Lipophilicity Study of Fumaric and Maleic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reference Standards
2.2. Determining the Experimental Partition Coefficient (LogPexp) Using the Shake-Flask Method
2.2.1. Preparation of Samples
2.2.2. Normal-Phase Thin-Layer Chromatography (NP-TLC)
2.2.3. Validation of the Normal-Phase Thin-Layer Chromatography Method for Determination of Experimental Partition Coefficient (LogPexp)
Linearity of Detector Response and Range
Accuracy
Precision
Limit of Detection (LOD) and Limit of Quantification (LOQ) Based on the Specific Calibration Curve
2.3. Use of RP-TLC for the Evaluation of Chromatographic Parameters of the Lipophilicity
2.4. New Ways of Calculation of the logP for the FA and the MA
2.5. Statistical Analysis
3. Results and Discussion
3.1. Determination of LogPexp Using the Shake-Flask Method
3.1.1. NP-TLC Method Validation for Determination of Experimental Partition Coefficient (logPexp)
Specificity
Range
Accuracy
Precision
Limit of Detection (LOD) and Limit of Quantification (LOQ) Based on the Calibration Curve
3.1.2. Calculation of the Content of FA and MA in the Aqueous Phase after Extraction in the n-Octanol–Water System and Determination of Experimental Partition Coefficient
3.2. Use of Reversed-Phase Thin-Layer Chromatography for the Lipophilicity Chromatographic Parameters Evaluation
3.3. New Ways of Computation of the logP for FA and MA
3.4. Comparison of Lipophilicity of Fumaric Acid and Maleic Acid Obtained in This Paper and by Different Methods within the Literature Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012, 7, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, E.; Pająk, K.; Jóźwiak, K. Lipophilicity- methods of determination and its role in medicinal chemistry. Acta Pol. Pharm. 2013, 70, 3–18. [Google Scholar] [PubMed]
- Jóźwiak, K.; Szumiło, H.; Soczewiński, E. Lipophilicity, methods of determination and its role in biological effect of chemical substances. Wiad. Chem. 2001, 55, 1047–1074. (In Polish) [Google Scholar]
- Patrick, G. Medical Chemistry. In Basic Issues, 1st ed.; Scientific and Technical Publisher: Warsaw, Poland, 2003; pp. 271–272, 304–307. (In Polish) [Google Scholar]
- Sangster, J. Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry; Wiley&Sons: Chichester, UK, 1997; pp. 57–64. [Google Scholar]
- Cimpan, G. Lipophilicity determination of organic substances by reversed-phase TLC. In Encyclopedia of Chromatography, 2nd ed.; Cazes, J., Ed.; Taylor & Francis Group: Bosa Roca, FL, USA, 2005; Volume 2005, pp. 999–1001. [Google Scholar]
- Goldberg, I.; Rokem, J.S.; Pines, O. Review Organic acids: Old metabolites, new themes. J. Chem. Technol. Biotechnol. 2006, 81, 1601–1611. [Google Scholar] [CrossRef]
- Matteo, P.; Federico, D.; Emanuela, M.; Giulia, R.; Tommaso, B.; Alfredo, G.; Anna, C.; Annamaria, O. New and Old Horizons for an Ancient Drug: Pharmacokinetics, Pharmacodynamics, and Clinical Perspectives of Dimethyl Fumarate. Pharmaceutics 2022, 14, 2732. [Google Scholar] [CrossRef]
- Reich, A.; Adamski, Z.; Chodorowska, G.; Kaszuba, A.; Krasowska, D.; Lesiak, A.; Maj, J.; Narbutt, J.; Osmola-Mańkowska, A.J.; Owczarczyk-Saczonek, A.; et al. Psoriasis. Diagnostic and therapeutic recommendations of the Polish Dermatological Society. Part 2. Dermatol. Rev. 2020, 107, 110–137. [Google Scholar] [CrossRef]
- Zhang, D.; Bian, Q.; Li, J.; Huang, Q.; Gao, J. Enhancing effect of fumaric acid on transdermal penetration of loxoprofen sodium. Int. J. Pharm. 2020, 588, 119722. [Google Scholar] [CrossRef]
- Das, R.K.; Brar, S.K.; Verma, M. Recent advances in the biomedical applications of fumaric acid and its ester derivatives: The multifaceted alternative therapeutics. Pharmacol. Rep. 2016, 68, 404–414. [Google Scholar] [CrossRef]
