Natural Fiano Wines Fermented in Stainless Steel Tanks, Oak Barrels, and Earthenware Amphora
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Viability
2.2. Wine Chemical Analyses
2.3. Wine Sensory Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Fermentation Dynamics and Main Parameters of Wines
3.2. Viability of Yeasts after Maceration and during Alcoholic Fermentation
3.3. Wine Volatile Compounds and Sensory Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roman, S.; Sánchez-Siles, L.M.; Siegrist, M. The Importance of Food Naturalness for Consumers: Results of a Systematic Review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Galati, A.; Schifani, G.; Crescimanno, M.; Migliore, G. “Natural Wine” Consumers and Interest in Label Information: An Analysis of Willingness to Pay in a New Italian Wine Market Segment. J. Clean. Prod. 2019, 227, 405–413. [Google Scholar] [CrossRef]
- Fabbrizzi, S.; Alampi Sottini, V.; Cipollaro, M.; Menghini, S. Sustainability and Natural Wines: An Exploratory Analysis on Consumers. Sustainability 2021, 13, 7645. [Google Scholar] [CrossRef]
- Pomarici, E.; Vecchio, R. Will Sustainability Shape the Future Wine Market? Wine Econ. Policy 2019, 8, 1–4. [Google Scholar] [CrossRef]
- Schäufele, I.; Hamm, U. Consumers’ Perceptions, Preferences and Willingness-to-Pay for Wine with Sustainability Characteristics: A Review. J. Clean. Prod. 2017, 147, 379–394. [Google Scholar] [CrossRef]
- Giacomarra, M.; Galati, A.; Crescimanno, M.; Tinervia, S. The Integration of Quality and Safety Concerns in the Wine Industry: The Role of Third-Party Voluntary Certifications. J. Clean. Prod. 2016, 112, 267–274. [Google Scholar] [CrossRef]
- Alonso-González, P.; Parga-Dans, E.; Fuentes Fernández, R. Certification of Natural Wine: Policy Controversies and Future Prospects. Front. Sustain. Food Syst. 2022, 6, 875427. [Google Scholar] [CrossRef]
- González, P.A.; Parga-Dans, E. Natural Wine: Do Consumers Know What It Is, and How Natural It Really Is? J. Clean. Prod. 2020, 251, 119635. [Google Scholar] [CrossRef]
- Maykish, A.; Rex, R.; Sikalidis, A.K. Organic Winemaking and Its Subsets; Biodynamic, Natural, and Clean Wine in California. Foods 2021, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Liberatore, M.T.; Pati, S.; Del Nobile, M.A.; La Notte, E. Aroma Quality Improvement of Chardonnay White Wine by Fermentation and Ageing in Barrique on Lees. Food Res. Int. 2010, 43, 996–1002. [Google Scholar] [CrossRef]
- del Alamo-Sanza, M.; Nevares, I. Oak Wine Barrel as an Active Vessel: A Critical Review of Past and Current Knowledge. Crit. Rev. Food Sci. Nutr. 2018, 58, 2711–2726. [Google Scholar] [CrossRef]
- Botha, A.; Du Toit, W.; Brand, J.; Kidd, M.; Groenewald, N. The Effect of Different Oak Products Used during Fermentation and Ageing on the Sensory Properties of a White Wine over Time. Foods 2020, 9, 1220. [Google Scholar] [CrossRef] [PubMed]
- Baiano, A.; Varva, G.; De Gianni, A.; Viggiani, I.; Terracone, C.; Del Nobile, M.A. Influence of Type of Amphora on Physico-Chemical Properties and Antioxidant Capacity of ‘Falanghina’White Wines. Food Chem. 2014, 146, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Gil i Cortiella, M.; Ubeda, C.; Covarrubias, J.I.; Laurie, V.F.; Peña-Neira, Á. Chemical and Physical Implications of the Use of Alternative Vessels to Oak Barrels during the Production of White Wines. Molecules 2021, 26, 554. [Google Scholar] [CrossRef] [PubMed]
- Gil i Cortiella, M.; Úbeda, C.; Covarrubias, J.I.; Peña-Neira, Á. Chemical, Physical, and Sensory Attributes of Sauvignon Blanc Wine Fermented in Different Kinds of Vessels. Innov. Food Sci. Emerg. Technol. 2020, 66, 102521. [Google Scholar] [CrossRef]
- Ibern-Gómez, M.; Andrés-Lacueva, C.; Lamuela-Raventós, R.; Lao-Luque, C.; Buxaderas, S.; De la Torre-Boronat, M. Differences in Phenolic Profile between Oak Wood and Stainless Steel Fermentation in White Wines. Am. J. Enol. Vitic. 2001, 52, 159–164. [Google Scholar] [CrossRef]
- Alañón, M.E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. New Strategies to Improve Sensorial Quality of White Wines by Wood Contact. Beverages 2018, 4, 91. [Google Scholar] [CrossRef]
- Glonti, T. Traditional Technologies and History of Georgian Wine. Bull. OIV 2010, 83, 335. [Google Scholar]
- Schneider, A.; Raimondi, S.; Pirolo, C.S.; Marinoni, D.T.; Ruffa, P.; Venerito, P.; La Notte, P. Genetic Characterization of Grape Cultivars from Apulia (Southern Italy) and Synonymies in Other Mediterranean Regions. Am. J. Enol. Vitic. 2014, 65, 244–249. [Google Scholar] [CrossRef]
- European Commission Regulation (EEC) No 2676/90 of 17 September 1990 Determining Community Methods for the Analysis of Wines. Off. J. Eur. Union L 1990, 272, 1–192.
