The Influence of Tool Geometry Parameters on Thermo-Mechanical Loads and Residual Stresses Induced by Orthogonal Cutting of AA6061-T6: A Numerical Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Energy/Thermal Model
2.2. Workpiece and Tool Geometry, Mesh, and Properties
2.3. The Material Model, Boundary Conditions, and The Friction Model
2.3.1. Material Model
2.3.2. Boundary Conditions
2.3.3. Friction Model
2.3.4. The Residual Stress Model
3. Results and Discussion
3.1. Effect of the Tool Edge Radius
3.1.1. Effect of the Tool Edge Radius on the Cutting Forces and Temperatures
3.1.2. Effect of the Edge Radius on Residual Stresses
3.2. Effect of the Rake Angle
3.2.1. Effect of the Rake Angle on the Cutting Forces and Temperature
3.2.2. Effect of the Edge Radius on Residual Stresses
3.3. Effect of Clearance Angle
3.3.1. Effect of the Clearance Angle on the Cutting Forces and Workpiece Temperature
3.3.2. Effect of the Clearance Angle on Residual Stresses
3.4. Discusssion
3.5. Results Validation
4. Conclusions
- The state of residual stresses and the thermo-mechanical loads on the machined parts and cutting tools depend on the tool geometry used and more specially on tool edge radius and rake angle. A larger edge radius, for example, can lead to lower cutting forces and temperatures, but may also result in higher residual stresses. The cutting temperature, workpiece temperature, and cutting forces were found proportional to the edge radius. Higher compressive residual stresses were obtained for a 5 µm tool edge radius, but these results depend on the rake angle used. Hence, there is a need to optimize these tool geometries to obtain compressive residual stresses on the workpiece surface and beneath;
- As the rake angle increased from negative to positive, the cutting temperature, cutting forces, effective strain, and stresses decreased considerably. The steady workpiece temperature and residual stresses were proportional to the rake angles for positive angles and were inversely proportional to positive rake angles. The rake angles of 0° and 17.5° were found to produce more compressive stresses inside the workpiece material;
- It has been shown that the rake angle and the tool edge radius are the two parameters that most affect the state of the residual stresses on the workpiece. Generally, these stresses are compression type from a depth of 0.3 mm below the surface. Therefore, a finishing operation at a cutting depth greater than 0.5 mm using a tool with a small edge radius (e.g., 0.005 mm) can eliminate the initial tension stresses on the surface of the part and generate compression stresses that are favorable for the fatigue life of the part;
- Finally, it was found that varying the tool clearance angle from 2 to 17.5 degrees has no significant effect on the temperature, forces, effective strain, effective stresses, and residual stresses during orthogonal turning of AA6061-T6. The impact of clearance angle variation on thermal mechanical load and stresses for this application can be neglected;
- The future work will focus on the optimization of tool geometry and machining parameters to achieve desired residual stresses.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadeghifar, M.; Sedaghati, R.; Songmene, V. FE modeling and optimization of cutting temperature in orthogonal turning. Simulation 2016, 922, 178. [Google Scholar]
- Songmene, V.; Khettabi, R.; Zaghbani, I.; Kouam, J.; Djebar, A. Machining and Machinability of Aluminum Alloys. In Aluminium Alloys, Theory and Applications; Kvackaj, T., Ed.; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Javidikia, M.; Sadeghifar, M.; Songmene, V.; Jahazi, M. Low and High Speed Orthogonal Cutting of AA6061-T6 under Dry and Flood-Coolant Modes: Tool Wear and Residual Stress Measurements and Predictions. Materials 2021, 14, 4293. [Google Scholar] [CrossRef] [PubMed]
