarda, A.; Franco, S.; Nicolosi, V.M. In Vitro Antimicrobial Activity of Pistacia Lentiscus L. Extracts: Preliminary Report. J. Chemother. 1996, 8, 207–209. [Google Scholar] [CrossRef]
- Azaizeh, H.; Halahleh, F.; Abbas, N.; Markovics, A.; Muklada, H.; Ungar, E.D.; Landau, S.Y. Polyphenols from Pistacia Lentiscus and Phillyrea Latifolia Impair the Exsheathment of Gastro-Intestinal Nematode Larvae. Vet. Parasitol. 2013, 191, 44–50. [Google Scholar] [CrossRef]
- Chen, X.; Chhun, S.; Xiang, J.; Tangjaidee, P.; Peng, Y.; Quek, S.Y. Microencapsulation of Cyclocarya Paliurus (Batal.) Iljinskaja Extracts: A Promising Technique to Protect Phenolic Compounds and Antioxidant Capacities. Foods 2021, 10, 2910. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Ramirez, M.J.; Orrego, C.E.; Teixeira, J.A.; Mussatto, S.I. Encapsulation of Antioxidant Phenolic Compounds Extracted from Spent Coffee Grounds by Freeze-Drying and Spray-Drying Using Different Coating Materials. Food Chem. 2017, 237, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Šeregelj, V.; Ćetković, G.; Čanadanović-Brunet, J.; Tumbas Šaponjac, V.; Vulić, J.; Stajčić, S. Encapsulation and Degradation Kinetics of Bioactive Compounds from Sweet Potato Peel during Storage. Food Technol. Biotechnol. 2020, 58, 314–324. [Google Scholar] [CrossRef]
- Tontul, I.; Topuz, A. Spray-Drying of Fruit and Vegetable Juices: Effect of Drying Conditions on the Product Yield and Physical Properties. Trends Food Sci. Technol. 2017, 63, 91–102. [Google Scholar] [CrossRef]
- Wandrey, C.; Bartkowiak, A.; Harding, S.E. Materials for Encapsulation. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Springer: New York, NY, USA, 2009; pp. 31–100. [Google Scholar]
- Del Valle, E.M.M. Cyclodextrins and Their Uses: A Review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Martinić, A.; Kalušević, A.; Lević, S.; Nedović, V.; Vojvodić Cebin, A.; Karlović, S.; Špoljarić, I.; Mršić, G.; Žižek, K.; Komes, D. Microencapsulation of Dandelion (Taraxacum officinale L.) Leaf Extract by Spray Drying. Food Technol. Biotechnol. 2022, 60, 237–252. [Google Scholar] [CrossRef]
- Zorzenon, M.R.T.; Formigoni, M.; da Silva, S.B.; Hodas, F.; Piovan, S.; Ciotta, S.R.; Jansen, C.A.; Dacome, A.S.; Pilau, E.J.; Mareze-Costa, C.E.; et al. Spray drying encapsulation of stevia extract with maltodextrin and evaluation of the physicochemical and functional properties of produced powders. J. Food Sci. 2020, 85, 3590–3600. [Google Scholar] [CrossRef]
- Zokti, J.; Sham Baharin, B.; Mohammed, A.; Abas, F. Green Tea Leaves Extract: Microencapsulation, Physicochemical and Storage Stability Study. Molecules 2016, 21, 940. [Google Scholar] [CrossRef]
- Pudziuvelyte, L.; Marksa, M.; Jakstas, V.; Ivanauskas, L.; Kopustinskiene, D.M.; Bernatoniene, J. Microencapsulation of Elsholtzia Ciliata Herb Ethanolic Extract by Spray-Drying: Impact of Resistant-Maltodextrin Complemented with Sodium Caseinate, Skim Milk, and Beta-Cyclodextrin on the Quality of Spray-Dried Powders. Molecules 2019, 24, 1461. [Google Scholar] [CrossRef]
- Official Methods of Analysis Program. Available online: https://www.aoac.org/scientific-solutions/standards-and-official-methods/ (accessed on 21 January 2023).
