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Abstract: In this paper, a layer-by-layer removal model of surface atoms (Al) is established according
to the atomic structure of sapphire, which can accurately calculate etch rates of crystal planes and
analyze the anisotropy of etch rates of sapphire. Firstly, etch rate distributions of sapphire are gained
through different etching experiments of sapphire hemispheres, and the effect of concentrations of
the etching solution on etch rate distributions are analyzed. Then, different types of surface atoms
are classified based on the types of chemical bonds of surface atoms, the arrangement laws of surface
atoms of different crystal planes are analyzed and a general formula for calculating etch rates of
different planes is proposed. Finally, the effectiveness of the layer-by-layer removal model of surface
atoms (Al) is proved by small errors between calculated rates of the model and experimental rates
at different concentrations, and the factors affecting the anisotropy of etch rates of sapphire are
summarized, which include: (1) the vertical distances between two adjacent layers of surface atoms
of crystal planes; (2) the configurations of the types of surface atoms of crystal planes.

Keywords: sapphire; atomic structure; anisotropy; layer-by-layer removal model of surface atoms

1. Introduction

Sapphire is widely used in MEMS due to its excellent light transmission [1,2], insula-
tion [3–5] and chemical stability [6–8]. In particular, the patterned sapphire substrate pro-
cessed by wet etching can effectively enhance luminescent properties of LED devices [9–15].
Sapphire is a typical trigonal system material with a complicated atomic structure, and
its etching characteristics are characterized by complex anisotropy, which hinders the
development of wet etching technology [16–20]. The anisotropic analysis of etch rates for
sapphire is beneficial for improving the wet etching process of sapphire and establishing
the corresponding simulation models [21–24].

The different surface atomic arrangements of crystal planes are the main reasons
affecting the anisotropy of etch rates of crystal planes [25–28]. Based on the microscopic
atomic level, the wet etching of the crystal plane can be regarded as the process in which
the atoms on its surface are gradually etched away. Due to its simple atomic structure,
the anisotropic analysis of etch rates for silicon has been reported. In the wet etching of
silicon, Zubel proposed the layer-by-layer removal model of surface atoms [29]. The model
defines etching processes of different crystal planes as layer-by-layer removal processes of
surface atoms, so the etch rate R of the crystal plane is equivalent to the ratio of the vertical
distance ∆d between adjacent two layers of surface atoms to the removal time ∆t of one
layer of surface atoms, as shown in Figure 1.

For each crystal plane, the vertical distance between adjacent two layers of surface
atoms is determined by the atomic structure of the crystal planes itself, which can be
calculated by the trigonometric function of the geometric parameters of the atomic structure
of sapphire. The time required to remove a layer of surface atoms is the key to calculate
the etch rate of each crystal plane. The model classifies types of surface atoms according to
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their surface chemical bond types, and then estimates the time required to remove different
combinations of surface atoms through the connections between surface atoms.

Processes 2023, 11, x FOR PEER REVIEW 2 of 13 
 

 

 
Figure 1. The schematic diagram of the layer-by-layer removal model of surface atoms [29]. 

For each crystal plane, the vertical distance between adjacent two layers of surface 
atoms is determined by the atomic structure of the crystal planes itself, which can be cal-
culated by the trigonometric function of the geometric parameters of the atomic structure 
of sapphire. The time required to remove a layer of surface atoms is the key to calculate 
the etch rate of each crystal plane. The model classifies types of surface atoms according 
to their surface chemical bond types, and then estimates the time required to remove dif-
ferent combinations of surface atoms through the connections between surface atoms. 

As shown in Figure 2a–c, (1 1 0), (1 0 0) and (1 1 1) planes are regarded as the three 
basic crystal planes of silicon, and the types of surface atoms on the three different crystal 
planes are marked as C, A and B, respectively. When surface atoms are directly connected 
by surface chemical bonds, the symbol “--” is used to indicate their connection; otherwise, 
the symbol “-” is used to indicate their connection. This model estimates the removal time 
of different combinations of surface atoms by calculating the removal time of surface at-
oms of three basic crystal planes. During the calculation of etch rates of silicon (the etching 
solution is 34 wt% KOH and the etching temperature is 71 °C), the removal time of the 
three types of surface atoms (C, A and B) can be calculated through etch rates of the three 
basic crystal planes (R(1 1 0) = 1.29 μm/min, R(1 0 0) = 0.63 μm/min and R(1 1 1) = 0.01 
μm/min) and the vertical distances between the two adjacent layer of surface atoms. Since 
the etch rate of the (1 1 1) plane is extremely low, the removal time of surface atoms of B 
type can be approximated as infinite. 

