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Abstract: Chemical flooding is important and effective enhanced oil recovery processes are applied
to improve the recovery of heavy oil reservoirs. Emulsification occurs during chemical flooding
processes, forming an oil-in-water (O/W) emulsion system. In this work, the heavy oil emulsion
system is characterized as a three-phase (continuous oil phase, dispersed oil phase, and continuous
water phase) system. Based on a capillary tube model, a new relative permeability model is proposed
to describe the flow of the emulsion system in porous media quantitatively, considering the physico-
chemical properties of emulsions and the properties of porous media. A resistance factor is derived
in this model to describe the additional resistance to the emulsion flow caused by the interaction
between dispersed oil droplets and the pore system. Three dimensionless numbers related to the
emulsion porous flow process were proposed and their different effects on the three-phase relative
permeability are investigated. To validate the reliability of the proposed model, a one-dimensional
O/W emulsion–oil displacement experiment is simulated. The maximum absolute error between
the simulated results and experimental data is no more than 10%, and the new model can be used to
describe the flow behavior of heavy oil emulsions in porous media.

Keywords: emulsion; chemical flood; relative permeability; enhanced oil recovery; dispersed system;
porous flow

1. Introduction

Heavy oil, of which the viscosity ranges from 102 mPa·s to 104 mPa·s, has become
a prominent class of unconventional oil resources [1]. Recent studies estimate that the
total amount of recoverable heavy oil is almost the same as the remaining conventional oil
resources [2–4]. Chemical flooding is now widely applied for enhanced heavy oil recov-
ery [5–9], and presents several advantages in mature oilfields [10]. With the presence of
chemicals such as surfactants or alkalis acting as emulsifiers, oil-in-water (O/W) emulsions
could form in heavy oil reservoirs, carrying out trapping oil [5,7,11,12]. O/W emulsion is a
heterogeneous system, with small oil droplets (with a size of 0.5 µm to 50 µm) dispersed in
the continuous water phase. As a dispersed system, the motion of oil-in-water emulsion
through the porous medium is significantly different from that of a continuous oil phase
or water phase. Thus, the understanding of emulsion flow through a porous medium is
crucial for the usage of a chemical flood in heavy oil reservoirs.

Many investigations on O/W emulsion porous flow have been performed through
laboratory methods. Uzoigwe and Marsden pioneered the experiments on O/W emulsion
flow through glass bead packing models to study the flow behavior of emulsions in porous
media [13]. McAuliffe was the first to recognize the obstructive effect of emulsion droplets
on fluid flow in porous media and applied this mechanism to enhance oil recovery [14].
He suggested that when an emulsion passes through porous media, the Jamin effect is
particularly prominent if the oil droplet size is larger than the pore throat diameter, subse-
quently leading to flow limitation due to capillary resistance. However, the explanation
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does not accommodate cases where the oil droplet size is smaller than the pore throat
diameter. Further experiments conducted by Soo et al. proposed that, during the flow of
emulsions through porous media, dispersed phase droplets can be captured and adsorbed
by the media, resulting in reduced permeability [15]. In other experiments, Khambharatana
et al. focused on emulsion rheology, concluding that the rheological behavior of emul-
sions in porous media is not significantly different from their behavior in viscometers [16].
Alvarado et al. suggested that emulsions can be considered non-Newtonian fluids when
the volume fraction of a dispersed phase exceeds 50%, and can be otherwise regarded as
Newtonian fluids [17]. Wang et al. observed an emulsion flood after a water flood through
a micromodel and identified two main physical mechanisms for emulsion-enhanced oil
recovery [18]. The first mechanism is altering the pressure distribution in the flow field
by blocking the flow channels, thereby reducing residual oil. The second one is dispersed
phase droplets exerting a pulling force on residual oil during the flow, causing the oil to
deform into smaller droplets.

Many researchers have examined emulsion flow in porous media theoretically, de-
veloping a variety of theoretical models to describe their flow behavior. There are three
widely recognized conventional mathematical models now: the bulk viscosity model, the
retardation model, and the deep filtration model. Alvarado et al. introduced the bulk vis-
cosity model [17], considering emulsions as homogeneous single-phase fluids. They found
that the rheological properties of O/W emulsions in porous media were similar to their
properties in capillaries. They concluded that when the dispersed phase ratio exceeded
50%, the emulsions could be considered non-Newtonian fluids and provided parameters to
characterize their rheology. Abou-Kassem et al. further refined the bulk viscosity model by
presenting a modified Darcy’s law applicable to non-Newtonian emulsions [19]. However,
the bulk viscosity model merely treats emulsions as single-phase fluids, similar to polymer
solutions, and does not account for the interactions between dispersed phase droplets and
pores. As a result, this model is only applicable in a limited range of situations.

The retardation model proposed by Devereux [20] was to explain the phenomenon
of permeability reduction observed by McAuliffe. Based on the Buckley–Leverett model,
he introduced a dispersion phase resistance factor to represent the capillary resistance
experienced by the dispersed phase during flow. This model aligns well with the experi-
mental results of emulsion flow in porous media but cannot predict the situation of a water
injection following emulsion flow. Yu and Ding et al. [21,22] made improvements to the
retardation model, considering the porous media as channels composed of larger pores and
smaller pore throats and taking into account the blocking phenomenon caused by multiple
emulsion droplets. The modified model can better predict the experimental phenomena
of water flooding following emulsion flooding. However, the retardation model assumes
the properties of emulsions are constant and cannot describe the variations of emulsion
droplets during flow.