- Šavikin, K.; Nastić, N.; Janković, T.; Bigović, D.; Miličević, B.; Vidović, S.; Menković, N.; Vladić, J. Effect of Type and Concentration of Carrier Material on the Encapsulation of Pomegranate Peel Using Spray Drying Method. Foods 2021, 10, 1968. [Google Scholar] [CrossRef]
- Anderson, R.A.; Conway, H.F.; Pfeifer, V.F.; Griffin, L.E.J. Roll and Extrusion Cooking of Grain Sorghum Grits. Cereal Sci. Today 1969, 14, 372–375. [Google Scholar]
- Shi, Y.; Wang, J.; Wang, Y.; Zhang, H.; Ma, Y.; Zhao, X.; Zhang, C. Inlet Temperature Affects Spray Drying Quality of Watermelon Powder. Czech J. Food Sci. 2018, 36, 321–328. [Google Scholar] [CrossRef]
- Shortle, E.; O’Grady, M.N.; Gilroy, D.; Furey, A.; Quinn, N.; Kerry, J.P. Influence of Extraction Technique on the Anti-Oxidative Potential of Hawthorn (Crataegus Monogyna) Extracts in Bovine Muscle Homogenates. Meat Sci. 2014, 98, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Sarabandi, K.; Jafari, S.M.; Mahoonak, A.S.; Mohammadi, A. Application of Gum Arabic and Maltodextrin for Encapsulation of Eggplant Peel Extract as a Natural Antioxidant and Color Source. Int. J. Biol. Macromol. 2019, 140, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Insang, S.; Kijpatanasilp, I.; Jafari, S.; Assatarakul, K. Ultrasound-Assisted Extraction of Functional Compound from Mulberry (Morus Alba L.) Leaf Using Response Surface Methodology and Effect of Microencapsulation by Spray Drying on Quality of Optimized Extract. Ultrason. Sonochemistry 2022, 82, 105806. [Google Scholar] [CrossRef]
- Cegledi, E.; Garofulić, I.E.; Zorić, Z.; Roje, M.; Dragović-Uzelac, V. Effect of Spray Drying Encapsulation on Nettle Leaf Extract Powder Properties, Polyphenols and Their Bioavailability. Foods 2022, 11, 2852. [Google Scholar] [CrossRef] [PubMed]
- Gawałek, J. Effect of Spray Dryer Scale Size on the Properties of Dried Beetroot Juice. Molecules 2021, 26, 6700. [Google Scholar] [CrossRef]
- Şahin-Nadeem, H.; Dinçer, C.; Torun, M.; Topuz, A.; Özdemir, F. Influence of Inlet Air Temperature and Carrier Material on the Production of Instant Soluble Sage (Salvia Fruticosa Miller) by Spray Drying. LWT Food Sci. Technol. 2013, 52, 31–38. [Google Scholar] [CrossRef]
- Rahmati, E.; Sharifian, F.; Fattahi, M. Process Optimization of Spray-Dried Moldavian Balm (Dracocephalum Moldavica L.) Extract Powder. Food Sci. Nutr. 2020, 8, 6580–6591. [Google Scholar] [CrossRef]