Figure 1. The schematic diagram of the layer-by-layer removal model of surface atoms [29].

As shown in Figure 2a–c, (1 1 0), (1 0 0) and (1 1 1) planes are regarded as the three
basic crystal planes of silicon, and the types of surface atoms on the three different crystal
planes are marked as C, A and B, respectively. When surface atoms are directly connected
by surface chemical bonds, the symbol “–” is used to indicate their connection; otherwise,
the symbol “-” is used to indicate their connection. This model estimates the removal time
of different combinations of surface atoms by calculating the removal time of surface atoms
of three basic crystal planes. During the calculation of etch rates of silicon (the etching
solution is 34 wt% KOH and the etching temperature is 71 ◦C), the removal time of the three
types of surface atoms (C, A and B) can be calculated through etch rates of the three basic
crystal planes (R(1 1 0) = 1.29 µm/min, R(1 0 0) = 0.63 µm/min and R(1 1 1) = 0.01 µm/min)
and the vertical distances between the two adjacent layer of surface atoms. Since the etch
rate of the (1 1 1) plane is extremely low, the removal time of surface atoms of B type can be
approximated as infinite.
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Surface atoms of A and B types also have A* and B* types according to their own
evolution, as shown in Figure 2d,e. The difference between A type (B type) and its evolution
A* type (B* type) is that angles of chemical bonds are different. Thus, atomic structures of
other crystal planes can be regarded as composed of five types of surface atoms (A, A*, B,
B* and C) through different combinations. As shown in Figure 2d,e, the combination of
surface atoms on the (1 3 0) plane is “A*–B*”, and the combination of surface atoms on the
(1 2 0) plane is “A*–C–B*”. Therefore, by reasonably analyzing the connections between
surface atoms, the removal time of these different combinations of surface atoms can be
estimated and etch rates of different crystal planes can be approximately gained.

As shown in Table 1, errors between calculated and experimental rates are small
under the experimental condition (the etching solution is 34 wt% KOH and the etching
temperature is 71 ◦C), which verifies the effectiveness of the layer-by-layer removal model
of surface atoms (Si) under KOH solution conditions. However, due to the uncertainty
of the estimation of the removal time, the accuracy of this model in calculating rates of
crystal planes is low in other etching solutions (for example, KOH + IPA etchant or TMAH
etchant) [26,27]. This indicates that the application of the model has certain defects. The
key to improve the accuracy of the model is to propose a specific formula for calculating
the removal time of the combination of surface atoms.

Table 1. Calculated and experimental rates of crystal planes under the experimental condition (the
etching solution is 34 wt% KOH and the etching temperature is 71 ◦C) [29].

Crystal Planes (2 2 1) (3 3 1) (2 1 0) (3 1 0) (3 2 0)

Experimental rates (µm/min) 0.59 0.85 1.24 1.08 1.28
Calculated rates (µm/min) 0.61 0.83 1.22 1.15 1.26

In addition, for silicon, its atomic structure is relatively simple. Therefore, it is relatively
easy to estimate the removal time of different combinations of surface atoms. As shown in
Figure 3a, the lengths of chemical bonds between the atom “0” and atoms “1”, “2”, “3” and
“4” are all 2.165 Å. For atoms “1”, “2”, “3” and “4”, the angle between any two is 109.471◦.
For sapphire with a complicated atomic structure, different bond lengths and bond angles
between atoms greatly increase the difficulty in estimating the removal time of different
combinations of surface atoms, as shown in Figure 3b. Therefore, this paper will propose a
formula to gain the removal time of different combinations of surface atoms according to
the principle of this model, which can uniformly calculate the removal time of different
combinations of surface atoms under different experimental conditions and avoid errors
caused by estimation.
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their mixed solutions are commonly used as etchants for sapphire, and sapphire will not
react with them until the temperature is above about 200 ◦C [18–21,30–32]. The higher the
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temperature is, the stronger the chemical reaction is, and the quality of the etched structure
of sapphire is also reduced. Therefore, considering the feasibility and processing quality of
the etched structure of sapphire, the temperature is usually within the scope of 200–300 ◦C.
When the etch solution is concentrated sulfuric acid, the insoluble deposits (Al2(SO4)3 and
Al2(SO4)3·17H2O) are produced. Concentrated phosphoric acid as a buffer agent can avoid
the insoluble deposits produced. When the etch solution is concentrated phosphoric acid,
high temperature polymerization occurs easily. Therefore, it is reasonable to choose the
mixed solution of concentrated sulfuric acid and phosphoric acid as the etchant of sapphire.
In addition, when the volume ratio of the mixed solution (H2SO4 and H3PO4) is 3:1, the
surface of etch structures of sapphire is smoother than that of other volume ratios [33].