Soo et al. introduced the deep filtration theory into emulsion porous flow to consider
the interaction between droplets and pore throats [23]. They assumed that dispersed phase
droplets would be captured by the porous media such as tiny particles. The captured
droplets would block smaller flow channels, resulting in a decrease in permeability. How-
ever, the deep filtration model assumes that once droplets are captured by pores, they
cannot be remobilized, which means the reduction in permeability is irreversible. This
is inconsistent with experimental observations. Although some researchers improved
the model by considering the remobilization of droplets [24], the introduction of new
parameters made the modified model excessively complex.

Existing models for emulsion porous flow often represent porous media as a capillary
bundle with uniform diameters. They usually use the flow behavior in a single capillary
as a substitute for the porous medium. However, many theoretical and experimental
research studies have shown that the interaction between dispersed droplets and pores
plays a significant role in affecting the flow. Wei et al. [25] studied emulsion flow in
constricted capillaries using a lattice Boltzmann simulation method. They argued the
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emulsion capillary flow may have complex mechanism, including deformation, snap-off,
and the “trap effect”. Thus, we regard the relative size of capillaries and droplets being
the most critical factor in this study. Additionally, most of the models mainly focused
on the single O/W emulsion porous flow process, which only includes dispersed oil and
continuous water. These models are unable to describe the three phases of flow (dispersed
oil, continuous water, and continuous oil) that occur during heavy oil recovery adequately.
In this work, a new three-phase relative permeability model is proposed, considering the
physicochemical properties of emulsions and the pore size distribution of the porous media.
The interaction between the dispersed oil droplets and pore system is characterized by a
resistance factor, which is carefully derived considering the various relative sizes of pores
and droplets.

2. Emulsion Flow through a Single Capillary Tube
2.1. Single-Phase Flow in a Single Capillary Tube

Consider a single-phase fluid (oil or water) flowing through a straight circular capillary
tube of uniform radius R and length L. Assuming the single-phase fluid is Newtonian and
the flow is laminar, the Hagen–Poiseuille equation could be applied, written as:

dv
dr

= −1
2

dp
dz
× r

µ
(1)

where µ is viscosity of the fluid, Pa·s; r is the radical coordinate, m; z is the axial coor-
dinate, m; p is the fluid pressure, Pa; v is the velocity of fluid at a point distance r from
the axis, m/s.

By integrating Equation (1) and applying the non-slip boundary condition, we have
the velocity function [26]:

v(r) =
∆P
4µL

(
R2 − r2

)
(2)

where ∆P is the pressure drop along the tube.
Then, the flow rate of the single-phase fluid through a single capillary tube, q0, could

be derived by integrating the velocity over the tube cross section:

q0 =
∫ R

0
vd
(

πr2
)
=

∆P
8µL

πR4 (3)

2.2. Single-Phase Flow in a Single Capillary Tube

The flow of an O/W emulsion through a porous medium, as addressed previously, is
significantly affected by the volume fraction of dispersed oil droplets, φd, and the relative
size between dispersed oil droplets and pores. The effects of both aspects could be reflected
by the behavior of the emulsion flow through a single capillary tube. We consider dispersed
oil droplets in the emulsion flow as spheres of a uniform diameter de, m, and define the
diameter ratio λ of the droplets diameter to the capillary tube diameter, written as:

λ =
de

2R
(4)

The aim is to represent the total flow rate of the emulsion flow through a single
capillary tube q, as a function of the pressure drop along the tube ∆P, the diameter ratio λ,
and the dispersed phase volume fraction φd.

2.2.1. Case of a Line of Intermediate-Sized Spherical Droplets

We begin by considering the case that the diameter of dispersed oil droplets is quite
comparable with the capillary tube diameter, where 0 � λ < 1. In this case we assume
that, as illustrated in Figure 1a, the dispersed droplets are located on the axis of the cylinder
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and equally spaced. The distance between neighboring drops is βR. In dimensionless form,
the equations of motion and continuity for this problem are written as follows:{

−∇P′ +∇2v′ = 0
∇·v′ = 0

(5)

where P′ and v′ are dimensionless pressure and velocity, respectively.
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Figure 1. Schematic view of dispersed droplets with intermediate size in single capillary tube. (a)
Dispersed droplets are located on the axis of the cylinder and equally spaced; (b) the simplified
“stacked coins” model.

This problem is analytically investigated by Wang [27]. They gave a solution in
dimensionless form that could compute the pressure drop per sphere, written as:

∆P′drop = −8F2 − 16E2 − 4Vβ (6)

where V is average velocity, defined as V = q
2πr2 ; E2 and F2 are the first term of constant

sequence E2s and F2s, respectively. E2s, F2s is used for discretization of the stream function
ψa, written as:

ψa =
∞

∑
s=1

[
E2sψ

(1)
2s + F2sψ

(2)
2s

]
(7)

where ψ
(i)
2s is defined as:

ψ
(i)
2s =

1
(2s− 2)!

∂2s−2ψ(i)

∂z2s−2 (s ≥ 1, i = 1, 2) (8)

Then, in dimensional form, the total pressure gradient could be written as:

dpz

dz
=

µ

R
(−VGV + UGU)−

4µV
R2 + ρg (9)

where GV and GU are coefficients derived from E2 and F2 values; U is the velocity of
spheres; and µ is the viscosity of the external phase, in O/W it refers to the viscosity of
water, µ = µw.