- Tran, T.T.A.; Nguyen, H.V. Effects of Spray-Drying Temperatures and Carriers on Physical and Antioxidant Properties of Lemongrass Leaf Extract Powder. Beverages 2018, 4, 84. [Google Scholar] [CrossRef]
- Karaaslan, İ.; Dalgıç, A.C. Spray Drying of Liquorice (Glycyrrhiza Glabra) Extract. J. Food Sci. Technol. 2012, 51, 3014–3025. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Hernández, G.R.; González-García, R.; Grajales-Lagunes, A.; Ruiz-Cabrera, M.A.; Abud-Archila, M. Spray-Drying of Cactus Pear Juice (Opuntia Streptacantha): Effect on the Physicochemical Properties of Powder and Reconstituted Product. Dry. Technol. 2005, 23, 955–973. [Google Scholar] [CrossRef]
- Vidović, S.; Ramić, M.; Ambrus, R.; Vladić, J.; Szabó-Révész, P.; Gavarić, A. Aronia Berry Processing by Spray Drying. Food Technol. Biotechnol. 2019, 57, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Pombo, J.C.P.; de Medeiros, H.H.B.R.; Pena, R.D.S. Optimization of the spray drying process for developing cupuassu powder. J. Food Sci. Technol. 2020, 57, 4501–4513. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Microencapsulation of Pineapple Peel Extract by Spray Drying Using Maltodextrin, Inulin, and Arabic Gum as Wall Matrices. Foods 2020, 9, 718. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. J. Pharm. Sci. 1996, 85, 1017–1025. [Google Scholar] [CrossRef]
- Pui, L.P.; Lejaniya, A.K. Effects of Spray-Drying Parameters on Physicochemical Properties of Powdered Fruits. Foods Raw Mater. 2022, 10, 235–251. [Google Scholar] [CrossRef]
- Şahin Nadeem, H.; Torun, M.; Özdemir, F. Spray Drying of the Mountain Tea (Sideritis Stricta) Water Extract by Using Different Hydrocolloid Carriers. LWT Food Sci. Technol. 2011, 44, 1626–1635. [Google Scholar] [CrossRef]
- Kaloudi, T.; Tsimogiannis, D.; Oreopoulou, V. Aronia Melanocarpa: Identification and Exploitation of Its Phenolic Components. Molecules 2022, 27, 4375. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Retention of polyphenols in encapsulated sour cherry juice in dependence of drying temperature and wall material. LWT Food Sci. Technol. 2017, 83, 110–117. [Google Scholar]
- Gaćina, N.; Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Influence of Encapsulation Parameters on the Retention of Polyphenols in Blackthorn Flower Extract. Processes 2022, 10, 2517. [Google Scholar] [CrossRef]