The remainder of this paper includes three main sections: In Section 2, etch rate distri-
butions in different concentration conditions are gained by the wet etching of hemispheres
of sapphire. In Section 3, the atomic structure of sapphire is simplified in the right way, the
arrangement laws of surface atoms of different crystal planes are analyzed and a general
formula for calculating etch rates of different crystal planes is proposed. By comparing the
errors between calculated and experimental rates under different concentration conditions,
the effectiveness of the layer-by-layer removal model of surface atoms (Al) is verified. In
Section 4, the paper is summarized.

2. Experimental Methods

In this paper, the hemispherical etching method is used to obtain etch rates of sapphire
under different experimental conditions [22,34,35]. First, sapphire crystal blocks were
selected and processed into hemispherical samples with a radius of 21.5 mm, and then
polished with a roughness of about 0.005 mm. Different points on the sapphire hemisphere
represent different crystal planes; the top orientation of the hemisphere was <0 0 0 1>
direction, and the reference crystal plane was the (1 1 −2 0) plane. The etch rate of the
crystal plane was gained by calculating the ratio of the radial distance difference before
and after etching to the etching time. The radial distance before and after etching can be
obtained by the coordinate of the hemispherical surface position and the coordinate of
the spherical center. Coordinates of the hemispherical surface can be obtained by a three
dimensional coordinate measuring instrument.

The device used to etch the hemisphere of sapphire is shown in Figure 4. The etching
container was a quartz beaker with a capacity of 1500 mL. The sapphire hemisphere was
fixed by a fixture and placed at the bottom of the beaker. The total amount of etching
solution added in the experiment was 800 mL. The cover plate was provided with small
holes and placed on the top of the beaker, which prevented the steam generated during
high-temperature etching from spreading around while maintaining the balance of pressure
inside and outside the beaker. A thermocouple thermometer wrapped in the tube was
inserted into the top of the beaker to measure the temperature of the etching solution inside
the beaker. The beaker was placed on the heating panel for rapid heating.
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For the purpose of analyzing the influence of concentrations of the etching solution on
the anisotropy of etch rates of sapphire, three groups of hemispherical etching experiments
of sapphire are designed in this paper, and the corresponding experimental parameters are
shown in Table 2.

Table 2. Experimental parameters of the wet etching of sapphire hemispheres at different concentra-
tions (volume ratios of 98 wt% H2SO4 to 87 wt% H3PO4).

Group Concentration Temperature (◦C) Time (h)

1 H2SO4:H3PO4 = 1:1 236 24
2 H2SO4:H3PO4 = 3:1 236 24
3 H2SO4:H3PO4 = 6:1 236 24

Based on the wet etching experiments of three groups of sapphire hemispheres, etch
rate distributions of sapphire at different concentrations were obtained, as shown in
Figure 5 [18–21,36]. It can be seen from Figure 5a–c that full etch rates of sapphire at
the three different concentrations are all characterized by three-fold rotational symmetry,
and the center of the rotational symmetry is the <0 0 0 1> direction. There are three groups
of maximum rates (Max 1 and Max 2) in the <1 1 −2 0> crystal zone. The crystal plane
positions corresponding to the maximum rates change slightly with the concentration of
the etching solution, but the etch rates corresponding to the maximum rates change greatly
with the concentration of the etching solution. The etch rate of the C-plane also varies with
the concentration of the etching solution. The higher the proportion of concentrated sulfuric
acid in the etching solution, the higher the etch rate of the C-plane. Their differences can
be summarized in Table 3. It can be seen from Figure 5d that etch rates in the <−1 1 0 0>
crystal zone in the different concentrations are all symmetric with respect to the <0 0 0 1>
direction, and their anisotropies are very obvious. Therefore, the etch rates at three different
concentrations shown in Figure 5d were selected for the anisotropic analysis of etch rates.
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Table 3. Maximum rates (Max 1 and Max 2) at different concentrations (volume ratios of 98 wt%
H2SO4 to 87 wt% H3PO4).