The analytical solution above requires excessive numerical computations for further
use. To simplify the solution, further assumptions must be made. The effect of gravity
could be neglected, so that term ρg could be disregarded. The zero-drag assumption is also
adopted, which means that we assume the flow of the external phase fluid and dispersed
droplets in the cylindrical tube is stable; thus, the external phase fluid exerts zero drag
force on the dispersed droplets. Then, the velocity of the spheres U could be represented
by V, reducing Equation (9) to a solvable form:

dpz

dz
= −4µ

R2 V
(
1 + GV0

)
(10)
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The flow rate is addressed as:

qe =
1

1 + GV0

∆P
8µL

πR4 (11)

For a simpler “stacked coins” model, as schemed in Figure 1b, when β = 2λ, dispersed
droplets are regarded as stacked cylinders of the same diameter with the droplets. We have
the additional pressure drop coefficient:

GV0 =
λ4

1− λ4 (12)

Here, a resistance factor ξ is defined by the ratio of single external phase Poiseuille
flow rate through a capillary tube to that of the O/W emulsion flow, with the same tube
length and total pressure drop, written as

qe =
1
ξ

q0 (13)

For more general cases that dispersed droplets are not attached to each other, when
β > 2λ, consider the tube part of length βR in the capillary as a serial connection of “stacked
coins” flow part of length 2λR and Poiseuille flow part of length (β− 2λ)R. Then, qe is
derived as:

qe =
1(

1 + λ4

1−λ4
2λ
β

) ∆P
8µwL

πR4 (14)

Notice that the dispersed droplets volume faction φd could be presented by β and λ in
this case:

φd =
4λ3

3β
, meanwhile

φd
λ2 <

2
3

(15)

The resistance factor then is written as:

ξ(λ, φd) = 1 +
3λ2φd

2(1− λ4)
(16)

However, a correction coefficient G′ ≈ 3/4 is suggested by Wang for GV0 when using
the “stacked coins” model on a line of spherical droplets [27], based on numerical results.
Thus, the resistance factor after correlation becomes:

ξ(λ, φd) = 1 +
9λ2φd

8(1− λ4)
(17)

2.2.2. Case of a Large Amount of Small-Sized Droplets

Now, consider the case that there is an O/W emulsion flow through a capillary tube,
when the size of the droplets is relatively small and the volume faction of droplets are
large, satisfying:

φd
λ2 ≥

2
3

(18)

As schemed in Figure 2a, we assume that the dispersed oil droplets are uniformly
distributed near the axis of the tube, surrounded by a clear annulus of continuous water.
The assumption is made since the reservoir is usually hydrophilic due to the impacts of
surfactants during chemical flooding. Then, we consider the effective resistance of the
dispersed oil droplets flowing down the center of the tube. As illustrated in Figure 2b,
the suspension in the center of the tube is approximated to an axial cylindrical flow
with an effective radius re f f , and the width of the surrounding annulus of continuous

water is
(

R− re f f

)
.
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Figure 2. Schematic view of a large amount of small, dispersed droplets spread in a single capillary
tube. (a) Dispersed droplets are uniformly spread on the axis of the cylinder; (b) the schematic view
of the effective radius.

According to the derivation by Thomas [28], the total flow rate of the tube could be
written as:

qe =

(
1−

( re f f

R

)4
)

∆P
8µwL

πR4 (19)

where
re f f

R = c0
2c−c0

. Here, c0 = φ is the reservoir concentration of dispersed oil, and c
is the core concentration, determined on the packing condition of dispersed droplets. If
the deformation of small droplets is not considered, we could regard those dispersed oil
droplets as random close packing spheres, c ≈ 0.64.

The resistance factor in this case could then be written:

ξ(φd) =
1

1−
(

φd
1.28−φd

)4 (20)

where φd is no more than 0.64.

2.2.3. Case of Deformed Large-Sized Droplets

When λ > 1, the size of droplets is larger than that of the capillary tube, and the
deformation of droplets is considered. As illustrated in Figure 3, the shape of the spherical
droplets became a long cylindrical shape with caps when entering the smaller cylindrical
tube. The long drop is slowly moving relative to the tube walls with a steady velocity U.
The oil drop is surrounded by a thin water film of uniform thickness b = εR, since the
reservoir is considered hydrophilic.
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Figure 3. Schematic view of a deformed droplet with larger diameter than the capillary. (a) The
schematic view of the droplet deforming to enter a smaller capillary; (b) the schematic view of the
deformed droplet in the capillary.

By performing an analytical investigation on the front profile of the long drop, Hodges
suggested that the film thickness ε can be predicted as a function of capillary number Ca
and viscosity ratioω. It is written as [29]:

ε = F(ω, Ca)Ca
2
3 (21)
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In Equation (19), the value of F(ω, Ca) is determined by following:
F = F0 ≈ 1.337, ω � ε−

1
2

F = 2
2
3 F0 ≈ 2.123, ε−

1
2 � ω � ε−1

F = 4
2
3 F0 ≈ 3.370, ω � ε−1

F ≈ 2
2
3 F0

(
2 + 4ωCa

2
3 F
)

/
(

1 + 4ωCa
2
3 F
)

, ω ∼ ε−1

(22)

where viscosity ratio ω is defined as ω = µo
µw

; capillary number Ca is defined as Ca = µwU
σ ,

and σ is the interfacial tension between oil and water; F0 is a unique solution for the
Landau–Levich equation:

hx′x′x′h
3 + 1− h = 0 (23)

where x′ = 3
1
3 F−

1
2 x.

