Hawthorn Drying: An Exploration of Ultrasound Treatment and Microwave–Hot Air Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Processing: Ultrasound Treatment and Microwave—Hot Air Dryer (US–MW–HA)
2.3. Specific Energy Consumption (SEC)
2.3.1. Microwave Dryer
2.3.2. Hot-Air Dryer
2.3.3. Ultrasound
2.3.4. US–MW–HA
2.4. Proprties of the US–MW–HA Dried Hawthorn
2.4.1. Shrinkage Assessment
2.4.2. Color of the Samples
2.4.3. Rehydration Ratio
2.4.4. Bioactive Compounds
Extract Preparation
Total Phenol Content (TPC)
Total Flavonoid Content (TFC)
Antioxidant Activity (AA)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Design of Experiments and Analysis
3.2. Drying Time and Specific Energy Consumption
3.3. Effect of Drying on Physical Property Changes
3.3.1. Color
3.3.2. Shrinkage
3.3.3. Rehydration Ratio (RR)
3.4. Effect of Drying on Chemical Property Changes
3.4.1. Total Phenol Content (TPC) and Total Flavonoid Content (TFC)
3.4.2. Antioxidant Activity (AA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belwal, T.; Cravotto, C.; Prieto, M.A.; Venskutonis, P.R.; Daglia, M.; Devkota, H.P.; Baldi, A.; Ezzat, S.M.; Gomez-Gomez, L.; Salama, M.M.; et al. Effects of different drying techniques on the quality and bioactive compounds of plant-based products: A critical review on current trends. Dry. Technol. 2022, 40, 1539–1561. [Google Scholar] [CrossRef]
- Duan, X.; Liu, W.C.; Ren, G.Y.; Yang, X. Effects of different drying methods on the physical characteristics and flavor of dried hawthorns (Crataegus spp.). Dry. Technol. 2017, 35, 1412–1421. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Raghavan, G.S.V.; Song, F.; Song, C.; Liu, M.; Pei, Y.; Fu, W.; Ning, W. Fuzzy logic control of relative humidity in microwave drying of hawthorn. J. Food Eng. 2021, 310, 11070. [Google Scholar] [CrossRef]
- Aral, S.; Bese, A.V. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem. 2016, 210, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour-Gilandeh, Y.; Kaveh, M.; Fatemi, H.; Aziz, M. Combined hot air, microwave, and infrared drying of hawthorn fruit: Effects of ultrasonic pretreatment on drying time, energy, qualitative, and bioactive compounds’ properties. Foods 2021, 10, 1006. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Wu, Z.; Wan, N.; Yang, M. Dehydration of hawthorn fruit juices using ultrasound-assisted vacuum drying. Ultrason. Sonochemistry 2020, 68, 10521. [Google Scholar] [CrossRef]
- Reis, F.R.; Marques, C.; de Moraes, A.C.S.; Masson, M.L. Trends in quality assessment and drying methods used for fruits and vegetables. Food Control 2022, 142, 10925. [Google Scholar]
- Majumder, P.; Sinha, A.; Gupta, R.; Sablani, S.S. Drying of Selected Major Spices: Characteristics and Influencing Parameters, Drying Technologies, Quality Retention and Energy Saving, and Mathematical Models. Food Bioprocess Technol. 2021, 14, 1028–1054. [Google Scholar] [CrossRef]
- Mohammed, H.H.; Tola, Y.B.; Taye, A.H.; Abdisa, Z.K. Effect of pretreatments and solar tunnel dryer zones on functional properties, proximate composition, and bioactive components of pumpkin (Cucurbita maxima) pulp powder. Heliyon 2022, 8, e10747. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Pei, Y.-P.; Sutar, P.P.; Liu, D.-H.; Deng, L.-Z.; Duan, X.; Liu, Z.-L.; Xiao, H.-W. Pulsed vacuum drying of banana: Effects of ripeness on drying kinetics and physicochemical properties and related mechanism. LWT Food Sci. Technol. 2022, 161, 1133. [Google Scholar] [CrossRef]