Concentration (0 0 0 1) (µm/h) Max 1 (µm/h) Max 2 (µm/h)

H2SO4:H3PO4 = 1:1 1.65 3.40 (1 −1 0 10) 3.96 (1 −1 0 4)

H2SO4:H3PO4 = 3:1 1.77 3.11 (1 −1 0 11) 2.97 (1 −1 0 4)

H2SO4:H3PO4 = 6:1 2.17 3.28 (1 −1 0 11) 2.54 (1 −1 0 4)

3. Results and Discussion
3.1. Simplification of Sapphire’s Atomic Structure

For the purpose of clearly classifying the types of surface atoms of sapphire and
analyzing the arrangement laws of surface atoms of different crystal planes, it is necessary
to reasonably simplify the atomic structure of sapphire [22,37]. Figure 6 is the schematic
diagram of the simplified atomic structure of sapphire. As shown in Figure 6a1–c1, octa-
hedrons can be regarded as the smallest structural units that constitute sapphire’s atomic
structure, and octahedrons are linked by co-plane and co-edge ways to form sapphire’s
atomic structure. Among them, octahedron one is connected with octahedrons two, three
and four by co-edge way, and connected with octahedron five by co-plane way. As shown
in Figure 6a2–c2, the simplified octahedron (Al) is formed by ignoring O atoms, and
the co-edge and co-plane ways between octahedrons are simplified to the grey and red
connections between Al atoms, thus forming the simplified atomic structure of sapphire.

Processes 2023, 11, x FOR PEER REVIEW 7 of 13 
 

 

in Figure 6a2–c2, the simplified octahedron (Al) is formed by ignoring O atoms, and the 
co-edge and co-plane ways between octahedrons are simplified to the grey and red con-
nections between Al atoms, thus forming the simplified atomic structure of sapphire. 

 
Figure 6. The schematic diagram of the simplified sapphire atomic structure: (a1) one octahedron 
includes one Al and six O atoms; (b1) the co-plane and co-edge ways of octahedrons; (c1) the non-
simplified sapphire atomic structure; (a2) the octahedron that has been simplified (ignoring O at-
oms); (b2) the grey and red connections between Al atoms that correspond to the co-edge and co-
plane ways between octahedrons; (c2) the sapphire atomic structure that has been simplified. 

The schematic diagram of atomic structures of crystal planes in the <−1 1 0 0> crystal 
zone is shown in Figure 7. The schematic diagrams of atomic structures of crystal planes 
based on sapphire’s atomic structure in Figure 7a and the simplified sapphire atomic 
structure in Figure 7b both show symmetry at the <0 0 0 1> direction (that is, Part A and 
Part B are symmetrical at the <0 0 0 1> direction), which indicates that the simplification 
of sapphire’s atomic structure is reasonable. Because of the symmetry between Part A and 
Part B, crystal planes located in Part A can be selected for analysis. 

 
Figure 7. The schematic diagram of atomic structures of different crystal planes in the <−1 1 0 0> 
crystal zone: (a) based on the atomic structure of sapphire; (b) based on the simplified atomic struc-
ture of sapphire. 

3.2. Arrangements of Surface Atoms of Crystal Planes of Sapphire 
After analyzing the atomic structure of crystal planes in Part A, it was found that the 

arrangements of surface atoms of crystal planes have a certain regularity. Figure 8 shows 
the representative crystal planes C(0 0 0 1), A(1 1 −2 0) and (1 1 −2 6) in Part A, as well as 
the corresponding types of surface atoms A, A*, C and C*. The arrangement of surface 
atoms of other crystal planes in Part A can be composed of these four types of surface 
atoms in different combinations. Here, similarly, the symbols “--” and “-” are used to in-
dicate the direct and indirect connections between surface atoms, respectively. The serial 

Figure 6. The schematic diagram of the simplified sapphire atomic structure: (a1) one octahedron
includes one Al and six O atoms; (b1) the co-plane and co-edge ways of octahedrons; (c1) the non-
simplified sapphire atomic structure; (a2) the octahedron that has been simplified (ignoring O atoms);
(b2) the grey and red connections between Al atoms that correspond to the co-edge and co-plane
ways between octahedrons; (c2) the sapphire atomic structure that has been simplified.