As for the circumstance ω ∼ ε−
1
2 , F is the solution for equation:

hx′x′x′h
3 + 2(1− h) + vbh = 0 (24)

where x′ = 6
1
3 F−

1
2 x and vb is the relative velocity between different zones of drop interface.

Regarding the motion of the thin film as the Couette flow, we could also apply the serial
connected stacked-coins model for this case. If the long oil drop is considered cylindrical
when measuring its volume, the total flow rate of the tube could then be written as:

qe =
1(

1 + φd(1−ε)2

1−(1−ε)4

) ∆P
8µwL

πR4 (25)

Thus, in this case ξ could be written as:

ξ(ε, φd) = 1 +
φd(1− ε)2

1− (1− ε)4 (26)

3. Relative Permeability Model and Pore Size Distribution Function
3.1. Relative Permeability Based on Capillary Bundle Model

Now we investigate the O/W emulsion flow through a porous medium. Here, the
porous medium is simplified to a bundle of capillary tubes, as shown in Figure 4a. These
capillary tubes are assumed to possess the same length L, but with different diameters, as
we know the size of pores plays an important role in the process. The size and the amount
of the capillary tube could be determined by the pore size distribution (PSD) function f (R).
f (R) is defined as the relative abundance of each pore radii R in a representative volume
of porous medium, satisfying: ∫ ∞

0
f (R)dR = 1 (27)

The permeability K and porosity φ of the proposed model shall be the same with that of
the porous medium. For a single-phase flow in porous media, from Equation (3) the total
flow rate of all tubes could be written as:

Q =
φA∆P

8µL

∫ ∞

0
R2 f (R)dR (28)

where A is the cross-section of the porous medium. By Darcy’s law, we have:

Q =
KA∆P

µL
(29)
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Combining Equations (28) and (29), the relationship between permeability and porosity
could be expressed by the PSD function:

K =
φ

8

∫ ∞

0
R2 f (R)dR (30)Processes 2023, 11, x FOR PEER REVIEW 9 of 21 
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Figure 4. Schematic view of the porous medium and the proposed capillary bundle model. (a) Porous
medium and capillary bundle model; (b) the way the capillary tubes divided into three types.

The flow of the O/W emulsion system through porous media, according to the ex-
perimental study, can usually be divided into three flowing zones. That is, the oil flowing
zone, the water flowing zone, and the O/W emulsion flowing zone. The oil flowing zone
is characterized by the flow of the continuous oil phase, and the water flowing zone is
characterized by the flow of the continuous water phase. The emulsion flowing zone is
characterized by the flow of both the dispersed oil phase and continuous water phase.
Assume that no further dispersion of oil phase take place, and the distribution of dis-
persed oil droplets does not become more homogeneous in the continuous water phase
during the flow.

As shown in Figure 4b, the capillary tubes of the proposed model are divided into
three types based on their size, corresponding to the flowing zones:

Type I: Smaller tubes. Since the chemical flooding treatment is usually used after the
water flooding, and for heavy oil reservoir the viscosity of oil is much larger than water, we
think the water phase is more likely to flow down the larger tubes, and the smaller tubes
are totally occupied by the continuous oil phase. Type I tubes refer to the oil flowing zone.

Type II: Larger tubes. The larger tubes are occupied by the continuous water phase.
Type II tubes refer to the water flowing zone.

Type III: Intermediate-sized tubes. During the chemical flooding procedure, surfactant
is present to alter the wettability of the porous medium (mostly from hydrophobic to
hydrophilic), allowing water to enter some oil-occupied channels, so that the O/W emulsion
could form. In the proposed model, we regard the intermediate-sized tubes occupied by
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the O/W emulsion composed by the continuous water phase and dispersed oil phase,
referring to the emulsion flowing zone.

Let the radii of the Type I tubes be 0 < R ≤ R1, the radii of Type II tubes be R2 < R <
∞, and the radii of Type III tubes be R1 < R ≤ R2. The total flow rate of three types of
tubes could then be written as:

QI =
φA∆P
8µoL

∫ R1

0
R2 f (R)dR (31)

QI I =
φA∆P
8µwL

∫ ∞

R2

R2 f (R)dR (32)

QI I I =
φA∆P
8µwL

∫ R2

R1

1
ξ(λ, φd, ε)

R2 f (R)dR (33)

where QI is the total flow rate of Type I tubes; QI I is the total flow rate of Type II tubes; QI I I
is the total flow rate of Type III tubes; and the value of ξ is calculated by Equations (17),
(20) and (26).

By Darcy’s law of multiphase flow:

Qi =
KKri

µi
A∇P (34)

where Kri is the relative permeability of phase i, µi is the viscosity of phase i.
It is noted that the viscosity of the dispersed oil phase is regarded the same as the

viscosity of water µw, as the external phase of the O/W emulsion is water. Then, by
Equations (30)–(33), the relative permeability of each phase is written as follows:

Kro =
∫ R1

0
R2 f (R)dR/

∫ ∞

0
R2 f (R)dR (35)

Krw =
∫ ∞

R2

R2 f (R)dR/
∫ ∞

0
R2 f (R)dR + (1− φd)

∫ R2

R1

R2 f (R)
ξ(λ, φd, ε)

dR/
∫ ∞

0
R2 f (R)dR (36)

Krdo = φd

∫ R2

R1

R2 f (R)
ξ(λ, φd, ε)

dR/
∫ ∞

0
R2 f (R)dR (37)

where Kro is the permeability of the continuous oil phase; Krw is the permeability of the
continuous water phase; and Krdo is the permeability of dispersed oil phase.