Carrier | m(Carrier):V(Extract) | Temperature | Product Yield | Moisture Content | Hygroscopicity | Solubility | Bulk Density |
---|---|---|---|---|---|---|---|
(%) | (°C) | (%) | (%) | (g/100 g) | (%) | (g/mL) | |
BCD | 12.8 | 120 | 29.17 ± 0.55 | 12.03 ± 0.03 | 1.98 ± 0.03 | 35.22 ± 0.87 | 0.35 ± 0.01 |
150 | 43.06 ± 0.35 | 7.83 ± 0.04 | 1.22 ± 0.03 | 32.80 ± 0.79 | 0.32 ± 0.01 | ||
180 | 49,12 ± 0.19 | 7.38 ± 0.02 | 3.08 ± 0.25 | 43.96 ± 0.59 | 0.24 ± 0.01 | ||
16 | 120 | 38.33 ± 0.15 | 10.89 ± 0.02 | 2.12 ± 0.11 | 27.11 ± 0.60 | 0.32 ± 0.01 | |
150 | 40.27 ± 0.33 | 12.01 ± 0.03 | 1.63 ± 0.16 | 28.75 ± 0.56 | 0.35 ± 0.00 | ||
180 | 42.68 ± 0.55 | 9.84 ± 0.03 | 4.45 ± 0.19 | 37.60 ± 0.59 | 0.34 ± 0.01 | ||
19.2 | 120 | 33.56 ± 0.58 | 12.03 ± 0.01 | 1.78 ± 0.18 | 40.59 ± 1.33 | 0.30 ± 0.01 | |
150 | 27.42 ± 0.52 | 11.94 ± 0.01 | 0.45 ± 0.12 | 43.35 ± 0.45 | 0.24 ± 0.01 | ||
180 | 23.53 ± 0.09 | 8.40 ± 0.03 | 3.60 ± 0.34 | 44.58 ± 0.41 | 0.25 ± 0.01 | ||
MD | 12.8 | 120 | 47.91 ± 0.25 | 4.43 ± 0.03 | 0.08 ± 0.03 | 85.89 ± 0.83 | 0.39 ± 0.02 |
150 | 49.96 ± 0.31 | 4.02 ± 0.02 | 0.26 ± 0.09 | 84.35 ± 0.55 | 0.38 ± 0.01 | ||
180 | 48.13 ± 0.50 | 4.03 ± 0.03 | 0.07 ± 0.03 | 83.79 ± 0.43 | 0.33 ± 0.01 | ||
16 | 120 | 53.61 ± 0.40 | 5.19 ± 0.02 | 0.06 ± 0.01 | 79.98 ± 0.69 | 0.45 ± 0.01 | |
150 | 52.44 ± 1.27 | 4.94 ± 0.04 | 0.32 ± 0.41 | 83.42 ± 0.18 | 0.38 ± 0.01 | ||
180 | 55.47 ± 0.36 | 2.89 ± 0.02 | 0.12 ± 0.03 | 81.62 ± 0.36 | 0.40 ± 0.02 | ||
19.2 | 120 | 62.69 ± 0.45 | 4.27 ± 0.02 | 0.08 ± 0.04 | 79.63 ± 0.39 | 0.45 ± 0.01 | |
150 | 61.25 ± 0.27 | 3.48 ± 0.02 | 0.16 ± 0.04 | 80.50 ± 0.14 | 0.39 ± 0.01 | ||
180 | 62.81 ± 0.61 | 4.61 ± 0.02 | 0.07 ± 0.02 | 86.84 ± 5.44 | 0.35 ± 0.01 | ||
GA | 12.8 | 120 | 55.16 ± 0.81 | 6.25 ± 0.02 | 2.23 ± 0.13 | 76.25 ± 0.49 | 0.31 ± 0.01 |
150 | 51.92 ± 0.36 | 4.87 ± 0.02 | 3.95 ± 0.24 | 65.96 ± 0.86 | 0.33± 0.02 | ||
180 | 52.95 ± 0.56 | 3.62 ± 0.02 | 4.03 ± 0.54 | 79.30 ± 0.50 | 0.39 ± 0.01 | ||
16 | 120 | 60.49 ± 0.26 | 6.85 ± 0.02 | 2.50 ± 0.24 | 62.73 ± 0.64 | 0.31 ± 0.01 | |
150 | 40.57 ± 0.53 | 5.57 ± 0.02 | 3.37 ± 0.40 | 53.30 ± 0.40 | 0.29 ± 0.01 | ||
180 | 38.08 ± 0.43 | 3.17 ± 0.01 | 3.93 ± 0.57 | 75.96 ± 0.86 | 0.35 ± 0.01 | ||