- Pei, Y.; Li, Z.; Song, C.; Li, J.; Xu, W.; Zhu, G. Analysis and modelling of temperature and moisture gradient for ginger slices in hot air drying. J. Food Eng. 2022, 323, 11100. [Google Scholar] [CrossRef]
- Karwacka, M.; Ciurzyńska, A.; Galus, S.; Janowicz, M. Freeze-dried snacks obtained from frozen vegetable by-products and apple pomace—Selected properties, energy consumption and carbon footprint. Innov. Food Sci. Emerg. Technol. 2022, 77, 102949. [Google Scholar] [CrossRef]
- Tepe, F.B.; Tepe, T.K.; Ekinci, A. Drying kinetics and energy efficiency of microwave-dried lemon slices. Chem. Ind. Chem. Eng. Q. 2022, 28, 297–304. [Google Scholar] [CrossRef]
- Sadeghi, E.; Movagharnejad, K.; Asl, A.H. Parameters optimization and quality evaluation of mechanical properties of infrared radiation thin layer drying of pumpkin samples. J. Food Process Eng. 2019, 43, e13309. [Google Scholar] [CrossRef]
- Dadan, M.; Nowacka, M. The assessment of the possibility of using ethanol and ultrasound to design the properties of dried carrot tissue. Appl. Sci. 2021, 11, 689. [Google Scholar] [CrossRef]
- Rybak, K.; Wiktor, A.; Kaveh, M.; Dadan, M.; Witrowa-Rajchert, D.; Nowacka, M. Effect of thermal and non-thermal technologies on kinetics and the main quality parameters of red bell pepper dried with convective and microwave–convective methods. Molecules 2022, 27, 2164. [Google Scholar] [CrossRef]
- Bao, T.; Hao, X.; Shishir, M.R.S.; Karim, N.; Chen, W. Green alternative methods for pretreatment of whole jujube before drying process. J. Sci. Food Agric. 2022, 102, 1030–1039. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, Y. Effects of pulsed-vacuum and ultrasound on the osmodehydration kinetics and microstructure of apples (Fuji). J. Food Eng. 2008, 85, 84–93. [Google Scholar] [CrossRef]
- Awad, T.S.; Moharram, H.A.; Shaltout, O.E.; Asker, D.; Youssef, M.M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 2012, 48, 410–427. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Rohit, T.; Karaca, A.C.; Nowacka, M.; Colussi, R.; Frasson, S.F.; Aaliya, B.; Sunooj, K.V.; Falsafi, S.R. How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends Food Sci. Technol. 2022, 128, 217–237. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Ding, Z.; Wang, C.; Cheng, J. Evaluation of ultrasound-assisted microwave hot air convective drying Chinese hickory—Drying kinetics and product’s quality properties. J. Food Process Eng. 2021, 44, e13842. [Google Scholar] [CrossRef]
- Sledz, M.; Wiktor, A.; Rybak, K.; Nowacka, M.; Witrowa-Rajchert, D. The impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsley leaves. Appl. Acoust. 2016, 103, 148–156. [Google Scholar] [CrossRef]
- Dehghannya, J.; Kadkhodaei, S.; Heshmati, M.K.; Ghanbarzadeh, B. Ultrasound-assisted intensification of a hybrid intermittent microwave—Hot air drying process of potato: Quality aspects and energy consumption. Ultrasonics 2019, 96, 104–122. [Google Scholar] [CrossRef]
- Chouaibi, M.; Snoussi, A.; Attouchi, S.; Ferrari, G. Influence of drying processes on bioactive compounds profiles, hydroxymethylfurfural, color parameters, and antioxidant activities of Tunisian eggplant (Solanum melongena L.). J. Food Process. Preserv. 2021, 45, e15460. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, B.; Lv, W.; Wu, Y. Effects of microwave power and hot air temperature on the physicochemical properties of dried ginger (Zingiber officinale) using microwave hot-air rolling drying. Food Chem. 2023, 404, 134741. [Google Scholar] [CrossRef] [PubMed]