To be noted, the saturation of each phase could be calculated as follows:

So =
∫ R1

0
f (R)dR (38)

Sw =
∫ ∞

R2

f (R)dR + (1− φd)
∫ R2

R1

f (R)dR (39)

Sdo = φd

∫ R2

R1

f (R)dR (40)

where So, Sw, and Sdo are the saturation of the continuous oil phase, continuous water
phase, and dispersed oil phase, respectively.

In practice, the PSD function f (R) could be converted from the capillary pressure
curve Pc = Pc(Sw), based on the Washburn equation:

Pc =
2σ0cosθ

R
(41)
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where σ0 is the interfacial tension and θ is the contact angle between the non-wetting phase
and the pore walls.

3.2. PSD Functions

To analyze the effects of different parameters on the relative permeability curves of the
heavy oil O/W emulsion system, we must choose appropriate PSD functions. The power
law distribution function and the log-normal pore size distribution function are applied,
since both are the most commonly used PSD functions [30–32].

The power law pore size distribution function is written as:

f (R) = (n + 1)
Rn

Rn+1
max − Rn+1

min

(42)

where Rmax, Rmin are the supposed largest and smallest radius of the pores, respectively,
and n is the power law exponent.

The log-normal pore size distribution function is written as:

f (R) =
1

R
√

2πα
e− log ( R

R
+ α

2 )/2α (43)

where α = log
(

1 +
(

σ
R

)2
)

; σ is the standard deviation and R is the mean radius.

For the power law PSD function, set the value of n as −3/4, −1/2, −1/4, 0, 1/4, 1/2,
and 3/4. Rmax is assumed to be a hundred times larger than Rmin. Then, the power law
PSD curves are generated as shown in Figure 5a.
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Figure 5. Different PSD function curves. (a) Power law PSD functions, with n value of −3/4, −1/2,
−1/4, 0, 1/4, 1/2 and 3/4; (b) log-normal PSD functions, with values of σ and R as 5, 5; 5, 10; 5, 20;
10, 5; 10, 10; 10, 20, respectively.

For the log-normal PSD function, set the values of σ and R as 5, 5; 5, 10; 5, 20;
10, 5; 10, 10; 10, 20, respectively. The log-normal PSD function curves are generated as
shown in Figure 5b.

For the power-law PSD function, it is obvious from the figure that when n lies between
0 and -1, smaller pores constitute most of the overall pore population, with this tendency
diminishing as n increases. When n equals 0, the distribution of pore sizes is uniform.
Conversely, when n is greater than 0, larger pores gain prominence, and this trend amplifies
as n continues to increase. For the log-normal PSD function, it could be noticed that even
with the same average pore radius, different variances have a significant impact on the
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peak position of the pore size distribution. A smaller σ would result in a smoother function
curve, also making the peak position closer to the average pore radius.

Based on Equations (35) and (36), the oil–water relative permeability curve could then
be presented as Figure 6a, with the given PSD functions. Figure 6b shows the relative
permeability of the continuous oil phase and continuous water phase, when there are no
emulsions participating. By analyzing the curves depicted in Figure 6, it can be observed
that as the proportion of smaller-sized pores increases, the relative permeability of the
water phase increases at equivalent saturation levels. Additionally, a more concentrated
distribution of pore sizes results in an enhanced curvature of the relative permeability
curve for the water phase. It should be noted that the wettability of different phases was
not considered in the proposed model, thus the value of Kro + Krw always equals 1.
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4. Experimental Validation of the Relative Permeability Model
4.1. Experimental Setups

To validate the proposed model, a one-dimensional sandpack displacement exper-
iment has been carried out. As shown in Figure 7, the sandpack holder was packed by
100-150 mesh quartz sands, and was initially saturated with crude oil. The sandpack was
then injected continuously by a prepared O/W emulsion, at a constant flow rate of 0.5
mL/min. The O/W emulsions were prepared from heavy crude oil with a viscosity of 206
mPa·s at 60 ◦C (same sample as the saturated oil). The surfactant used to form emulsions in
this experiment is SDS with a concentration of 0.5 wt%. The dispersed oil volume fraction
of the prepared O/W emulsions was 20%. The length and the diameter of the sandpack
holder were 80 cm and 2.5 cm, respectively. The porosity and water permeability of the
sandpack were tested before the experiment, and the values of which were 0.38 and 1890
mD, respectively. The residual oil saturation and the irreducible water saturation were also
measured, with values of 0.435 and 0.125, respectively.