- Guerriero, E.; Iorizzo, M.; Cerasa, M.; Notardonato, I.; Testa, B.; Letizia, F.; Di Fiore, C.; Russo, M.V.; Avino, P. Fast and Reliable Multiresidue Analysis of Aromas in Wine by Means of Gas Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Analytica 2021, 2, 38–49. [Google Scholar] [CrossRef]
- Lisanti, M.T.; Gambuti, A.; Genovese, A.; Piombino, P.; Moio, L. Partial Dealcoholization of Red Wines by Membrane Contactor Technique: Effect on Sensory Characteristics and Volatile Composition. Food Bioprocess Technol. 2013, 6, 2289–2305. [Google Scholar] [CrossRef]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2020, 10, 51. [Google Scholar] [CrossRef]
- Di Martino, C.; Testa, B.; Letizia, F.; Iorizzo, M.; Lombardi, S.J.; Ianiro, M.; Di Renzo, M.; Strollo, D.; Coppola, R. Effect of Exogenous Proline on the Ethanolic Tolerance and Malolactic Performance of Oenococcus oeni. J. Food Sci. Technol. 2020, 57, 3973–3979. [Google Scholar] [CrossRef]
- Testa, B.; Coppola, F.; Lombardi, S.J.; Iorizzo, M.; Letizia, F.; Di Renzo, M.; Succi, M.; Tremonte, P. Influence of Hanseniaspora uvarum AS27 on Chemical and Sensorial Characteristics of Aglianico Wine. Processes 2021, 9, 326. [Google Scholar] [CrossRef]
- Lombardi, S.J.; Pannella, G.; Iorizzo, M.; Testa, B.; Succi, M.; Tremonte, P.; Sorrentino, E.; Di Renzo, M.; Strollo, D.; Coppola, R. Inoculum Strategies and Performances of Malolactic Starter Lactobacillus plantarum M10: Impact on Chemical and Sensorial Characteristics of Fiano Wine. Microorganisms 2020, 8, 516. [Google Scholar] [CrossRef] [PubMed]
- Iorizzo, M.; Testa, B.; Lombardi, S.J.; García-Ruiz, A.; Muñoz-González, C.; Bartolomé, B.; Moreno-Arribas, M.V. Selection and Technological Potential of Lactobacillus plantarum Bacteria Suitable for Wine Malolactic Fermentation and Grape Aroma Release. LWT 2016, 73, 557–566. [Google Scholar] [CrossRef]
- Testa, B.; Lombardi, S.J.; Iorizzo, M.; Letizia, F.; Di Martino, C.; Di Renzo, M.; Strollo, D.; Tremonte, P.; Pannella, G.; Ianiro, M. Use of Strain Hanseniaspora guilliermondii BF1 for Winemaking Process of White Grapes Vitis Vinifera Cv Fiano. Eur. Food Res. Technol. 2020, 246, 549–561. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Li, J. Aroma Compounds in Wine. In Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; IntechOpen: Rijeka, Croatia, 2016; Ch. 12; ISBN 978-953-51-2693-5. [Google Scholar]
- Cordente, A.G.; Espinase Nandorfy, D.; Solomon, M.; Schulkin, A.; Kolouchova, R.; Francis, I.L.; Schmidt, S.A. Aromatic Higher Alcohols in Wine: Implication on Aroma and Palate Attributes during Chardonnay Aging. Molecules 2021, 26, 4979. [Google Scholar] [CrossRef] [PubMed]