19.2 | 120 | 54.15 ± 0.72 | 6.50 ± 0.02 | 2.56 ± 0.28 | 69.20 ± 0.45 | 0.34 ± 0.01 | |
150 | 62.43 ± 0.57 | 6.75 ± 0.04 | 1.54 ± 0.30 | 72.59 ± 0.62 | 0.29 ± 0.01 | ||
180 | 59.84 ± 0.29 | 4.53 ± 0.02 | 3.40 ± 0.23 | 80.39 ± 0.42 | 0.31 ± 0.01 | ||
BCD + GA | 12.8 | 120 | 42.10 ± 0.21 | 7.13 ± 0.03 | 1.40 ± 0.16 | 74.04 ± 0.58 | 0.33 ± 0.01 |
150 | 60.96 ± 0.65 | 4.41 ± 0.01 | 2.69 ± 0.26 | 56.89 ± 0.76 | 0.30 ± 0.01 | ||
180 | 59.09 ± 0.32 | 5.33 ± 0.02 | 4.40 ±0.28 | 73.07 ± 0.40 | 0.26 ± 0.01 | ||
16 | 120 | 61.28 ± 0.39 | 6.23 ± 0.02 | 2.92 ± 0.43 | 67.96 ± 0.35 | 0.34 ± 0.01 | |
150 | 59.83 ± 0.44 | 3.91 ± 0.03 | 3.45 ± 0.40 | 75.74 ± 0.59 | 0.32 ± 0.01 | ||
180 | 55.98 ± 0.11 | 4.68 ± 0.03 | 2.98 ± 0.38 | 54.79 ± 0.46 | 0.29 ± 0.01 | ||
19.2 | 120 | 48.81 ± 0.04 | 7.71 ± 0.04 | 1.68 ± 0.37 | 76.63 ± 0.53 | 0.34 ± 0.01 | |
150 | 57.82 ± 0.56 | 5.97 ± 0.01 | 3.13 ± 0.46 | 67.06 ± 0.73 | 0.31 ± 0.01 | ||
180 | 62.78 ± 0.43 | 7.83 ± 0.03 | 2.77 ± 0.35 | 72.01 ± 0.36 | 0.28 ± 0.01 | ||
MD + GA | 12.8 | 120 | 60.87 ± 1.03 | 8.09 ± 0.02 | 2.81 ± 0.35 | 58.82 ± 0.56 | 0.33 ± 0.01 |
150 | 59.07 ± 0.34 | 7.90 ± 0.02 | 2.50 ± 0.25 | 57.53 ± 0.46 | 0.33 ± 0.01 | ||
180 | 61.88 ± 0.42 | 6.78 ± 0.02 | 2.63 ± 0.32 | 62.50 ± 0.43 | 0.31 ± 0.01 | ||
16 | 120 | 63.86 ± 2.71 | 8.83 ± 0.02 | 1.94 ± 0.27 | 76.75 ± 0.49 | 0.35 ± 0.02 | |
150 | 65.51 ± 0.26 | 5.13 ± 0.02 | 1.79 ± 0.28 | 56.24 ± 0.32 | 0.35 ± 0.01 | ||
180 | 55.95 ± 0.56 | 8.50 ± 0.03 | 2.85 ± 0.22 | 70.44 ± 0.29 | 0.30 ± 0.01 | ||
19.2 | 120 | 43.35 ± 0.58 | 8.69 ± 0.02 | 2.05 ± 0.25 | 72.50 ± 0.85 | 0.34 ± 0.01 | |
150 | 56.86 ± 0.35 | 6.45 ± 0.02 | 3.43 ± 0.24 | 64.32 ± 0.48 | 0.34 ± 0.01 | ||
180 | 60.86 ± 0.43 | 7.23 ± 0.02 | 2.57 ± 0.18 | 73.09 ± 0.55 | 0.29 ± 0.01 |
Product Yield (%) | Moisture (%) | Hygroscopicity (g/100 g) | Solubility (%) | Bulk Density (mL/g) | |
---|---|---|---|---|---|
Carrier | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * |
BCD | 36.35 ± 1.56 a | 10.26 ± 0.36 c | 2.26 ± 0.23 b | 37.11 ± 1.22 a | 0.30 ± 0.01 a |
MD | 54.92 ± 1.12 b | 4.21 ± 0.13 a | 0.21 ± 0.05 a | 82.89 ± 0.57 c | 0.39 ± 0.03 b |
GA | 56.18 ± 2.80 b | 5.34 ± 0.25 ab | 3.06 ± 0.17 b | 70.63 ± 1.63 b | 0.38 ± 0.01 ab |
BCD + GA | 56.52 ± 1.26 b | 5.91 ± 0.27 b | 2.86 ± 0.19 b | 68.69 ± 1.47 b | 0.31 ± 0.01 a |
MD + GA | 59.62 ± 1.45 b | 7.51 ± 0.23 c | 2.51 ± 0.10 b | 65.80 ± 1.41 b | 0.33 ± 0.00 a |