4.2. Numerical Simulation Using the Proposed Relative Permeability Model

In order to simulate the emulsion flooding experiment using the proposed relative
permeability model, it is imperative to first compute the three-phase relative permeability
curves utilized in the simulation. Therefore, it is needed to determine requisite physico-
chemical parameters for the model, including: the volume faction of dispersed droplets φd,
the diameter ratio of the droplets diameter to the capillary tube diameter λ, the capillary
number Ca, and the pore size distribution function f (R). Here, φd = 0.2 since the O/W
emulsions used in the experiment is so prepared. The capillary number Ca is assumed to
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be 10−4, since the viscosity of oil was 206 mPa·s and the interfacial tension was around
10−2 mN/m with the presence of surfactants. The value of λ was determined as 1.2 based
on the experimental observations. As for the PSD function of the sandpack, a log-normal
PSD function was used, with a standard deviation σ = 3 and mean radius R = 5, based
on the characteristics of 100–150 mesh quartz sands. With the given parameters and func-
tion, the relative permeability of all three phases (continuous oil, continuous water, and
dispersed oil) could then be calculated, shown as Figure 8. Notice the color bar of Krdo is
different from Kro and Krw, since the relative permeability of the dispersed oil phase is too
small compared to that of the continuous water and continuous oil phase in this case. The
maximum value of Krdo in this case is 0.016, while Kro and Krw both vary from 0 to 1. It
could be also noticed that the saturation of dispersed oil is always lesser than 0.2. This is
because the saturation of dispersed oil is limited by the given φd, since it is the internal
phase of the emulsions.

Processes 2023, 11, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 7. (a) Photo of the prepared sandpack. (b) Schematic view of the sandpack. The sandpack 
was initially saturated with oil, then injected by pre-prepared O/W emulsions. 

 

Figure 8. Three-phase permeability ternary diagram for simulation. (a) Permeability of dispersed 
oil phase; (b) permeability of continuous oil phase; (c) permeability of continuous water phase. The 
permeability of the continuous oil phase and continuous water phase shares the same color bar. 

(b) (c) 

(a) 

Figure 7. (a) Photo of the prepared sandpack. (b) Schematic view of the sandpack. The sandpack
was initially saturated with oil, then injected by pre-prepared O/W emulsions.

The other parameters required for the simulation are consistent with those measured
in the experiments, where the length of the sandpack L = 80 cm, and the cross area of the
sandpack A = 4.84 cm2. The porosity of the sandpack φ = 0.38, and the permeability of
the sandpack K = 1890 mD. The viscosity of the oil phase µo=206 mPa·s, and the viscosity
of water µw = 1 mPa·s. The injection was at a constant rate that Q = 0.5 mL/min. A
one-dimensional three-phase simulator was used to simulate the whole process, the time
step was set to 30 s, and the total simulation time was set to 30,000 s.

Due to experimental limitations, it is unable to quantify the volume of the dispersed
oil phase in the produced emulsions. Therefore, the volumes of the continuous water
phase and dispersed oil phase from the simulation results were added to compare with the
cumulative production of the emulsions measured in the experiments. Since the sandpack
is initially oil-saturated in this experiment, all the continuous water phase comes from the
injected emulsion. Additionally, it has been experimentally verified that the dispersed oil
phase in the prepared emulsion can be considered stable. Thus, the comparison between
the simulation results and the experimental data is reliable. The simulation results are
shown in Figure 9, compared with the experimental data. As illustrated in the figure,
the simulation results and experimental data showed a considerable agreement, with the
maximum error not surpassing 10%. The results validated the reliability of the proposed
relative permeability model.
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5. Dimensionless Parameters Analysis

To further comprehend the porous flow behavior in heavy oil emulsion systems,
it is essential to examine the influence of the three dimensionless numbers φd, λ, Ca
on the ternary diagram of relative permeability. Upon investigating Equations (35) and
(38), it becomes apparent that, within the proposed model, the relative permeability of
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the continuous oil phase is only related to its own saturation (given the PSD function).
This property can be also found in Figure 8b. As the impact of the PSD function on
the relative permeability of the continuous oil phase has been previously illustrated in
Figure 6, the subsequent analysis will focus on the effects of the different values of the
three dimensionless numbers on the continuous water phase and the dispersed oil phase.

The PSD function we choose in the following analysis is the same as the function we
use in the simulation, which is a log-normal PSD function with a standard deviation σ = 3
and mean radius R = 5. Figure 10 shows the relative permeability ternary diagram of the
continuous water phase and dispersed oil phase, respectively, while φd = 0.4, λ = 0.9,
and Ca = 10−4. The maximum value of Krdo in Figure 10a is 0.026. Figure 11 shows the
relative permeability ternary diagram of the continuous water phase and dispersed oil
phase, respectively, while φd = 0.4, λ = 0.6, and Ca = 10−3. The maximum value of Krdo in
Figure 11a is 0.167. By comparing Figures 10b and 11b, it could be noticed from the contour
lines that Krw can be considered solely influenced by the value of Sw when the maximum
value of Krdo is much less than 1. However, when the value of Krdo is more comparable
with 1, the effect of the Sdo. value on Krw becomes more non-negligible, especially when
Sw is closer to 0, the reason of which can be learned by investigating Equations (36) and
(39). The value of Krdo is much less than 1, means that the flow of emulsions in the pores
is subject to significant resistance by the oil droplets, causing the contribution of the flow
from the emulsion to the production of the continuous water phase is relatively small.

