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Abstract: This study is part of the re-valorisation of the dairy waste industry through the use of
membrane ultrafiltration (UF), in order to recover whey proteins and remove as much water as
possible from the permeate. This study aimed to predict and control the permeate flux decline in
cross-flow whey UF through a step procedure, and to compare different Artificial Neural Networks
(ANNs), followed by a genetic algorithm (GA), as the optimization strategy. Models were developed
in Matlab® Neural Network Toolbox. ANNs of one or two hidden layers were trained and simulated.
A trial-and-error procedure identified the best network based on its performance values. The
networks were trained through a selected set of experimental data obtained for lab-scale hollow-fibre
membrane modules used to re-value scotta, the final waste of the dairy industry. The operating
conditions considered as the input of the ANN were: operating time (top), sampling time (tsample),
cross-flow velocity (CFV) and transmembrane pressure (TMP), while the output of the network was
exclusively the normalized permeate flux (Jn). GA optimization was carried out to the following
range of operating conditions to reach the best performances and to manage the fouling effect:
225 < top < 300 min, 8.33 < tsample < 15.9 min, 6.25 < CFV < 8.33 L/min, and TMP equal to 1.33 bar,
otherwise it can be ignored. In fact, it has been noted that the networks with only three inputs, without
TMP, predict and control Jn output better. Moreover, considering the normalized flux, it was possible
to ignore some other important operating conditions, such as the membrane geometry. Consequently,
the proposed general solution could also be used for other kinds of membrane applications. Finally, a
hybrid approach among the ANN networks and a theoretical model was also used to better predict
the resistance trend. It also returned more evident correspondence results than the ANN simulation
alone, especially in the initial drop of Jn. The use of the theoretical part in the hybrid approach acts as
a filter and returned the following order of significance of the operational input conditions on the
resistance: top, tsample, CFV and TMP.

Keywords: artificial neural network; waste optimization; dairy waste re-valorisation; membrane
ultrafiltration

1. Introduction
1.1. Membrane Applications in the Dairy Industry

Today, thanks to their advantages over other conventional separation methods—e.g.,
low-temperature operation, absence of phase transition, low energy consumption and
easy scale-up—membrane applications are increasingly used in the agri-food supply chain,
especially in the wastewater management processes. This is particularly true for the dairy
industry, in which its use is now distributed in all stages of the supply chain, e.g., separation
and fractioning of fat from milk, whey defatting, casein concentration, and bacteria removal
from milk [1]. Additionally, it is significant in the recovery of waste from the dairy indus-
try [2], especially for the whey serum—the waste produced during cheese production—and
the following “scotta”—the waste produced during ricotta production [3]. Both have a high
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pollutant load with a COD of around 60,000–80,000 mg/L and water content of 90–94%.
The remaining fractions are constituted by different whey proteins (WPs) [4,5], representing
good constituents from a nutritional point of view.

Ultrafiltration (UF) represents one of the most used membrane processes in the agri-
food industry, because it may be used for fractioning, concentration and purification, and
the subsequent choice of the membrane unit influences the productivity of the new product.

For the dairy industry, the high amount of serum waste might suggest using a hollow-
fibre membrane, with an exchange area higher than other membrane modules, but it is
more subject to fouling and cleanability [6,7]. Other membrane geometries may also be
used, but the productivity would be lower. In each case, fouling represents one of the
main drawbacks of the membrane processes. Usually, it is thwarted through the chemical
modifications of the membrane surface or the variation of the system fluid dynamics.

From this overview, there is a real need to identify and optimize the operating condi-
tions [8] to maximize membrane performance and reduce or avoid membrane wearing due
to fouling.

1.2. ANN in Membrane Technologies

A dynamic model that completely describes the UF process is not available, because
the complexity of the microscale phenomena occurring inside the membrane increases the
mathematical complexity of the theoretical model and they have not yet been understood.
At the same time, predicting permeate flux decay seems useful to understand what occurs
inside a membrane and how to prevent it.

Many researchers in the literature have already developed different artificial neural
network (ANN) models of different membrane technologies. In particular, many different
ANN models have been developed for the UF systems to predict and control the permeate
flux [9–18] and fouling [19,20]. Each model proposed started from different input layers and
has at least one output. Different types of ANNs have been used for UF, with a prevalence
of multilayer perceptron (MLP) and back propagation (BP) training methods. Many of
these models have many different inputs—including pH and temperature—of ceramic [15]
or polyacrylonitrile (PAN) material [21].