- Silva Ferreira, A.C.; Monforte, A.R.; Teixeira, C.S.; Martins, R.; Fairbairn, S.; Bauer, F.F. Monitoring Alcoholic Fermentation: An Untargeted Approach. J. Agric. Food Chem. 2014, 62, 6784–6793. [Google Scholar] [CrossRef] [PubMed]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.-C. Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef]
- Prusova, B.; Humaj, J.; Sochor, J.; Baron, M. Formation, Losses, Preservation and Recovery of Aroma Compounds in the Winemaking Process. Fermentation 2022, 8, 93. [Google Scholar] [CrossRef]
- Valero, E.; Moyano, L.; Millan, M.; Medina, M.; Ortega, E.J.M. Higher Alcohols and Esters Production by Saccharomyces cerevisiae. Influence of the Initial Oxygenation of the Grape Must. Food Chem. 2002, 78, 57–61. [Google Scholar]
- Martins, N.; Garcia, R.; Mendes, D.; Freitas, A.M.C.; da Silva, M.G.; Cabrita, M.J. An Ancient Winemaking Technology: Exploring the Volatile Composition of Amphora Wines. LWT 2018, 96, 288–295. [Google Scholar] [CrossRef]
- Romano, P.; Braschi, G.; Siesto, G.; Patrignani, F.; Lanciotti, R. Role of Yeasts on the Sensory Component of Wines. Foods 2022, 11, 1921. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Gao, J.; Qian, M.; Li, H. Characterization of the Key Aroma Compounds in Chinese Syrah Wine by Gas Chromatography-Olfactometry-Mass Spectrometry and Aroma Reconstitution Studies. Molecules 2017, 22, 1045. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Diéguez, S.; Rodriguez-Solana, R.; Domínguez, J.M.; Díaz, E. Impact Odorants and Sensory Profile of Young Red Wines from Four Galician (NW of Spain) Traditional Cultivars. J. Inst. Brew. 2015, 121, 628–635. [Google Scholar] [CrossRef]
- Lloret, A.; Boido, E.; Lorenzo, D.; Medina, K.; Carrau, F.; Dellacassa, E.; Versini, G. Aroma Variation in Tannat Wines: Effect of Malolactic Fermentation on Ethyl Lactate Level and Its Enantiomeric Distribution. Ital. J. Food Sci. 2002, 14, 175–180. [Google Scholar]
- González-Marco, A.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Concentration of Volatile Compounds in Chardonnay Wine Fermented in Stainless Steel Tanks and Oak Barrels. Food Chem. 2008, 108, 213–219. [Google Scholar] [CrossRef]
- Mallouchos, A.; Komaitis, M.; Koutinas, A.; Kanellaki, M. Evolution of Volatile Byproducts during Wine Fermentations Using Immobilized Cells on Grape Skins. J. Agric. Food Chem. 2003, 51, 2402–2408. [Google Scholar] [CrossRef] [PubMed]
Parameters | Test A | Test B | Test C | Test D |
---|---|---|---|---|
pH | 3.41 ± 0.05 a | 3.50 ± 0.06 a | 3.52 ± 0.06 a | 3.51 ± 0.05 a |
Reducing sugars (g/L) | 1.01 ± 0.08 c | 0.91 ± 0.07 c | 3.03 ± 0.11 b | 3.50 ± 0.10 a |
Titratable acidity * (g/L) | 6.60 ± 0.03 b | 6.69 ± 0.08 b | 7.09 ± 0.07 a | 7.13 ± 0.05 a |
Alcohol (% v/v) | 11.80 ± 0.08 a | 12.20 ± 0.14 a | 10.60 ± 0.37 b | 10.30 ± 0.06 b |
Volatile acidity ** (g/L) | 0.51 ± 0.02 b | 0.51 ± 0.04 b | 0.79 ± 0.09 a | 0.72 ± 0.09 a |