- Ando, Y.; Nei, D. Comparison of potato void structures dried by air-drying, freeze-drying, and microwave-vacuum-drying, and the physical properties of powders after grinding. Food Bioprocess Technol. 2023, 16, 447–458. [Google Scholar] [CrossRef]
- Nanvakenari, S.; Movagharnejad, K.; Latifi, A. Modelling and experimental analysis of rice drying in new fluidized bed assisted hybrid infrared-microwave dryer. Food Res. Int. 2022, 159, 111617. [Google Scholar] [CrossRef]
- Mirzaei-Baktash, H.; Hamdami, N.; Torabi, P.; Fallah-Joshaqani, S.; Dalvi-Isfahan, M. Impact of different pretreatments on drying kinetics and quality of button mushroom slices dried by hot-air or electrohydrodynamic drying. LWT Food Sci. Technol. 2022, 155, 112894. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Wang, W. Ultrasound-assisted osmotic dehydration pretreatment before pulsed fluidized bed microwave freeze-drying (PFBMFD) of Chinese yam. Food Biosci. 2020, 35, 100548. [Google Scholar] [CrossRef]
- Nguyen, T.-V.-L.; Nguyen, P.-B.-D.; Tran, T.T.V.; Tran, B.-L.; Huynh, T.-P. Low-temperature microwave-assisted drying of sliced bitter melon: Drying kinetics and rehydration characteristics. J. Food Process Eng. 2022, 45, e14177. [Google Scholar] [CrossRef]
- Tepe, F.B. Impact of pretreatments and hybrid microwave assisting on drying characteristics and bioactive properties of apple slices. J. Food Process. Preserv. 2022, 46, e17067. [Google Scholar] [CrossRef]
- An, N.; Sun, W.; Li, B.; Wang, Y.; Shang, N.; Lv, W.; Li, D.; Wang, L. Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame. Food Chem. 2022, 373, 131412. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Dehghani, M.R.; Ramaswamy, H.S. Hybrid microwave-hot air tunnel drying of onion slices: Drying kinetics, energy efficiency, product rehydration, color, and flavor characteristics. Dry. Technol. 2022, 40, 966–986. [Google Scholar] [CrossRef]
- Mierzwa, D.; Szadzińska, J.; Pawłowski, A.; Pashminehazar, R.; Kharaghani, A. Nonstationary convective drying of raspberries, assisted by microwaves and ultrasound. Dry. Technol. 2019, 37, 988–1001. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2010. [Google Scholar]
- Kaveh, M.; Abbaspour-Gilandeh, Y. Drying characteristics, specific energy consumption, qualitative properties, total phenol compounds, and antioxidant activity during hybrid hot air-microwave- rotary drum drying of green pea. Iran. J. Chem. Chem. Eng. 2022, 40, 655–672. [Google Scholar]
- Sharifian, F.; Motlagh, A.M.; Nikbakht, A.M. Pulsed microwave drying kinetics of fig fruit (Ficus carica L.). Aust. J. Crop Sci. 2012, 6, 1441–1444. [Google Scholar]
- Çetin, N.; Sağlam, C. Effects of ultrasound pre-treatment assisted drying methods on drying characteristics, physical and bioactive properties of windfall apples. J. Sci. Food Agric. 2022, 103, 534–547. [Google Scholar] [CrossRef]
- Geng, Z.; Torki, M.; Kaveh, M.; Beigi, M.; Yang, X. Characteristics and multi-objective optimization of carrot dehydration in a hybrid infrared /hot air dryer. LWT Food Sci. Technol. 2022, 172, 114229. [Google Scholar] [CrossRef]
- Sharifian, F.; Modarres-Motlagh, A.; Komarizade, M.H.; Nikbakht, A.M. Colour change analysis of fig fruit during microwave drying. Int. J. Food Eng. 2013, 9, 107–114. [Google Scholar] [CrossRef]