Besides the mathematical complexity of all theoretical approaches to predict UF per-
formance [22,23], they have three essential limitations of them: (i) the need for some
experimental data for determining some input variables, which sometimes is not possible;
(ii) none of these theoretical models describe the entire flux–time behaviour, but in general,
they predict the steady- or the pseudo-steady-state flux; (iii) each model demonstrated its
validity under special input conditions.

Instead, ANNs help to model these phenomena, starting from the experimental data
and without previous knowledge about the existing physical, chemical or biological rela-
tionships between inputs and outputs of a system. Therefore, the first aim of this study
was to find the best and most helpful ANN model to predict and model the permeate
flux decline as much as generally possible without depending on parameters related to
membrane material and geometry.

Finally, to understand if the developed ANNs may always be fine, or under what
conditions, an analysis of the resistances in UF the process was carried out through a hybrid
model based on a serial architecture [24]. The aim was to estimate the resistance parameter
through the developed ANNs. The trend of resistance helps to understand whether or not
the developed networks respond to the reality of the process.

1.3. The Genetic Algorithm as the Optimization Algorithm

The genetic algorithm (GA) was used in this study as the optimization algorithm to
find the optimal values of the operating conditions in the input of the ANN model. It is a
heuristic search algorithm able to generate solutions for optimization problems. GAs have
some advantages over other algorithms regarding the objective or fitness function (ff). First,
they require only the scalar values of ff without considering the derivatives; then, GAs
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handle non-linear and noisy ff s and do not impose preconditions on its trend. Another
essential feature is the global research made by GA; in this way, it is more likely to arrive at
or near the global optimum [25]. Moreover, the ANN-GA model has already been used
to find the other optimal operating conditions of other applications [21,26–29], or for the
modeling and optimizing of the nanocomposite membranes [30]. For the dairy industry, an
interesting hybrid application—composed by GA and ANN—was used to understand the
impact on the market of some dairy products [31]. The use of GA in this study aimed to
find the optimal operating parameters in input to the different ANNs trained and simulated
to better model the cross-flow UF system for dairy waste recovery.

2. Materials and Methods
2.1. Neural Network Design

McCulloch and Pitts [32] first developed ANN theory as a mathematical approach.
The main structure is a “node”, similar to a human brain neuron. Generally, ANN mod-
elling has four main steps: (i) the collection of the training data input as independent
variables and the data output as dependent variables; (ii) the determination of the network
architecture; (iii) the training of the network; (iv) the network simulation with new and
different data input.

Different ANNs were developed in this work using Matlab® Neural Network Toolbox
(nntool) Ver. R2018a (The Mathworks Inc., Natick, MA, USA) to model cross-flow whey
UF. A trial-and-error step procedure was used to choose the best ANN for the cross-flow
whey UF, according to the diagram shown in Figure 1, where i represents the number of
layers and ni is the neurons in the i-th layer. In this case, the training and simulation data
were collected from the experimental data obtained from a lab-scale UF unit, consisting of a
hollow-fibre membrane module in polyethersulfone (PES) with a molecular weight cut-off
(MWCO) of 50 kDa and an internal fibre diameter of 0.05 µm. Two types of membrane were
used for the lab-scale trials. One of these trials was used for the training step of the neural
network, and the other part was used to simulate the network. Trials with a membrane of
24 fibres and a length equal to 28.5 cm were used for training, while trials with a membrane
of 315 fibres and a length equal to 50 cm were used for simulation. The filtration mode
was always in cross-flow, while the direction of filtration and the setup configuration were
different between trials, but this did not affect the ANN development. The feed solution
was scotta with a concentration of around 1% (w/v) in whey proteins. Scotta was sent
to the membrane inlet via a peristaltic pump (Masterflex L/S, Cole-Palmer, Easy-Load II,
Model 77200-50), which set the feed flux and its direction. The concentrate was returned to
the feed tank. The feed tank was in plexiglass, with a capacity of 5 L. Each data of permeate
flux was read at a sampling time (tsample) of 5 min, until the end of the trial, identified by
the operating time (top). The end of trials was defined from the experimental strategy for
the optimization of the operating conditions of the lab-scale plant. They correspond to the
maximization of the permeate flux decline for the membrane units used and consequently,
upon reaching the pseudo-steady state flux conditions, when the permeate flux value
was essentially constant. However, the exact definition of these values is not the main
objective of this work. Different transmembrane pressure (TMP) and cross-flow velocity
(CFV) values were set up during the experiments, in the range from 0.5 to 5.0 bar and 10 to
5 L/min, respectively. More specifically, the sets of values were as follows: 0.5, 1.0, 1.5, 2.0,
3.0 and 5.0 bar for TMP, and 10.0, 9.4, 8.1, 7.3, 6.2 and 5.0 L/min for CFV. The volume of
permeate sample was collected and measured. The permeate flux (Jp) was calculated as the
ratio between the permeate volume (Vp) and the product of membrane surface (Am) and
filtration time at a given filtration time:

JP =
VP

Am·tsample
(1)
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Figure 1. Artificial Neural Network trial-and-error step procedure.

To make this work’s results more general and useful to other cross-flow UF systems, the
permeate flux was considered normalized, dividing each value of permeate flux at a given
time for the initial value of permeate flux. In this way, it was possible to have the permeate
trends and not to consider the membrane geometry as an input of the neural network.

TMP is the driving force of the UF process. It occurs due to membrane resistance and
for other resistance phenomena caused by fouling and polarization. The permeate flux may
also be expressed as in Equation (2), thanks to resistances in the series model.

JP =
TMP
µ·Rtot

(2)



Processes 2023, 11, 1287 5 of 16

where µ is the permeate viscosity and Rtot is the total resistance due to the sum of all resis-
tances [8]. Considering the normalized permeate flux in output, TMP could be neglected as
the input of the neural network.

Therefore, two different neural networks were tested: the first and second have three
and four inputs, respectively. Briefly, they differ from the TMP presence in input. Both
networks are tested and compared to understand the real influence of TMP in input on the
process. For all networks tested, before starting with training, input data was normalized
through the mapminmax() Matlab function to avoid some inputs appearing more significant
than others, causing a numerical overflow due to the large or small weights.

Many different ANN architectures already exist in the literature. In this paper, the
attention is focused on the characterization of ANNs starting from the way the neurons
are connected: Feed Forward Neural Network (FFNN), single-layer perceptron, multilayer
perceptron (MLP), radial-based network, recurrent neural networks (RNN), Elman neural
network, Hopfield neural network, Jordan neural network and recurrent multi-layer neural
network. Each kind of neural network has its advantages and limitations. The choice of
architecture for this case study was based both on the literature already present and on the
verification of the different models starting from the experimental data.

The chosen architecture was an MLP, specifically a multilayer feed-forward neural net-
work, consisting of different layers: input, hidden and output. In this case, the information
is only transmitted in the forward direction from the input layer to the hidden layer—of
which there may be more than one—and then to the output layer. The number of neurons
in the input and output layers is derived from the physical quantities or variables in the
input and output of the process. The number of hidden layers and the neurons in each
depend on the physical system’s complexity and how the ANN model wants to simplify
the latter. No precise rule exists for this selection, but the trial-and-error step procedure
helps to design the number of hidden layers and their neuron number [14]. The number of
neurons in the hidden layers could fail the mapping between input and output parameters
if these are too few or too many, causing underfitting and overfitting, respectively. In the
first case, an adequate number of degrees of freedom would be lacking; in the second
case, the modelling of the experimental data may cause the network training to take a long
time [33].

In the FFNN network, all data inputs are interfaced with the network and then
propagated through it via the weighting connections. Hence, the data output of the hidden
and the output layers is calculated by internal calculations, due to the actions of the hidden
and output neurons. A neuron in a hidden layer produces the neuron’s output in two
steps [34]:

1. Taking and multiplying some numeric inputs by adjustable parameters called weights
produces weighted inputs, and adds a scalar parameter called bias or a threshold
value to the result:

nj =
R

∑
i=1

(
xj·wij

)
+ bj (3)

where xj and wij are the input signals and weights, respectively; while bj represents
the threshold value or the bias term.