Catechins (mg/L) | 49.90 ± 0.44 d | 77.10 ± 0.65 a | 69.9 ± 0.83 c | 73.20 ± 0.64 b |
Malic acid (g/L) | nd | nd | nd | nd |
Lactic acid (g/L) | 1.23 ± 0.04 a | 1.27 ± 0.11 a | 1.17 ± 0.07 a | 1.24 ± 0.06 a |
Compound | Fiano White Wine (µg mL−1) mg/L | ||||
---|---|---|---|---|---|
Retention Time (min) | Test A | Test B | Test C | Test D | |
Ethyl acetate | 9.68 | 1.953 ± 0.011 d | 5.820 ± 0.055 a | 4.323 ± 0.04 b | 4.106 ± 0.122 c |
Isobutanol | 10.58 | 3.763 ± 0.005 d | 4.310 ± 0.034 c | 5.252 ± 0.055 b | 8.373 ± 0.132 a |
Acetic acid | 10.74 | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b | 3.216 ± 0.097 a |
Ammonium acetate | 10.94 | 2.426 ± 0.005 d | 3.380 ± 0.030 c | 8.946 ± 0.110 b | 11.380 ± 0.568 a |
Diglycerol | 11.17 | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b | 45.320 ± 1.368 a |
1-Hydroxypropan-2-one | 12.54 | 0.273 ± 0.020 d | 0.583 ± 0.025 c | 1.310 ± 0.040 b | 2.056 ± 0.138 a |
Isoamyl alcohol | 13.24 | 20.20 ± 0.952 d | 39.186 ± 0.721 a | 29.083 ± 0.886 b | 25.423 ± 0.979 c |
Pentanol | 13.29 | 5.413 ± 0.040 c | 7.900 ± 0.089 a | 7.876 ± 0.140 a | 7.203 ± 0.489 b |
1-Heptene-4-ol | 14.17 | 0.120 ± 0.020 b | 0.081 ± 0.004 c | 0.186 ± 0.030 b | 0.343 ± 0.050 a |
Dioxirane | 14.40 | 0 ± 0 c | 0 ± 0 c | 0.162 ± 0.010 b | 0.260 ± 0.060 a |
Propylene glycol | 14.54 | 1.750 ± 0.040 d | 3.883 ± 0.065 a | 1.426 ± 0.065 c | 2.073 ± 0.141 b |
Ethyl lactate | 15.14 | 1.200 ± 0.020 d | 1.356 ± 0.020 c | 1.676 ± 0.061 a | 1.516 ± 0.095 b |
2,3-Butanediol | 15.32 | 7.206 ± 0.035 c | 11.136 ± 0.060 a | 5.836 ± 0.070 d | 8.636 ± 0.223 b |
1,3-Butanediol | 15.50 | 4.383 ± 0.015 d | 6.960 ± 0.045 a | 4.726 ± 0.070 c | 5.640 ± 0.176 b |
Furan-2-carbaldehyde (or Furfural) | 16.07 | 0.466 ± 0.005 c | 0.773 ± 0.030 b | 3.206 ± 0.095 a | 3.356 ± 0.136 a |
Hexanol | 16.22 | 0.203 ± 0.023 b | 0.306 ± 0.026 a | 0.350 ± 0.055 a | 0.243 ± 0.060 a |
2-Furanmethanol | 16.53 | 0.101 ± 0.008 d | 0.360 ± 0.026 c | 1.863 ± 0.090 b | 2.130 ± 0.130 a |
Lactic acid | 16.96 | 0.053 ± 0.005 d | 0.130 ± 0.020 c | 0.313 ± 0.023 a | 0.210 ± 0.043 b |
Pyruvic acid | 17.1 | 0.066 ± 0.005 b | 0.120 ± 0.026 b | 0.113 ± 0.020 b | 0.626 ± 0.080 a |
1-Methoxybutan-2-ol | 17.39 | 0.253 ± 0.025 a | 0.200 ± 0.020 b | 0.080 ± 0.006 c | 0.116 ± 0.015 c |
1,3-Dioxane-2-methyl-4-methyl | 17.58 | 0 ± 0 c | 0.150 ± 0.010 b | 0.216 ± 0.037 b | 0.413 ± 0.045 a |
4-Acethylpyrazole | 17.67 | 0.078 ± 0.007 d | 0.206 ± 0.023 c | 0.376 ± 0.020 b | 0.450 ± 0.040 a |
2,4-Dihydroxy-2,5-dimethyl-3(2H)-Furanone | 18.53 | 0.156 ± 0.005 c | 0.043 ± 0.011 c | 0.663 ± 0.020 b | 1.730 ± 0.090 a |
Furfural-5-metil | 18.84 | 0.766 ± 0.020 d | 1.343 ± 0.015 c | 2.233 ± 0.049 a | 2.003 ± 0.125 b |
4-Oxopentanedioic acid | 18.91 | 0.260 ± 0.010 d | 0.670 ± 0.020 c | 1.333 ± 0.085 b | 1.846 ± 0.056 a |