- Wiktor, A.; Landfeld, A.; Matys, A.; Novotná, P.; Dadan, M.; Kováříková, E.; Nowacka, M.; Mulenko, M.; Witrowa-Rajchert, D.; Strohalm, J.; et al. Selected Quality Parameters of Air-Dried Apples Pretreated by High Pressure, Ultrasounds and Pulsed Electric Field—A Comparison Study. Foods 2021, 10, 1943. [Google Scholar] [CrossRef]
- Shahidi, F.; Naczk, M. Phenolics in Food and Nutraceuticals; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Kaveh, M.; Abbaspour-Gilandeh, Y.; Nowacka, M. Optimisation of microwave-rotary drying process and quality parameters of terebinth. Biosyst. Eng. 2021, 208, 113–130. [Google Scholar] [CrossRef]
- Dibagar, N.; Kowalski, S.J.; Chayjan, R.A.; Figiel, A. Accelerated convective drying of sunflower seeds by high-power ultrasound: Experimental assessment and optimization approach. Food Bioprod. Process. 2020, 123, 42–59. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, M.; Mujumdar, A.S.; Luo, Z.; Fang, Z. Dehydrated fruits and vegetables using low temperature drying technologies and their application in functional beverages: A review. Dry. Technol. 2022, in press. [CrossRef]
- Dehsheikh, F.N.; Dinani, S.T. Coating pretreatment of banana slices using carboxymethyl cellulose in an ultrasonic system before convective drying. Ultrason. Sonochemistry 2019, 52, 401–413. [Google Scholar] [CrossRef]
- Raj, G.V.S.B.; Dash, K.K. Effect of intermittent microwave convective drying on physicochemical properties of dragon fruit. Food Sci. Biotechnol. 2022, 31, 549–560. [Google Scholar] [CrossRef]
- Pham, N.D.; Karim, M.A. Investigation of nutritional quality evolution of papaya during intermittent microwave convective drying. Dry. Technol. 2022, 40, 3694–3707. [Google Scholar] [CrossRef]
- Szadzinska, J.; Mierzwa, D. The influence of hybrid drying (microwave-convective) on drying kinetics and quality of white mushrooms. Chem. Eng. Process. Process Intensif. 2021, 16, 108532. [Google Scholar] [CrossRef]
- Dehghannya, J.; Seyed-Tabatabaei, S.-R.; Heshmati, M.K.; Ghanbarzadeh, B. Influence of three stage ultrasound—Intermittent microwave—Hot air drying of carrot on physical properties and energy consumption. Heat Mass Transf. 2021, 57, 1893–1907. [Google Scholar] [CrossRef]
- Witrowa-Rajchert, D.; Wiktor, A.; Sledz, M.; Nowacka, M. Selected emerging technologies to enhance the drying process: A review. Dry. Technol. 2014, 32, 1386–1396. [Google Scholar] [CrossRef]
- Motevali, A.; Minaei, S.; Banakar, A.; Ghobadian, B.; Khoshtaghaza, M.H. Comparison of energy parameters in various dryers. Energy Convers. Manag. 2014, 87, 711–725. [Google Scholar] [CrossRef]
- Kaveh, M.; Abbaspour-Gilandeh, Y.; Nowacka, M. Comparison of different drying techniques and their carbon emissions in green peas. Chem. Eng. Process. Process Intensif. 2021, 160, 108274. [Google Scholar] [CrossRef]
- Szadzińska, J.; Łechtańska, J.; Pashminehazar, R.; Kharaghani, A.; Tsotsas, E. Microwave- and ultrasound-assisted convective drying of raspberries: Drying kinetics and microstructural changes. Dry. Technol. 2019, 37, 1–12. [Google Scholar] [CrossRef]
- İlter, I.; Akyıl, S.; Devseren, E.; Okut, D.; Koç, M.; Ertekin, F.K. Microwave and hot air drying of garlic puree: Drying kinetics and quality characteristics. Heat Mass Transf. 2018, 54, 2101–2112. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, Y.; Zhang, J.; Xi, H.; Duan, X. Effects of far-infrared radiation temperature on drying characteristics, water status, microstructure and quality of kiwifruit slices. J. Food Meas. Charact. 2019, 13, 3086–3096. [Google Scholar] [CrossRef]