2. The calculation of the output of the neuron by applying a transfer or “activation
function” on the result, which has the net input signal nj as the argument:

yj = ϕ
(
nj
)

(4)

Some types of activation function are shown in Table 1. In this paper, the hyperbolic
tangent function (tansig) was used for the hidden layer(s), while the linear function (purelin)
was used for the output function. The output obtained yj is compared with the corre-
sponding target tj, and from the difference between them, different error functions may be
calculated and the ANN performance can be measured. In this work, Mean Square Error
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(MSE) and the correlation coefficient (R) were selected to evaluate network performance.
In particular, MSE was also used in the optimization step.

MSE =
1
N

N

∑
i=1

(
Xexperimental(i) − Xcalculated(i)

)2
(5)

R =

1−
∑N

i=1

(
Xexperimental(i) − Xcalculated(i)

)2

∑N
i=1

(
Xexperimental(i) − Xexperimental

)2


1/2

(6)

where Xexperimental(i) and Xcalculated(i) are the i-th experimental and calculated values, while
Xexperimental is the mean of the experimental values. N is the number of the data point.

Table 1. List of some different more common activation functions, where S represents nj.

Activation Function Name Function Name
in Matlab Code Equation

Linear purelin ϕ = S
Hyperbolic tangent tansig ϕ =

(
eS − e−S)/(eS + e−S)

Log-sigmoid logsig ϕ = 1/
(
1 + e−S)

Radial basis radbas ϕ = e−(S
2)

Triangular basis tribas ϕ =

{
1− |S|, 1 ≤ S ≤ 1

0, S ≤ −1 or S ≥ 1

Regarding the training algorithms, the most popular and successful—also for similar
applications to this case study—seems to be the back-propagation algorithm [35]. It is
based on the steepest-descent principle. Back propagation performs supervised learning in
which the network is trained by implementing data for which input vectors are known and
a target is associated with each input vector [36].

By using the nntool command in Matlab, it was possible to import, create, use and ex-
port neural networks and data. Moreover, through a Matlab string command genFunction(),
it was possible to generate a valuable Matlab code function for the subsequent simulation
and optimization phase of the network. It was possible to modify the generated network in
all its parts after it was created and then modify it in the final optimized configuration for
this application.

2.2. A Hybrid Serial Architecture Model for the Evaluation of Resistances

As a rule, the main use of a hybrid model of a system is to describe some well-evaluated
phenomena through theoretical relationships, leaving the analysis of other aspects, which
are generally difficult to interpret, to the neural networks. The theoretical part of a hy-
brid structure may perform as a filter function that can limit the error propagation even
when the inputs are perturbed. A serial architecture of the hybrid model lets us use the
normalized permeate flux in the output of the network as the input of the theoretical
model to evaluate the transport resistances in the UF membrane system and whether or
not they are comparable and acceptable to the real UF system. The theoretical part of the
model comes from the balance of whey proteins—whose concentration is known from the
experimental data—the balance on the lab-scale system in batch conditions [37] and the
series resistance model expressed in Equation (2). From these, the normalized permeate
flux in the theoretical model may be expressed as in Equation (7):

Jn = 1− K
TMP

·
CFV·top −V0

top − tsample
(7)

where K is the resistance factor, expressed in Equation (8). It contains the dependency of
membrane geometry and the flow viscosity which passes through the membrane, besides
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the resistance trend. At the start, it may also be estimated from the whey proteins’ balance.
K is expressed in bar·min·m−3.

K =
µ·RTOT

Am
(8)

Not considering the membrane properties and the flow that crosses it, K may be
obtained from Equation (7), starting from the neural network output and the boundary
constraints in Table 2. These values were compared to the K coming from the experimented
data set also used for the simulation step.

K = (1− Jn)·
TMP·

(
top − tsample

)
CFV·top −V0

(9)

Table 2. Boundary constraints for the Genetic Algorithm optimization.

Boundary
Constraints

Operating Time
top (min)

Sampling Time
tsample (min)

Cross-Flow
Velocity

CFV (L/min)

Transmembrane
Pressure

TMP (bar)

Lower 30 5 5 0.5
Upper 330 30 10 5

Thanks to this hybrid approach, it was also possible to investigate what variable most
influences the permeate flux trend, and at the same time, the resistance trend.