m(Carrier):V(Extract) | p = 0.32 | p = 0.33 | p = 0.54 | p = 0.38 | p = 0.08 |
12.8 | 51.42 ± 1.30 a | 6.27 ± 0.33 a | 2.26 ± 0.21 a | 64.69 ± 2.52 a | 0.36 ± 0.02 a |
16 | 54.85 ± 2.09 a | 6.58 ± 0.41 a | 2.31 ± 0.20 a | 62.16 ± 2.74 a | 0.34 ± 0.01 a |
19.2 | 51.88 ± 1.98 a | 7.09 ± 0.37 a | 1.97 ± 0.18 a | 68.22 ± 2.10 a | 0.32 ± 0.01 a |
Temperature (°C) | p = 0.77 | p < 0.01 * | p < 0.01 * | p = 0.12 | p < 0.01 * |
120 | 52.91 ± 2.28 a | 7.67 ± 0.36 b | 1.75 ± 0.14 a | 65.55 ± 2.58 a | 0.35 ± 0.01 b |
150 | 52.62 ± 1.55 a | 6.35 ± 0.39 a | 1.99 ± 0.20 a | 61.52 ± 2.50 a | 0.36 ± 0.02 b |
180 | 52.61 ± 1.59 a | 5.92 ± 0.32 a | 2.78 ± 0.22 b | 68.00 ± 2.30 a | 0.31 ± 0.01 a |
Carrier | m(Carrier):V(Extract) (%) | Temperature (°C) | TPC (mg/g DM) | AOA (μmoL Trolox/g DM) |
---|---|---|---|---|
BCD | 12.8 | 120 | 129.77 ± 13.17 | 71.45 ± 8.91 |
150 | 137.44 ± 22.32 | 168.64 ± 37.56 | ||
180 | 114.21 ± 20.83 | 166.00 ± 28.21 | ||
16 | 120 | 146.78 ± 21.53 | 140.54 ± 35.63 | |
150 | 125.83 ± 17.92 | 84.97 ± 9.60 | ||
180 | 158.04 ± 20.58 | 89.47 ± 7.52 | ||
19.2 | 120 | 147.80 ± 20.43 | 73.21 ± 27.29 | |
150 | 142.17 ± 15.73 | 97.79 ± 15.57 | ||
180 | 167.32 ± 15.70 | 58.54 ± 16.50 | ||
MD | 12.8 | 120 | 101.56 ± 14.82 | 41.87 ± 5.71 |
150 | 67.93 ± 10.91 | 22.40 ± 5.05 | ||
180 | 75.97 ± 13.78 | 25.07 ± 3.43 | ||
16 | 120 | 70.21 ± 15.89 | 24.04 ± 2.43 | |
150 | 65.09 ± 21.74 | 27.85 ± 7.70 | ||
180 | 67.82 ± 16.50 | 26.87 ± 3.04 | ||
19.2 | 120 | 71.70 ± 11.67 | 29.12 ± 4.85 | |
150 | 66.93 ± 12.86 | 31.38 ± 4.22 | ||
180 | 68.23 ± 9.74 | 31.94 ± 3.90 | ||
GA | 12.8 | 120 | 107.93 ± 15.54 | 57.22 ± 12.53 |
150 | 33.92 ± 8.56 | 25.44 ± 6.85 | ||
180 | 91.78 ± 12.48 | 53.93 ± 10.22 | ||
16 | 120 | 91.31 ± 11.10 | 63.65 ± 10.62 | |
150 | 111.69 ± 15.56 | 62.09 ± 13.22 | ||
180 | 115.23 ± 15.86 | 61.78 ± 26.06 | ||
19.2 | 120 | 174.19 ± 20.87 | 119.03 ± 11.03 | |
150 | 95.92 ± 10.13 | 41.47 ± 4.37 | ||
180 | 93.35 ± 17.12 | 37.24 ± 2.94 | ||
BCD + GA | 12.8 | 120 | 124.25 ± 16.02 | 93.33 ± 19.72 |
150 | 111.92 ± 13.82 | 110.49 ± 9.79 | ||
180 | 117.27 ± 17.23 | 120.95 ± 13.56 | ||
16 | 120 | 115.73 ± 16.55 | 46.88 ± 6.15 | |
150 | 98.64 ± 16.72 | 51.30 ± 9.56 | ||
180 | 175.90 ± 15.83 | 85.94 ± 5.76 | ||
19.2 | 120 | 130.72 ± 15.34 | 58.89 ± 9.49 | |