- Emre, S. Review of the use of fumaric acid esters in dermatology. J. Turk. Acad Dermatol. 2016, 10, 16104r1. [Google Scholar] [CrossRef]
- Martin-Dominguez, V.; Estevez, J.; de Borja Ojembarrenna, F.; Santos, V.E.; Ladero, M. Fumaric acid production: A biorefinery perspective. Fermentation 2018, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.; Ballal, N.V.; Narkedamalli, R.K. Efficacy of SmearOFF, maleic acid, and ethylenediaminetetraacetic acid combined with sodium hypochlorite in removal of smear layer from curved root canals: In vitro study. Saudi. Endod. J. 2021, 11, 221–227. [Google Scholar] [CrossRef]
- Ballal, N.V.; Ferrer-Luque, C.M.; Sona, M.; Prabhu, K.N.; Arias-Moliz, T.; Baca, P. Evaluation of final irrigation regimens with maleic acid for smear layer removal and wettability of root canal sealer. Acta Odontol. Scand. 2017, 76, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Luque, C.M.; GonzálezCastillo, S.; Ruiz-Linares, M.; Arias-Moliz, M.T.; Rodríguez-Archilla, A.; Baca, P. Antimicrobial residual effects of irrigation regimens with maleic acid in infected root canals. J. Biol. Res. 2015, 22, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadlak-Nowicka, J. Triclosan: Antibacterial and anti-inflammatory properties and clinical effects on plaque and gingivitis reduction. Czas. Stomatol. 2008, 61, 190–202. (In Polish) [Google Scholar]
- Konopka, T. Triclosan/copolymer in the control of subgingival plaque and periodontitis. Czas. Stomatol. 2008, 61, 203–211. (In Polish) [Google Scholar]
- Scheidelaar, S.; Koorengevel, M.C.; Pardo, J.D.; Meeldijk, J.D.; Breukink, E.; Killian, J.A. Molecular model for the solubilization of membranes into nanodisks by styrene maleic acid copolymers. Biophys. J. 2015, 108, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Maleic Acid Safety Data Sheet. Available online: https://www.carlroth.com/medias/SDB-K304-PL-PL.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNjA4MTZ8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oNzQvaGY2LzkwNTk5NjU5Mjc0NTQucGRmfDU3ODFlYWQ1YWM3N2U0N2U0NzFmOGUwZTZhYmY2NTM4YWMyMzZlMTI1YjY2NTAzNjdkZWQxNWE3NDkwNGUxZTI (accessed on 8 February 2023).
- Fumaric Acid Safety Data Sheet. Available online: https://www.carlroth.com/medias/SDB-3748-PL-PL.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNTYwMjR8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oZDgvaDNlLzkwNjkyOTI2NTA1MjYucGRmfGVlYTI0ZjZjNjE4MGFkOGZhNjZkOWQyNTBmNzkzNjE3NTMyNTUyNzBmOWFkY2U2NWZjYjAxN2M3MzAwNmFmZDU (accessed on 8 February 2023).
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/444266 (accessed on 8 February 2023).
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Fumaric-acid (accessed on 8 February 2023).
- Drugbank. Available online: https://go.drugbank.com/drugs/DB04299 (accessed on 8 February 2023).
- Drugbank. Available online: https://go.drugbank.com/drugs/DB01677 (accessed on 8 February 2023).
- Virtual Computational Chemistry Laboratory. Available online: http://www.vcclab.org/lab/alogps (accessed on 2 February 2023).
- Molinspiration Cheminformatics. Available online: https://www.molinspiration.com/cgi-bin/properties (accessed on 2 February 2023).
- Pyka-Pająk, A. Fumaric and maleic acids—Separation and detection by NP-TLC technique in connection with densitometry. Farm. Pol. 2019, 75, 475–480. (In Polish) [Google Scholar] [CrossRef]
- ICH Harmonised Tripartite Guideline: Validation of Analytical Procedures: Text and Methodology, Q2(R1), ICH, Geneva, Switzerland. 2005. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 8 February 2023).