- Kroehnke, J.; Szadzińska, J.; Stasiak, M.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Musielak, G. Ultrasound- and microwave-assisted convective drying of carrots—Process kinetics and product’s quality analysis. Ultrason. Sonochemistry 2018, 48, 249–258. [Google Scholar] [CrossRef]
- Witrowa-Rajchert, D.; Rzaca, M. Effect of drying method on the microstructure and physical properties of dried apples. Dry. Technol. 2009, 27, 903–909. [Google Scholar] [CrossRef]
- Joudi-Sarighayeh, F.; Abbaspour-Gilandeh, Y.; Kaveh, M.; Hernández-Hernández, J.L. The optimization of the physical–thermal and bioactive properties of pumpkin slices dried in a hybrid microwave– convective dryer using the response surface method. Agronomy 2022, 12, 2291. [Google Scholar] [CrossRef]
- Bhat, T.A.; Hussain, S.Z.; Wani, S.M.; Rather, M.A.; Reshi, M.; Naseer, B.; Qadri, T.; Khalil, A. The impact of different drying methods on antioxidant activity, polyphenols, vitamin C and rehydration characteristics of Kiwifruit. Food Biosci. 2022, 48, 101821. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Chen, X.; Li, B.; Mao, X.; Miao, J.; Zhao, C.; Huang, L.; Gao, W. Effects of hot air and microwave-assisted 48drying on drying kinetics, physicochemical properties, and energy consumption of chrysanthemum. Chem. Eng. Process. Process Intensif. 2018, 129, 84–94. [Google Scholar] [CrossRef]
- Gharkhloo, Z.R.; Sharifian, F.; Rahimi, A.; Yamchi, A.A. Influence of high wave sound pretreatment on drying quality parameters of Echinacea root with infrared drying. J. Sci. Food Agric. 2022, 102, 2153–2164. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Yeganeh, R.; Momeny, M. Influence of ultrasound pre-treatment and temperature on the quality and thermodynamic properties in the drying process of nectarine slices in a hot air dryer. J. Food Process. Preserv. 2020, 44, e14818. [Google Scholar] [CrossRef]
- Çetin, N. Comparative assessment of energy analysis, drying kinetics, and biochemical composition of tomato waste under different drying conditions. Sci. Hortic. 2022, 305, 111405. [Google Scholar] [CrossRef]
- Souza, A.U.; Correa, J.L.G.; Tanikawa, D.H.; Abrahao, F.R.; Junqueira, J.R.J.; Jimenez, E.C. Hybrid microwave-hot air drying of the osmotically treated carrots. LWT Food Sci. Technol. 2022, 156, 113046. [Google Scholar] [CrossRef]
- Darıcı, M.; Süfer, O.; Simsek, M. Determination of microwave drying and rehydration kinetics of green peppers with the bioactive and textural properties. J. Food Process Eng. 2021, 44, e13755. [Google Scholar] [CrossRef]
- Zahoor, I.; Khan, M.A. Microwave assisted fluidized bed drying of red bell pepper: Drying kinetics and optimization of process conditions using statistical models and response surface methodology. Sci. Hortic. 2021, 286, 11020. [Google Scholar] [CrossRef]
- Song, Y.; Tao, Y.; Zhu, X.; Han, Y.; Show, P.L.; Song, C.; Zaid, H.F.M. Ultrasound-Enhanced Hot Air Drying of Germinated Highland Barley Seeds: Drying Characteristics, Microstructure, and Bioactive Profile. Agri Eng. 2019, 1, 496–510. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Han, M.; Gao, X.; Han, Y.; Show, P.-L.; Liu, C.; Ye, X.; Xie, G. Applications of water blanching, surface contacting ultrasound-assisted air drying, and their combination for dehydration of white cabbage: Drying mechanism, bioactive profile, color and rehydration property. Ultrason. Sonochemistry 2019, 53, 192–201. [Google Scholar] [CrossRef]