- Javidikia, M.; Sadeghifar, M.; Songmene, V.; Jahazi, M. Effect of turning environments and parameters on surface integrity of AA6061-T6: Experimental analysis, predictive modeling, and multi-criteria optimization. Int. J. Adv. Manuf. Technol. 2020, 110, 2669–2683. [Google Scholar] [CrossRef]
- Javidikia, M.; Sadeghifar, M.; Songmene, V.; Jahazi, M. On the impacts of tool geometry and cutting conditions in straight turning of aluminum alloys 6061-T6: An experimentally validated numerical study. Int. J. Adv. Manuf. Technol. 2020, 106, 4547–4565. [Google Scholar] [CrossRef]
- Ravikanth, D.; Reddy, K.P.; Murthy, V.S.S. Influence of tool geometry on cutting zone temperature during turning of aluminium alloy AA2219. Mater. Today Proc. 2022, 62, 2277–2282. [Google Scholar] [CrossRef]
- Casuso, M.; Rubio-Mateos, A.; Veiga, F.; Lamikiz, A. Modeling of cutting force and final thickness for low stiffness 2024-T3 aluminum alloy part milling considering its geometry and fixtures. J. Mater. Res. Technol. 2022, 21, 2416–2427. [Google Scholar] [CrossRef]
- Daoud, M.; Chatelain, J.; Bouzid, H. On the Effect of Johnson Cook Material Constants to Simulate Al2024-T3 Machining Using Finite Element Modeling. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Volume 2A: Advanced Manufacturing, Montreal, QC, Canada, 14–20 November 2014. V02AT02A044. ASME. [Google Scholar] [CrossRef]
- Patel, J. Finite Element Studies of Orthogonal Machining of Aluminum Alloy A2024-T351. UNC Charlotte Electron. Theses Diss. 2018. Available online: https://ninercommons.charlotte.edu/islandora/object/etd%3A318/ (accessed on 12 May 2022).
- Daoud, M.; Chatelain, J.F.; Bouzid, A. Effect of rake angle on Johnson-Cook material constants and their impact on cutting process parameters of Al2024-T3 alloy machining simulation. Int. J. Adv. Manuf. Technol. 2015, 81, 1987–1997. [Google Scholar] [CrossRef]
- Jomaa, W.; Daoud, M.; Songmene, V.; Bocher, P.; Châtelain, J. Identification and Validation of Marusich’s Constitutive Law for Finite Element Modeling of High Speed Machining. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Volume 2A: Advanced Manufacturing, Montreal, QC, Canada, 14–20 November 2014. V02AT02A057. ASME. [Google Scholar] [CrossRef]
- Aurrekoetxea, M.; de Lacalle, L.N.L.; Zelaieta, O.; Llanos, I. Uncertainty Assessment for Bulk Residual Stress Characterization Using Layer Removal Method. Exp. Mech. 2023, 63, 323–335. [Google Scholar] [CrossRef]
- Aurrekoetxea, M.; Llanos, I.; Zelaieta, O.; de Lacalle, L.N.L. Towards advanced prediction and control of machining distortion: A comprehensive review. Int. J. Adv. Manuf. Technol. 2022, 122, 2823–2848. [Google Scholar] [CrossRef]
- Sadeghifar, M.; Javidikia, M.; Loucif, A.; Jahazi, M.; Songmene, V. Experimental and numerical analyses of residual stress redistributions in large steel dies: Influence of tempering cycles and rough milling. J. Mater. Res. Technol. 2023, 24, 395–406. [Google Scholar] [CrossRef]
- Boozarpoor, M.; Teimouri, R. Parametric study of multi-roller rotary burnishing process. Int. J. Lightweight Mater. Manuf. 2021, 4, 179–194. [Google Scholar] [CrossRef]
- El-Axir, M.H. An investigation into the ball burnishing of aluminium alloy 6061-T6. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2007, 221, 1733–1742. [Google Scholar] [CrossRef]
- Rodriguez, A.; de Lacalle, L.N.L.; Pereira, O.; Fernandez, A.; Ayesta, I. Isotropic finishing of austempered iron casting cylindrical parts by roller burnishing. Int. J. Adv. Manuf. Technol. 2020, 110, 753–761. [Google Scholar] [CrossRef]
- Teimouri, R.; Amini, S.; Bami, A.B. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6. Measurement 2018, 116, 129–139. [Google Scholar] [CrossRef]