The schematic diagram of atomic structures of crystal planes in the <−1 1 0 0> crystal
zone is shown in Figure 7. The schematic diagrams of atomic structures of crystal planes
based on sapphire’s atomic structure in Figure 7a and the simplified sapphire atomic
structure in Figure 7b both show symmetry at the <0 0 0 1> direction (that is, Part A and
Part B are symmetrical at the <0 0 0 1> direction), which indicates that the simplification of
sapphire’s atomic structure is reasonable. Because of the symmetry between Part A and
Part B, crystal planes located in Part A can be selected for analysis.
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Figure 7. The schematic diagram of atomic structures of different crystal planes in the <−1 1 0 0>
crystal zone: (a) based on the atomic structure of sapphire; (b) based on the simplified atomic structure
of sapphire.

3.2. Arrangements of Surface Atoms of Crystal Planes of Sapphire

After analyzing the atomic structure of crystal planes in Part A, it was found that the
arrangements of surface atoms of crystal planes have a certain regularity. Figure 8 shows
the representative crystal planes C(0 0 0 1), A(1 1 −2 0) and (1 1 −2 6) in Part A, as well
as the corresponding types of surface atoms A, A*, C and C*. The arrangement of surface
atoms of other crystal planes in Part A can be composed of these four types of surface
atoms in different combinations. Here, similarly, the symbols “–” and “-” are used to
indicate the direct and indirect connections between surface atoms, respectively. The serial
numbers above the crystal planes represent the repetitive arrangements of combinations of
surface atoms.
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After analyzing the atomic structures of all crystal planes in Part A, it was clear that
there are five basic crystal planes (1 1 −2 0), (1 1 −2 6), (0 0 0 1), (1 1 −2 12) and (1 1 −2 18)
in Part A, which correspond to five basic units of surface atoms “C–C”, “C*–C”, “A*–A”,
“C*–C–A*–A” and “C*–C–A*–A–A*–A”, respectively, as shown in Figure 9.
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plane; (b) (1 1 −2 6) plane; (c) (0 0 0 1) plane; (d) (1 1 −2 12) plane; (e) (1 1 −2 18) plane.

Thus, the arrangements of surface atoms of other crystal planes in Part A can be
composed of these five basic units of surface atoms in different combinations, as shown
in Figure 10. The arrangement of surface atoms on the (1 1 −2 3) plane can be regarded
as the combination of one “C–C” and one “C*–C”. The arrangement of surface atoms on
the (1 1 −2 8) plane can be regarded as the combination of one “C*–C–A*–A” and two
“C*–C”. The arrangement of surface atoms on the (1 1 −2 15) plane can be regarded as
the combination of one “C*–C–A*–A–A*–A” and one “C*–C–A*–A”. The arrangement
of surface atoms on the (1 1 −2 30) plane can be regarded as the combination of one
“C*–C–A*–A–A*–A” and two “A*–A”.
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3.3. Calculation of Etch Rates of Crystal Planes of Sapphire

As shown in Figure 9, the removal time of five basic units of surface atoms is needed
to further solve the removal time of different combinations composed of basic units of
surface atoms. Since the rate of the (1 1 −2 0) plane is extremely low, it can be considered
that the removal time of the basic unit of surface atoms “C–C” is infinite. Therefore, the
removal times t of the four basic units of surface atoms “C*–C”, “A*–A”, “C*–C–A*–A” and
“C*–C–A*–A–A*–A” can be obtained according to the etch rates R of the (1 1 −2 6), (0 0 0 1),
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(1 1 −2 12) and (1 1 −2 18) planes and the corresponding vertical distances d between the
adjacent two layers of surface atoms. The solution formula is as follows:

t =
d
R

(1)

For the vertical distance between two adjacent layers of surface atoms of the crystal
plane, it is related to the lattice parameters of the material itself and the spatial geometric
position of the crystal plane. Therefore, because of the different spatial geometric positions
of crystal planes, the vertical distances are different, resulting in different etch rates. The
removal time of the basic unit of surface atoms determines the difficulty of its removal. In
general, the larger the proportion of basic units of surface atoms with easy removal types
in the combinations of surface atoms of the crystal plane is, the higher the etch rate of it is;
on the contrary, the smaller the proportion is, the lower the etch rate of it is. Furthermore,
based on the four basic units of surface atoms, a general formula for calculating the etch
rate of the other crystal planes (non-basic crystal planes) is proposed:

RH =
kRLdH

dL
(2)

Among them, RH and RL are etch rates of high and low rate crystal planes, respectively,
and dH and dL are vertical distances between the adjacent two layers of surface atoms of the
high and low rate crystal planes, respectively. K is the rate coefficient, k = n1+n2∗m

n1+n2
, m = t1

t2
,

n1 and n2 are the numbers of surface atoms with the hard-to-remove type and the easy-
to-remove type of the high-rate crystal plane, respectively, and t1 and t2 are the removal
times of basic units of surface atoms with the hard-to-remove type and the easy-to-remove
type, respectively.

For example, in the concentration condition (236 ◦C, H2SO4:H3PO4 = 3:1), removal
times of basic units of surface atoms are calculated according to Formula (1), as shown in
Table 4. Figure 11 is the schematic diagram of solving the etch rate of the (1 1 −2 30) plane
when the etch rate of the basic crystal plane (0 0 0 1) is known. As shown in Figure 12 and
Table 3, n1 = 4, n2 = 6, t1 = 1.23 × 10−4 h, t2 = 0.85 × 10−4 h, dL = 2.17 , dH = 2.13 and
RL = 1.77 µm/h. Combined with Formula (2), the calculated rate of the (1 1 −2 30) plane
is RH = 2.20 µm/h, which has a small error with the experimental rate of 2.26 µm/h.

Table 4. Removal times of basic units in the concentration condition (236 ◦C, H2SO4:H3PO4 = 3:1).

Basic Unit of Surface Atoms C*–C A*–A C*–C–A*–A C*–C–A*–A–A*–A

Corresponding basic crystal planes (1 1 −2 6) (0 0 0 1) (1 1 −2 12) (1 1 −2 18)
Vertical distances between two

adjacent layers of surface atoms d (Å) 1.61 2.17 1.98 2.08

Etch rates R (µm/h) 0.74 1.77 1.71 2.42
Removal times t (10−4 h) 2.18 1.23 1.16 0.85
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Figure 12. The comparisons between calculated and experimental rates in the <−1 1 0 0> crystal
zone in the three different concentration conditions: (a) 236 ◦C, H2SO4:H3PO4 = 1:1; (b) 236 ◦C,
H2SO4:H3PO4 = 3:1; (c) 236 ◦C, H2SO4:H3PO4 = 6:1.

Based on the above calculation process of the etch rate of the (1 1−2 30) plane, etch
rates of all crystal planes in the <−1 1 0 0> crystal zone can be obtained. Figure 12 shows
the comparisons between calculated and experimental rates in the <−1 1 0 0> crystal zone
in the three different concentration conditions. The rate errors between calculated and
experimental results are small, especially for the rate calculation of the high-rate crystal
plane (such as the range from the (1 1 −2 6) plane to the (0 0 0 1) plane). This verifies the
effectiveness of the layer-by-layer removal model of surface atoms (Al) proposed in this
paper for the anisotropic analysis of etch rates of sapphire.
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4. Conclusions

The layer-by-layer removal model of surface atoms (Al) established in this paper builds
up a connection between etch rates and atomic structures of crystal planes of sapphire,
and obtains two factors that affect the etch rates of crystal planes of sapphire: (1) the
vertical distances between two adjacent layers of surface atoms of crystal planes; (2) the
configurations of the types of surface atoms of crystal planes. Because of the combined
effect of these two factors, anisotropic etch rates of sapphire are caused.

In this paper, according to the simplified sapphire atomic structure, the types of surface
atoms are reasonably classified, which reduces the difficulty of identifying the arrangements
of surface atoms of different crystal planes. A general formula for calculating etch rates of
crystal planes is proposed, which builds up a connection between etch rates and atomic
structures of crystal planes. Small rate errors between calculated and experimental results
in the different concentration conditions verify the effectiveness of the proposed layer-by-
layer removal model of surface atoms (Al). Moreover, the layer-by-layer removal model
of surface atoms can offer a reference for the anisotropic analysis of etch rates of various
crystal materials, such as SiO2 and GaN, to some extent.
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