Figure 12 shows the relative permeability ternary diagrams of the dispersed oil phase
when φd = 0.4, Ca = 10−4, and λ = 0.6, 0.9, and 1.2, respectively. The maximum values of
the three Krdo diagrams are 0.0374, 0.0255, and 0.0239, respectively. The effect of the value
of the diameter ratio between the dispersed phase droplets and pores on the result of Krdo
value is apparent. This pattern could be easy to understand intuitively. As the diameter of
the dispersed phase droplets approaches the size of the pores, the likelihood of the droplets
becoming trapped by the pores increases, leading to substantial flow resistance. When
the droplet size is statistically larger than the average pore size, this probability becomes
higher, making less droplets have the chance to pass the pores during the flow.
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Figure 10. The relative permeability ternary diagrams of dispersed oil and continuous water phase
when φd = 0.4, λ = 0.9, and Ca = 10−4. (a) Dispersed oil; (b) continuous water.
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Figure 11. The relative permeability ternary diagrams of dispersed oil and continuous water phase
when φd = 0.4, λ = 0.6, and Ca = 10−3. (a) Dispersed oil; (b) continuous water.
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Figure 13 shows another three diagrams of Krdo with different parameters. Here, we
set the volume fraction of the dispersed oil droplets φd = 0.4, and the diameter ratio
λ = 0.9. The capillary number Ca of the three diagrams are set to 10−3, 10−4, and 10−5,
respectively. The maximum values of three Krdo diagrams are 0.1619, 0.0255, and 0.004,
respectively. It is evident that an increase in the capillary number results in a decrease
in the resistance encountered by the dispersed phase droplets when passing through the
pores, thereby enhancing their ability to pass through the porous medium. A comparison
between Figures 12 and 13 reveals that the impact of altering the capillary number on Krdo
is significantly more pronounced than that of changing the diameter ratio. In Figure 13,
with the fixed parameters φd = 0.4 and λ = 0.9, altering the capillary number Ca leads to
an approximate two orders of magnitude variation in the maximum Krdo value, whereas
adjusting the diameter ratio λ in Figure 12 does not induce an order of magnitude change
in the maximum Krdo value. This observation can be attributed to the fact that the capillary
number serves as a parameter governing the capacity of the dispersed phase droplets to pass
through the pores when subjected to blockage. Furthermore, under the conditions presented
in Figure 13, both φd and λ are relatively large, signifying that the majority of the dispersed
phase droplets experience blocking. As a result, alterations in the capillary number’s
order of magnitude also provoke corresponding changes in the resistance experienced by
the droplets, thereby causing the capillary number to exert a substantial influence on the
relative permeability of the dispersed phase droplets.
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When the value of φd is relatively small, the area of the ternary diagram of relative per-
meability decreases. Investigating the effects of various parameters on relative permeability
within the ternary diagram becomes less intuitive. Additionally, as seen from the figures
mentioned earlier, the growing patterns in the values of Krdo are similar. Consequently, we
can substitute the study of endpoint values (the maximum value of Krdo) under different
conditions for the entire ternary diagram of relative permeability.

Table 1 is a table of Krdo endpoint values under different parameter scenarios. As
evident in the table, the capillary number ca exhibits a more substantial impact on the
maximum value of Krdo compared to the diameter ratio lambda, as previously highlighted.
When assessing the influence of φd on the relative permeability of the dispersed oil droplets,
it is essential to note that φd serves as the upper boundary for Sdo values. In other words,
φd signifies the carrying capacity of dispersed oil droplets within the continuous water
phase. When the ratio of Sdo to Sw equals φd, it implies a uniform distribution of oil droplets
within the emulsion, as dispersed oil droplets participate in all flow channels occupied
by the continuous water phase. This corresponds to values of the diagonal line in the
ternary phase diagram. Conversely, when the ratio of Sdo to Sw is less than φd, it suggests
that the water flow region can be partitioned into an emulsion flow domain and a purely
continuous water flow domain. Consequently, dispersed oil droplets only participate in
the flow of specific channels, thereby diminishing their capacity to pass through the pore
spaces. By analyzing the maximum values of Krdo at varying φd values, as well as their
ratio, it becomes apparent that the actual ability of dispersed oil droplets to pass through
pores weakens, despite the increase in the maximum value of Krdo as φd increases. We can
consider the case when λ = 1.2 and Ca = 10−3, and take the maximum value of Krdo/φd
as an example. It can be observed that when φd = 0.1, 0.2, and 0.4, the maximum values
of Krdo/φd are 0.605, 0.538, and 0.403, respectively, showing a decreasing trend when φd
increases. Based on Darcy’s law for multiphase flow, an increase in Krdo/φd implies that a
larger pressure drop is required for the dispersed oil droplets to pass through at the same
mass flow rate. Examined from a microscopic perspective, the probability of individual
dispersed oil droplets passing through pores decreases, even though the aggregate volume
of dispersed oil droplets passing through pores escalates. Statistically, this phenomenon is
readily understandable, given that the likelihood of droplets becoming trapped in pores
becomes larger as the volume fraction of dispersed oil droplets augments.

Table 1. Krdo endpoint values with different dimensionless parameters.

φd=0.1 φd=0.2 φd=0.4
λ = 0.6 λ = 0.9 λ = 1.2 λ = 0.6 λ = 0.9 λ = 1.2 λ = 0.6 λ = 0.9 λ = 1.2

Ca = 10−3 0.0649 0.0611 0.0605 0.1123 0.1081 0.1075 0.1663 0.1619 0.1613
Ca = 10−4 0.0249 0.0148 0.0133 0.0315 0.0202 0.0186 0.0374 0.0255 0.0239
Ca = 10−5 0.0167 0.0038 0.002 0.0182 0.0039 0.002 0.0191 0.004 0.002

Concerning the relationship between the relative permeability of dispersed phase
droplets and the three saturation parameters, observations can be made from Figures 8–10.
Generally, when considering a fixed value of So/Sw, as Sdo approaches its upper limit φd,
the growth rate of Krdo accelerates. When considering a fixed value of Sdo, an increase in
the So/Sw ratio results in a decline in Krdo values.