2.3. Neural Network Optimization

The optimization step consists of optimising the input variables of the neural networks
to minimize or maximize the output variable. In this study, a GA was used to optimize the
normalized flux decline. By using the optimization Matlab tool (optimtool), it was possible
to set up the optimization phase according to the diagram shown in Figure 2.
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The fitness function used for the GA was the MSE, which was calculated for each
iteration of the simulation phase for each network analyzed. If MSE was lower than 1%,
the operating conditions found by the algorithm were then saved as optimal operating
conditions for the network. Otherwise, the operating conditions found were then used as
the new input for the network simulation.

For the GA operation, a hybrid function was used to find a minimum constrained
nonlinear multivariable function (fmincon), within the bound constraints due, in this case,
to the physics of the system. The bound constraints were set up as an array with minimum
and maximum values of the input variables of the neural networks, as shown in Table 2.

3. Results

After developing the networks, it was necessary to measure their performances. Ac-
cording to the previous trial-and-error step procedure, the performance of the ANNs was
evaluated through MSE and R. In the following subsections, the performances of the main
ANNs of interest are shown for networks with three and four inputs.

The other subsections regard evaluating the resistance trend using a hybrid model
and the optimization results obtained with the genetic algorithm.

3.1. ANN Model Performance

Tables 3 and 4 summarize the network hidden layers architecture developed through
the trial-and-error step procedure with three and four input variables. The most significant
performances in terms of MSE for each training, validation and test phase within the R
values are also presented in the same tables. MSE and R take on values between 0 and 1.
An MSE close to 0, indicates a high precision of the ANN. On the contrary, a high value of
R, usually close to 1, indicates a more useful model. Figures 3 and 4 show the overall values
of R within the R for each training validation and test phase for the network identified as
performing the best in the post-training analysis.

Table 3. ANN architectures and their performance for a network with three inputs.

Scenario Neurons in
Hidden Layer 1

Neurons in
Hidden Layer 2 MSE Training

Performance
Validation

Performance
Test

Performance R

1 6 6 2.40 × 10−3 3.11 × 10−3 1.40 × 10−3 6.63 × 10−1 0.95676
2 7 7 2.64 × 10−5 2.82 × 10−5 1.42 × 10−1 2.89 × 10−1 0.99918
3 8 0 1.30 × 10−3 3.43 × 10−5 1.30 × 10−3 4.22 × 10−5 0.99274
4 8 8 1.60 × 10−5 1.10 × 10−5 1.10 × 10−5 4.66 × 10−5 0.99952
5 8 9 5.42 × 10−4 7.54 × 10−4 3.14 × 10−5 5.05 × 10−5 0.98395
6 8 10 1.52 × 10−4 1.94 × 10−4 3.11 × 10−5 7.02 × 10−1 0.99759
7 9 9 1.09 × 10−4 1.15 × 10−4 4.83 × 10−1 1.43 0.99854
8 10 10 2.44 × 10−5 2.34 × 10−5 4.50 × 10−1 1.09 × 10−1 0.99924

Table 4. ANN architectures and their performance for a network with four inputs.

Scenario Neurons in
Hidden Layer 1

Neurons in
Hidden Layer 2 MSE Training

Performance
Validation

Performance
Test

Performance R

1 8 0 4.09 × 10−2 1.63 × 10−5 4.09 × 10−2 1.49 × 10−5 0.89667
2 8 8 2.91 × 10−4 3.76 × 10−4 1.35 × 10−4 3.58 × 10−5 0.99239
3 8 9 2.81 × 10−4 7.49 × 10−6 8.26 × 10−6 1.76 × 10−3 0.99233
4 8 10 5.29 × 10−4 1.16 × 10−5 3.68 × 10−3 6.03 × 10−5 0.98350
5 9 0 7.15 × 10−4 9.85 × 10−4 1.81 × 10−4 6.11 × 10−5 0.97828
6 9 9 3.88 × 10−5 8.07 × 10−6 6.06 × 10−6 2.07 × 10−4 0.99882
7 10 0 1.02 × 10−4 1.40 × 10−4 8.58 × 10−6 2.81 × 10−5 0.99720
8 10 10 5.38 × 10−4 7.28 × 10−4 2.88 × 10−5 1.40 × 10−4 0.98433



Processes 2023, 11, 1287 9 of 16
Processes 2023, 11, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 3. The correlation coefficient R for training analysis of an ANN with three variables in the 
input layer, and two hidden layers with eight neurons each. 