- Horuz, E.; Jaafar, H.J.; Maskan, M. Ultrasonication as pretreatment for drying of tomato slices in a hot air–microwave hybrid oven. Dry. Technol. 2017, 35, 849–859. [Google Scholar] [CrossRef]
- Li, M.; Wang, B.; Wang, Y.; Liu, J.; Zhang, M. Evaluation of the uniformity, quality and energy cost of four types of vegetables and fruits after pilot-scale pulse-spouted bed microwave (915 MHz) freeze-drying. Dry. Technol. 2023, 41, 290–370. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Staniszewska, I.; Liu, Z.-L.; Zielinska, D.; Xiao, H.-W.; Pan, Z.; Nowak, K.W.; Zielinska, M. Microwave-vacuum-assisted drying of pretreated cranberries: Drying kinetics, bioactive compounds and antioxidant activity. LWT Food Sci. Technol. 2021, 146, 111464. [Google Scholar] [CrossRef]
- An, N.; Shang, N.; Lv, W.; Li, D.; Wang, L.; Wang, Y. Effects of carboxymethyl cellulose/pectin coating combined with ultrasound pretreatment before drying on quality of turmeric (Curcuma longa L.). Int. J. Biol. Macromol. 2022, 202, 354–365. [Google Scholar] [CrossRef] [PubMed]
Type of Experiment | Independent Variable | Level | Dependant Variable |
---|---|---|---|
Complete factorial design of experiments | Microwave Power | 180 W 360 W 540 W | Drying time SEC Color Shrinkage RR TPC TFC AA |
Temperature | 40 °C 55 °C 70 °C | ||
Ultrasound | 15 min |
Parameter | MW Power | Temperature | MW Power × Temperature | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | Mean Square | Sig. | Sum of Squares | Mean Square | Sig. | Sum of Squares | Mean Square | Sig. | C.V * | |
Drying time | 24,033.333 | 12,016.667 | 0.000 | 52,533.333 | 10,506.667 | 0.000 | 466.667 | 46.667 | 0.278 | 5.544 |
SEC | 6797.737 | 3398.868 | 0.000 | 5640.968 | 1128.193 | 0.000 | 570.659 | 57.066 | 0.000 | 4.705 |
Color | 2918.686 | 1459.343 | 0.000 | 291.084570 | 58.216914 | 0.000 | 39.844 | 3.984 | 0.001 | 3.874 |
Shrinkage | 1289.128 | 644.564 | 0.000 | 2649.188 | 529.838 | 0.000 | 38.928 | 3.893 | 0.123 | 3.675 |
RR | 8.929 | 2.978 | 0.000 | 2.660 | 0.443 | 0.000 | 1.889 | 0.105 | 0.000 | 2.586 |
TPC | 3451.115 | 1150.372 | 0.000 | 1234.116 | 205.686 | 0.000 | 588.697 | 32.705 | 0.000 | 2.061 |
TFC | 4830.773 | 1610.257 | 0.000 | 1803.648 | 300.608 | 0.000 | 820.722 | 45.596 | 0.000 | 1.580 |
AA | 7798.419 | 2599.473 | 0.000 | 3579.063 | 596.510 | 0.000 | 1308.834 | 72.713 | 0.000 | 1.519 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaveh, M.; Nowacka, M.; Khalife, E.; Imanian, K.; Abbaspour-Gilandeh, Y.; Sabouri, M.; Zadhossein, S. Hawthorn Drying: An Exploration of Ultrasound Treatment and Microwave–Hot Air Drying. Processes 2023, 11, 978. https://doi.org/10.3390/pr11040978
Kaveh M, Nowacka M, Khalife E, Imanian K, Abbaspour-Gilandeh Y, Sabouri M, Zadhossein S. Hawthorn Drying: An Exploration of Ultrasound Treatment and Microwave–Hot Air Drying. Processes. 2023; 11(4):978. https://doi.org/10.3390/pr11040978
Chicago/Turabian StyleKaveh, Mohammad, Małgorzata Nowacka, Esmail Khalife, Kamal Imanian, Yousef Abbaspour-Gilandeh, Maryam Sabouri, and Safoura Zadhossein. 2023. "Hawthorn Drying: An Exploration of Ultrasound Treatment and Microwave–Hot Air Drying" Processes 11, no. 4: 978. https://doi.org/10.3390/pr11040978
APA StyleKaveh, M., Nowacka, M., Khalife, E., Imanian, K., Abbaspour-Gilandeh, Y., Sabouri, M., & Zadhossein, S. (2023). Hawthorn Drying: An Exploration of Ultrasound Treatment and Microwave–Hot Air Drying. Processes, 11(4), 978. https://doi.org/10.3390/pr11040978