To briefly summarize, among the three dimensionless numbers φd, λ and Ca, the vari-
ation of Ca has the most substantial impact on the relative permeability of dispersed phase
droplets. This implies that reducing interfacial tension and increasing the injection pressure
are vital ways to improve the permeability of dispersed phase droplets. Increases in both
φd and λ contribute to a reduction in the relative permeability of dispersed phase droplets.
It is worth mentioning that in experiments and chemical oil reservoir development, φd and
λ are usually not independent parameters but are closely related to the physicochemical
properties of the reservoir and surfactants. Nevertheless, in this theoretical investigation,
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these two parameters are provisionally regarded as independent, and their impacts on
the flow performance of emulsions are analyzed. In practical reservoir development, it is
crucial to distinguish the sources of dispersed phase droplets (whether pre-prepared or in
situ generated) and adjust these dimensionless numbers accordingly, to attain the desired
relative permeability.

6. Conclusions

A novel relative permeability model applicable to heavy oil chemical flooding emul-
sion systems is presented in this study. The emulsion system is considered as an O/W
emulsion and comprises three phases: continuous oil phase, continuous water phase,
and dispersed oil phase. The new relative permeability model takes the physicochemical
properties of emulsions and the properties of porous media into account, as well as the
interactions between dispersed phase droplets and pores. The validity of the relative
permeability model is verified through a sandpack emulsion displacement experiment. The
dimensionless numbers determining the relative permeability of dispersed phase droplets
are analyzed. The following conclusions are drawn from this study:

1. The emulsion flow behavior through a single capillary was carefully investigated.
The flow of emulsion in the capillary, based on the relative size of dispersed phase droplets
and the capillary, was divided into three types: (a) the droplet size and capillary diameter
are similar; (b) the droplet size is much smaller than capillary diameter; (c) the droplet size
is larger than the capillary diameter.

2. The real reservoir is considered as a series of capillary bundles with diameters
following the PSD (pore size distribution) function. Assuming the reservoir is hydrophilic,
a calculation model for the three-phase relative permeability of the O/W emulsion system
was established, by classifying different-sized capillaries as occupied by different fluids. A
more realistic log-normal PSD function was used, instead of using the simplified uniform
diameter, when calculating relative permeability.

3. A sandpack emulsion displacement experiment was used to verify the effectiveness
of the proposed relative permeability model. The experiment process was injecting a
pre-prepared emulsion into a sandpack saturated with oil. The injection was at a constant
flow rate of 0.5 mL/min. The volume fraction of the dispersed oil phase in the pre-
prepared emulsion was 0.2. Based on a one-dimensional three-phase numerical simulator,
the simulated cumulative emulsion production using the proposed relative permeability
model showed good consistency with the experimental data. The maximum error in the
cumulative production did not exceed 10%. Therefore, the new relative permeability model
is suitable for the numerical simulation of heavy oil emulsion three-phase systems.

4. Three dimensionless numbers related to the emulsion porous flow process, φd, λ,
and Ca, were proposed. The effects of these three dimensionless numbers on the relative
permeability of dispersed oil droplets were analyzed. The capillary number Ca exerts the
most significant influence on the relative permeability among the dimensionless parameters.
Alterations in the order of magnitude of Ca correspond to concomitant changes in the order
of magnitude for the relative permeability of the dispersed phase. The increase in diameter
ratio λ and dispersed phase volume fraction φd will reduce the ability of the dispersed phase
to pass through porous media. The newly developed three-phase relative permeability
model offers valuable insights for enhancing the understanding and prediction of emulsion
flow behavior.
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Nomenclature

Nomenclature Q Flow rate of the porous medium, m3/s

b Water film thickness of deformed oil droplets in a capillary tube, µm
R Radius of capillary tube, µm
R Mean radius of log-normal PSD function, 10−7 m

de Average diameter of dispersed emulsion droplets, µm Sdo Saturation of dispersed oil phase
n Exponent of power law PSD function So Saturation of continuous oil phase
p Fluid pressure, kPa Sw Saturation of continuous water phase

qe Total flow rate of emulsion flow in a single capillary tube, m3/s
U Dimensionless velocity of droplets
V Dimensionless average velocity in capillary

q0 Flow rate of single-phase fluid in a single capillary tube, m3/s Greek symbols
r Radical coordinate, m β Ratio of distance between neigh-boring spheres to tube radius

re f f Effective radius of small droplets suspension, µm µ Viscosity of the fluid, mPa·s
v′ Dimensionless velocity µo Oil viscosity, mPa·s
z Axial coordinate, m µw Water viscosity, mPa·s
A Cross area of the porous medium, m2

λ Ratio of droplets diameter to capillary diameter
Ca Capillary number
GV0 Additional pressure drop coefficient φd Dispersed phase volume fraction
K Permeability of the porous medium, mD ω Ratio of oil viscosity to water viscosity

Krdo Relative permeability of dispersed oil phase ξ Resistance factor of emulsion flow

Kro Relative permeability of continuous oil phase
φ Porosity of the porous medium
σ Standard deviation of log-normal PSD function

Krw Relative permeability of continuous water phase σ0 Interfacial tension, mN/m
L Length of the porous medium, m

θ Contact angle between the non-wetting phase and the poreP′ Dimensionless pressure
Pc Capillary pressure, kPa
∆P Pressure drop along the capillary tube, kPa

∆P′drop Dimensionless pressure drop per droplet in capillary
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