- Devillers, J.; Balaban, A.T. Topological Indices and Related Descriptors in QSAR and QSPR; Gordon and Breach Science Publishers: London The Netherlands, 1999. [Google Scholar]
- Pyka, A. Correlation of topological indexes with the chromatographic separation of isomers. J. Planar Chromatogr. Mod. TLC 1991, 4, 316–318. [Google Scholar]
- Pyka, A. Correlation of topological indexes with the chromatographic separation of isomers. Part II. J. Planar Chromatogr. Mod. TLC 1992, 5, 435–440. [Google Scholar]
- Barysz, M.; Jashari, G.; Lall, R.S.; Srivastava, R.S.; Trinajstić, N. On the distance matrix of molecules containing heteroatoms. Chemical applications of topology and graph theory. Stud. Phys. Theor. Chem. 1983, 28, 222–230. [Google Scholar]
- Pyka, A. Topological indices: TLC. In Encyclopedia of Chromatography, 3rd ed.; Cazes, J., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2010; Volume 2010, pp. 2340–2350. [Google Scholar]
- Pyka, A. Topological indices: Use in HPLC. In Encyclopedia of Chromatography, 3rd ed.; Cazes, J., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2010; Volume 2010, pp. 2351–2360. [Google Scholar]
- Pyka, A.; Kępczyńska, E.; Bojarski, J. Application of selected traditional structural descriptors to QSRR and QSAR analysis of barbiturates. Indian J. Chem. A 2003, 42A, 1405–1413. [Google Scholar]
- Niestrój, A. Comparison of methods for calculation of the partition coefficients of selected aliphatic compounds. J. Planar Chromatogr. Mod. TLC 2010, 23, 198–200. [Google Scholar] [CrossRef]
- Niestrój, A. Comparison of methods for calculation of the partition coefficients of selected tocopherols. J. Planar Chromatogr. Mod. TLC 2007, 20, 483–486. [Google Scholar] [CrossRef]
Parameter | Acid | |
---|---|---|
Maleic | Fumaric | |
Experimental data | ||
pH | 1.3 | 2.1 |
Melting temperature | 130–135 °C | 287 °C |
Boiling point | 157.8 °C | 290 °C |
Flash point | 127 °C | 273 °C |
Density | 1.59 g/mL at 20 °C | 1.64 g/mL at 20 °C |
Solubilty in water | 478.8 g/L at 20 °C | 7 g/L at 25 °C |
pKa | 1.83 | 3.03 |
Partition coefficient in n-octanol-water (logPow) | −1.30 | 0.33 |
−0.48 | 0.46 | |
Theoretical data | ||
AlogPs | 0.21 | 0.21 |
AClogP | −0.76 | −0.76 |
AlogP | −0.01 | −0.01 |
mlogP | −0.45 | −0.45 |
xlogP2 | −0.42 | −0.42 |
xlogP3 | −0.34 | −0.34 |
miLogP | −0.68 | −0.68 |
Parameter | Maleic Acid | Fumaric Acid |
---|---|---|
Linearity range, | 8.0 ÷ 40.0 | 4.0 ÷ 40.0 |
(µg/spot) | ||
Calibration curves A = (a ± Sa)·x + (b ± Sb) | ||
Slope (a ± Sa) | 647.6 (±27.5) | 1641.7 (±47.9) |
Intercept (b ± Sb) | 785.7 (±72.2) | 15,116.6 (±1187.7) |
Correlation coefficient, R | 0.994 | 0.996 |
LOD (µg/spot) | 1.97 | 1.32 |
LOQ (µg/spot) | 5.97 | 4.00 |
Precision, CV [%] | ||
Repeatability | 1.32% ÷ 2.12% | 1.45% ÷ 2.33% |
Intermediate | 1.38% ÷ 2.46% | 1.83% ÷ 2.86% |
Recovery levels (%) | ||
80% | R = 101.4%, CV = 1.4% | R = 98.7%, CV = 1.8% |
100% | R = 98.9%, CV = 1.1% | R = 102.4%, CV = 1.3% |
120% | R = 98.6%, CV = 0.8% | R = 99.5%, CV = 1.2% |
Maleic Acid | Fumaric Acid | |
---|---|---|
Number of determination (n) | 6 | 6 |
Particular obtained logPexp | −0.63 | 0.64 |
−0.67 | 0.63 | |
−0.66 | 0.65 | |
−0.64 | 0.64 | |
−0.65 | 0.61 | |
−0.64 | 0.62 | |
Mean value of logPexp | −0.65 | 0.63 |
Minimum value of logPexp | −0.67 | 0.61 |