Table 5. ANN architectures and their performance for the simulation step. 

Neurons in the  
Input Layer 

Neurons in 
Hidden Layer 1 

Neurons in 
Hidden Layer 2 

Data Set MSE 

3 8 8 1 0.035 
3 8 8 2 0.005 
4 9 9 1 0.042 
4 9 9 2 0.002 

From the performance values, the best ANN results for the network with three inputs 
are for the network with two layers and eight neurons each. The best ANN results for the 
network with four inputs are for the network with two layers and nine neurons each.  
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input layer, and two hidden layers with eight neurons each.

For both the networks with three and four input variables, the best performances in
post-training analysis were given by the network with two hidden layers. In particular, for
networks with three input variables, the best network was identified with eight neurons for
each hidden layer; while for networks with four input variables, the best network identified
had nine neurons for each hidden layer.

These networks were simulated with two other different experimental data sets.
The MSE performances are also presented in Table 5 for two different data sets. These
experimental data sets come from different hollow-fibre membrane systems. The first and
the second data set contain 258 and 200 data points, respectively. The setup division for
data training, validation and testing phases consists of 70%, 15% and 15% of the entire
datasets, respectively. The first was installed in a horizontal configuration and had an
In-to-Out filtration mode. In contrast, the second was installed in a vertical configuration
and had an Out-to-In filtration mode. It was experimentally demonstrated that the first
system had a greater tendency to cause fouling than the second [3].
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Table 5. ANN architectures and their performance for the simulation step.

Neurons in the
Input Layer

Neurons in
Hidden Layer 1

Neurons in
Hidden Layer 2 Data Set MSE

3 8 8 1 0.035
3 8 8 2 0.005
4 9 9 1 0.042
4 9 9 2 0.002

From the performance values, the best ANN results for the network with three inputs
are for the network with two layers and eight neurons each. The best ANN results for the
network with four inputs are for the network with two layers and nine neurons each.

The normalized permeate flux predicted in the post-training and post simulation
analyses are compared with the experimental data in Figures 5 and 6.
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3.2. K-Resistance Trends from the Hybrid Model

The comparisons between the normalized permeate flux trends calculated from the
evaluation of K from the theoretical model shown in Figure 7 show substantial correspon-
dence between the experimental flow trends, unlike with the use of only the neural network,
as in Figure 6. The correspondence results are much more evident than the ANN simulation
results, especially in the initial rapid drop. Thus, analyzing the K-trends may provide more
information about the variable’s dependence with the permeate flux. Figure 8 presents the
K-trend for both experimental and hybrid cases. They try to provide a K-trend expressed
by only one variable through a cubic interpolation. The cubic interpolation seems to be
the best kind of interpolation among the simpler ones, and it is the only one showing a
comparable trend from the different input variables.
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3.3. Optimization Results

The optimization results show the minimum raised to the ANNs simulated and
optimized through the genetic algorithm with MSE as the fitness function. In Figure 9, the
MSE trends for both the ANNs are presented. In both optimization cases, the optimization
process results are completed because the fitness function did not decrease in feasible
directions to within the value of the optimal tolerance; moreover, the constraints are
satisfied to within the value of the constraint tolerance.
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Table 6 presents the optimization results in terms of minimum MSE value and opti-
mal operating conditions to ensure a maximum decay of permeate flux in output to the
UF process.

Table 6. Optimal performance and operating conditions for both ANNs developed.