Dihydroxyacetone (or 1,3-Dihydroxypropan-2-one) | 19.04 | 0 ± 0 d | 0.236 ± 0.011 c | 1.036 ± 0.060 b | 2.363 ± 0.055 a |
Pyran-2,6(3H)-dione | 19.89 | 0.556 ± 0.030 b | 0.840 ± 0.134 a | 0.626 ± 0.035 b | 0.670 ± 0.050 a |
2-Acetylfuran (or 2-Furyl methyl ketone) | 21.40 | 0.070 ± 0.005 d | 0.746 ± 0.015 c | 0.863 ± 0.025 b | 1.040 ± 0.065 a |
Phenethyl alcohol | 21.58 | 15.633 ± 0.164 a | 12.423 ± 0.411 c | 14.046 ± 0.311 b | 9.216 ± 0.134 d |
Diethyl butanedioate (or Diethyl succinate) | 21.73 | 0.573 ± 0.011 b | 0.530 ± 0.020 b | 1.083 ± 0.080 a | 0.616 ± 0.045 b |
Glycerin acetate (or 1-acetylglycerol) | 21.86 | 0.320 ± 0.014 c | 0.710 ± 0.020 a | 0.696 ± 0.049 a | 0.550 ± 0.036 b |
Pyrarone | 22.15 | 1.063 ± 0.050 c | 4.391 ± 0.010 b | 6.866 ± 0.050 a | 7.116 ± 0.251 a |
Ethyl succinate | 22.18 | 12.723 ± 0.302 b | 14.606 ± 0.166 a | 10.680 ± 0.045 c | 12.410 ± 0.530 b |
5-Hydroxymaltol | 22.43 | 0.010 ± 0.001 c | 0.196 ± 0.015 b | 0.473 ± 0.035 a | 0.576 ± 0.070 a |
Succinic acid (or Butanedioic acid) | 22.85 | 7.756 ± 0.035 a | 5.633 ± 0.055 b | 0.836 ± 0.025 d | 3.616 ± 0.080 c |
2,3-Dihydrobenzofuran | 23.18 | 0.540 ± 0.029 d | 1.971 ± 0.030 a | 1.383 ± 0.030 c | 1.653 ± 0.045 b |
Hydroxymethylfurfural | 23.56 | 0.090 ± 0.002 c | 0.501 ± 0.028 c | 5.396 ± 0.164 b | 10.250 ± 0.305 a |
Tyrosol (or 4-(2-Hydroxyethyl) phenol) | 27.07 | 5.906 ± 0.281 b | 8.833 ± 0.080 a | 5.510 ± 0.105 b | 5.270 ± 0.060 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Renzo, M.; Letizia, F.; Di Martino, C.; Karaulli, J.; Kongoli, R.; Testa, B.; Avino, P.; Guerriero, E.; Albanese, G.; Monaco, M.; et al. Natural Fiano Wines Fermented in Stainless Steel Tanks, Oak Barrels, and Earthenware Amphora. Processes 2023, 11, 1273. https://doi.org/10.3390/pr11041273
Di Renzo M, Letizia F, Di Martino C, Karaulli J, Kongoli R, Testa B, Avino P, Guerriero E, Albanese G, Monaco M, et al. Natural Fiano Wines Fermented in Stainless Steel Tanks, Oak Barrels, and Earthenware Amphora. Processes. 2023; 11(4):1273. https://doi.org/10.3390/pr11041273
Chicago/Turabian StyleDi Renzo, Massimo, Francesco Letizia, Catello Di Martino, Julian Karaulli, Renata Kongoli, Bruno Testa, Pasquale Avino, Ettore Guerriero, Gianluca Albanese, Mario Monaco, and et al. 2023. "Natural Fiano Wines Fermented in Stainless Steel Tanks, Oak Barrels, and Earthenware Amphora" Processes 11, no. 4: 1273. https://doi.org/10.3390/pr11041273
APA StyleDi Renzo, M., Letizia, F., Di Martino, C., Karaulli, J., Kongoli, R., Testa, B., Avino, P., Guerriero, E., Albanese, G., Monaco, M., & Iorizzo, M. (2023). Natural Fiano Wines Fermented in Stainless Steel Tanks, Oak Barrels, and Earthenware Amphora. Processes, 11(4), 1273. https://doi.org/10.3390/pr11041273