Maximum value of logPexp | −0.63 | 0.65 |
Variation (s2) | 0.000217 | 0.000217 |
Standard deviation (SD) | 0.015 | 0.015 |
Coefficient of variation [CV, %] | −2.31% | 2.38% |
The 95% confidence interval of arithmetic mean | μ = −0.65 ± 0.02 | μ = 0.63 ± 0.02 |
RP Plate | RMW | S | n | r | s | F | Eq. No. |
---|---|---|---|---|---|---|---|
Maleic acid | |||||||
Methanol–water | |||||||
RP18WF254 | −0.50 (±0.07) | 2.82(±0.06) | 7 | 0.994 | 0.072 | 424 | (9) |
RP8F254s | −0.79 (±0.04) | 1.15 (±0.06) | 9 | 0.990 | 0.047 | 354 | (10) |
CNF254s | −1.13 (±0.04) | 2.28 (±0.08) | 7 | 0.996 | 0.042 | 825 | (11) |
RMWavg(m) = −0.81 | |||||||
Dioxane–water | |||||||
RP18WF254 | −1.35 (±0.05) | 2.02 (±0.09) | 7 | 0.995 | 0.046 | 533 | (12) |
RP8F254s | −1.81 (±0.05) | 1.28 (±0.10) | 7 | 0.985 | 0.052 | 147 | (13) |
CNF254s | −0.92 (±0.04) | 2.15 (±0.07) | 8 | 0.997 | 0.044 | 1017 | (14) |
RMWavg(d) = −1.36 | |||||||
Fumaric acid | |||||||
Methanol–water | |||||||
RP18WF254 | 0.95 (±0.09) | 3.30 (±0.14) | 9 | 0.993 | 0.108 | 556 | (15) |
RP8F254s | 0.46 (±0.08) | 3.00 (±0.12) | 9 | 0.994 | 0.094 | 609 | (16) |
CNF254s | 1.05 (±0.06) | 3.28 (±0.09) | 9 | 0.997 | 0.072 | 1230 | (17) |
RMWavg(m) = 0.82 | |||||||
Dioxane–water | |||||||
RP18WF254 | 0.12 (±0.05) | 1.95 (±0.09) | 9 | 0.997 | 0.069 | 1080 | (18) |
RP8F254s | 0.92 (±0.11) | 3.57 (±0.17) | 9 | 0.992 | 0.135 | 419 | (19) |
CNF254s | 0.44 (±0.08) | 3.02 (±0.14) | 7 | 0.997 | 0.074 | 743 | (20) |
RMWavg(d) = 0.49 |
Index Based on Adjacency Matrix | ||
---|---|---|
χ012 | FA | 2.575 |
MA | 2.575 | |
Indices Based on Distance Matrix | ||
oB | FA | 2.265 |
MA | 2.431 | |
3Bq | FA | 0.2079 |
MA | 0.2602 | |
W | FA | 51.807 |
MA | 44.688 | |
A | FA | 39.94 |
MA | 31.68 |
logP1 | logP2 | logP3 | logP4 | |||||
---|---|---|---|---|---|---|---|---|
MA | FA | MA | FA | MA | FA | MA | FA | |
Methanol-water, 2:8. v/v | ||||||||
RP18WF254 | −0.405 | 0.155 | −0.379 | 0.169 | −1.043 | 0.400 | −0.698 | 0.271 |
RP8F254 | −0.414 | −0.070 | −0.387 | −0.076 | −1.066 | −0.180 | −0.713 | −0.122 |
CNF254 | −0.658 | 0.138 | −0.615 | 0.150 | −1.694 | 0.355 | −1.134 | 0.241 |
logPavg | −0.492 | 0.074 | −0.460 | 0.081 | −1.268 | 0.192 | −0.848 | 0.130 |
Average logPavg(m): −0.767 for MA and 0.119 for FA | ||||||||
Dioxane-water, 2:8. v/v | ||||||||
RP18WF254 | −0.700 | −0.174 | −0.654 | −0.190 | −1.083 | −0.449 | −1.207 | −0.305 |
RP8F254 | −0.821 | 0.060 | −0.767 | 0.065 | −2.113 | 0.153 | −1.414 | 0.104 |
CNF254 | −0.553 | −0.139 | −0.517 | −0.152 | −1.425 | −0.358 | −0.953 | −0.243 |
logPavg | −0.691 | −0.084 | −0.646 | −0.092 | −1.540 | −0.218 | −1.191 | −0.148 |
Average logPavg(d): −1.017 for MA and −0.136 for FA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimoszek, D.; Pyka-Pająk, A. Lipophilicity Study of Fumaric and Maleic Acids. Processes 2023, 11, 993. https://doi.org/10.3390/pr11040993
Klimoszek D, Pyka-Pająk A. Lipophilicity Study of Fumaric and Maleic Acids. Processes. 2023; 11(4):993. https://doi.org/10.3390/pr11040993
Chicago/Turabian StyleKlimoszek, Daria, and Alina Pyka-Pająk. 2023. "Lipophilicity Study of Fumaric and Maleic Acids" Processes 11, no. 4: 993. https://doi.org/10.3390/pr11040993
APA StyleKlimoszek, D., & Pyka-Pająk, A. (2023). Lipophilicity Study of Fumaric and Maleic Acids. Processes, 11(4), 993. https://doi.org/10.3390/pr11040993