ANN Inputs
Minimum

MSE

Optimal Operating Conditions

Operating
Time

top (min)

Sampling
Time

tsample (min)

Cross-Flow
Velocity

CFV (L/min)

Transmembrane
Pressure

TMP (bar)

Normalized
Permeate Flux

(%)

3 2.89 × 10−13 300 8.33 8.33 - 1.00
4 1.71 × 10−11 225 15.9 6.25 1.33 7.41

4. Discussion

Post-training and post-simulation analysis show a few differences, especially in the
initial rapid drop of the permeate flux, for both ANNs. Cross-flow whey UF is a physical
system subject to fouling, biological phenomena due to the presence of proteins and other
micro-scale phenomena. It may produce different results when modifying the operating
conditions or replacing the membrane with others with different physical characteristics.
However, the simulation step shows excellent performance, especially for the experimental
data obtained with a UF system installed in a vertical configuration and an Out-to-In
filtration mode. At the same time, the ANN with three input variables showed a slightly
better performance with the first experimental data set obtained with a UF system installed
in a horizontal mode and an In-to-Out filtration mode, such as the data set used for the
training step. Data set 1 showed a higher tendency for fouling than data set 2.

The use of the hybrid model for this system, given by the set of the theoretical model
and the neural network, shows better accordance with both experimental data than with
neural networks alone. Moreover, K-trends with a cubic interpolation indicate the influence
that the various operating variables have on the permeate flux and, thus, on the resistance
to transport given mainly by fouling, and other eventual concentration polarisation phe-
nomena. Figure 8 clearly shows that K has the most influence in the time variables. Looking
at Equation (9) regarding the theoretical model, it is easy to imagine that the filtration
time has a much higher influence than the sampling time. Cross-flow velocity presents a
more minor influence than time variables, while transmembrane pressure shows a minor
influence, even with initial negative K values. This would also explain the comparable
performance of the neural networks developed with three and four inputs under some
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specific conditions. As the permeate flux directly proportional to K, it presents the same
dependencies with K.

The optimization results obtained with the genetic algorithm show the optimal op-
erating conditions to obtain the maximum decay of the permeate flux, which is useful to
remove the maximum amount of water from the dairy waste and ensure its re-valorisation.
The network with three inputs seems to have the best results in terms of performance. In
this case, transmembrane pressure may be neglected, and it can consider a function of the
cross-flow velocity. The neural network with four inputs still performs excellently and
identifies an optimum value of transmembrane pressure. It is very close to the true optimal
value obtained experimentally in the lab. The interval between the optimal conditions of
the input variables of both models may represent the range for the experimental operating
conditions to reach the best performance and to manage the fouling effect.

5. Conclusions

In this study, different prediction models of the permeate flux decline were developed
to model and control cross-flow whey ultrafiltration. Both the developed ANN models
developed showed a good fit with the experimental data. Comparing the lab-experimental
conditions with the ANN results, it can be seen that the ANN with three input variables
is more suitable for a high membrane exchange area. In this case, the transmembrane
pressure could be neglected because it can reach minimal values; while cross-flow velocity
can achieve higher values. The ANN with four input variables is more suitable for a lower
membrane area, with higher transmembrane pressure values and, consequently, lower
values of cross-flow velocity.

A hybrid model was developed to understand the real influence of the input variables
on the permeate flux in the output of the UF system and understand if the ANN models are
reliable, starting from a theoretical part of the system passing through the neural network.
The main advantage of a hybrid model is the possibility of describing some well-evaluated
phenomena from theoretical relationships, leaving the analysis of various aspects which
are generally challenging to evaluate in neural networks. Thus, the presence of a hybrid
structure also significantly improves the neural network model. This is mainly due to the
theoretical part, which performs as a filter limiting the error propagation in the system.
A serial architecture was used for the hybrid model development: the process output
variable—difficult to measure and predict without the geometry and the specific operating
conditions—is estimated by a neural network model and then fed as the input of the
theoretical relationship. Through this hybrid model, a K-resistance trend was evaluated.
The presence of the theoretical part greatly reduced the differences between the neural
models, acting as a filter. A cubic interpolation was then performed to evaluate the
significance of the operational input conditions on the permeation flux. It returned the
following order: operating time (top), sampling time (tsample), cross-flow velocity (CFV) and
finally, transmembrane pressure (TMP). This result is the optimization step developed with
the genetic algorithm. This optimization returned excellent performances for both networks.
The identified operating conditions for both neural network models may represent the
range of the experimental operating conditions: 225 < top < 300 min, 8.33 < tsample < 15.9 min,
6.25 < CFV < 8.33 L/min, TMP is equal to 1.33 bar, otherwise it can be neglected.
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