150 | 143.41 ± 19.37 | 56.82 ± 10.25 | ||
180 | 181.44 ± 20.78 | 108.51 ± 20.76 | ||
MD + GA | 12.8 | 120 | 151.39 ± 11.47 | 93.02 ± 7.96 |
150 | 138.33 ± 12.21 | 58.30 ± 10.78 | ||
180 | 180.83 ± 12.32 | 71.30 ± 6.86 | ||
16 | 120 | 95.81 ± 14.75 | 40.35 ± 5.58 | |
150 | 84.82 ± 14.14 | 33.63 ± 7.07 | ||
180 | 169.36 ± 18.11 | 79.22 ± 2.74 | ||
19.2 | 120 | 155.49 ± 15.36 | 87.00 ± 1.30 | |
150 | 154.13 ± 19.56 | 91.39 ± 6.07 | ||
180 | 192.88 ± 15.79 | 85.57 ± 1.22 |
TPC (mg/g DM) | AOA (μmoL Trolox/g DM) | |
---|---|---|
Carrier | p < 0.01 * | p < 0.01 * |
BCD | 141.04 ± 4.29 c | 97.47 ± 8.42 c |
MD | 70.25 ± 3.94 a | 26.07 ± 1.51 a |
GA | 101.70 ± 7.09 b | 56.76 ± 5.41 b |
BCD + GA | 133.25 ± 5.95 c | 78.12 ± 6.13 bc |
MD + GA | 140.57 ± 8.31 c | 67.78 ± 4.72 bc |
m(Carrier):V(Extract) | p = 0.03 * | p = 0.39 |
12.8 | 108.44 ± 5.60 a | 72.67 ± 6.72 a |
16 | 112.82 ± 5.68 ab | 59.33 ± 5.02 a |
19.2 | 130.83 ± 6.99 b | 63.73 ± 4.84 a |
Temperature (°C) | p = 0.06 | p = 0.39 |
120 | 120.98 ± 4.95 a | 66.64 ± 5.31 a |
150 | 105.21 ± 5.57 a | 61.22 ± 6.13 a |
180 | 125.90 ± 7.62 a | 67.87 ± 5.43 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jović, T.; Elez Garofulić, I.; Čulina, P.; Pedisić, S.; Dobroslavić, E.; Cegledi, E.; Dragović-Uzelac, V.; Zorić, Z. The Effect of Spray-Drying Conditions on the Characteristics of Powdered Pistacia lentiscus Leaf Extract. Processes 2023, 11, 1229. https://doi.org/10.3390/pr11041229
Jović T, Elez Garofulić I, Čulina P, Pedisić S, Dobroslavić E, Cegledi E, Dragović-Uzelac V, Zorić Z. The Effect of Spray-Drying Conditions on the Characteristics of Powdered Pistacia lentiscus Leaf Extract. Processes. 2023; 11(4):1229. https://doi.org/10.3390/pr11041229
Chicago/Turabian StyleJović, Tanja, Ivona Elez Garofulić, Patricija Čulina, Sandra Pedisić, Erika Dobroslavić, Ena Cegledi, Verica Dragović-Uzelac, and Zoran Zorić. 2023. "The Effect of Spray-Drying Conditions on the Characteristics of Powdered Pistacia lentiscus Leaf Extract" Processes 11, no. 4: 1229. https://doi.org/10.3390/pr11041229
APA StyleJović, T., Elez Garofulić, I., Čulina, P., Pedisić, S., Dobroslavić, E., Cegledi, E., Dragović-Uzelac, V., & Zorić, Z. (2023). The Effect of Spray-Drying Conditions on the Characteristics of Powdered Pistacia lentiscus Leaf Extract. Processes, 11(4), 1229. https://doi.org/10.3390/pr11041229