- Nasr, M.N.A.; Ng, E.-G.; Elbestawi, M.A. Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L. Int. J. Mach. Tools Manuf. 2007, 47, 401–411. [Google Scholar] [CrossRef]
- Aich, Z.; Haddouche, K.; Djellouli, K.; Ghezal, A. An improved thermomechanical modeling for orthogonal cutting of AISI 1045 steel. Results Eng. 2023, 17, 100789. [Google Scholar] [CrossRef]
- Tagiuri, Z.A.M.; Dao, T.-M.; Samuel, A.M.; Songmene, V. A Numerical Model for Predicting the Effect of Tool Nose Radius on Machining Process Performance during Orthogonal Cutting of AISI 1045 Steel. Materials 2022, 15, 3369. [Google Scholar] [CrossRef]
- Navas, V.G.; Gonzalo, O.; Bengoetxea, I. Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int. J. Mach. Tools Manuf. 2012, 61, 48–57. [Google Scholar] [CrossRef]
- Özel, T. Experimental and Finite Element Investigations on the Influence of Tool Edge Radius in Machining Nickel-Based Alloy. In Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference, West Lafayette, IN, USA, 4–7 October 2009; pp. 493–498. [Google Scholar] [CrossRef]
- Jomaa, W.; Songmene, V.; Bocher, P. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651. Materials 2014, 7, 1603–1624. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Zha, X.; Jiang, F. Optimizing the geometric parameters of cutting edge for rough machining Fe-Cr-Ni stainless steel. Int. J. Adv. Manuf. Technol. 2016, 85, 683–693. [Google Scholar] [CrossRef]
- Reddy, M.M.; Kumar, M.; Shanmugam, K. Finite element analysis and modeling of temperature distribution in turning of titanium alloys. Met. Mater. Eng. 2018, 24, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Xu, D.; Agmell, M.; M’Saoubi, R.; Ahadi, A.; Stahl, J.-E.; Zhou, J. Numerical and experimental investigation of tool geometry effect on residual stresses in orthogonal machining of Inconel 718. Simul. Model. Pract. Theory 2021, 106, 102187. [Google Scholar] [CrossRef]
- Salman, K.H.; Elsheikh, A.H.; Ashham, M.; Ali, M.K.A.; Rashad, M.; Haiou, Z. Effect of cutting parameters on surface residual stresses in dry turning of AISI 1035 alloy. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 349. [Google Scholar] [CrossRef]
- Li, P.; Chang, Z. Numerical Modeling of the Effect of Cutting-Edge Radius on Cutting Force and Stress Concentration during Machining. Micromachines 2022, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.S.S.; Allamraju, K.V. Effect on Micro-Hardness and Residual Stress in CNC Turning of Aluminium 7075 Alloy. Mater. Today Proc. 2017, 4, 975–981. [Google Scholar] [CrossRef]
- Sadeghifar, M.; Sedaghati, R.; Jomaa, W.; Songmene, V. A comprehensive review of finite element modeling of orthogonal machining process: Chip formation and surface integrity predictions. Int. J. Adv. Manuf. Technol. 2018, 96, 3747–3791. [Google Scholar] [CrossRef]
- Yen, Y.-C.; Jain, A.; Chigurupati, P.; Wu, W.-T.; Altan, T. Computer Simulation of Orthogonal Cutting using a Tool with Multiple Coatings. Mach. Sci. Technol. 2004, 8, 305–326. [Google Scholar] [CrossRef]
- Daoud, M.; Jomaa, W.; Chatelain, J.F.; Bouzid, A. A machining-based methodology to identify material constitutive law for finite element simulation. Int. J. Adv. Manuf. Technol. 2015, 77, 2019–2033. [Google Scholar] [CrossRef]
- Sadeghifar, M.; Javidikia, M.; Songmene, V.; Jahazi, M. Finite element simulation-based predictive regression modeling and optimum solution for grain size in machining of Ti6Al4V alloy: Influence of tool geometry and cutting conditions. Simul. Model. Pract. Theory 2020, 104, 102141. [Google Scholar] [CrossRef]
- Giang, L.H. Investigation of Effects of Tool Geometry Parameters on Cutting Forces, Temperature and Tool Wear in Turning Using Finite Element Method and Taguchi’s Technique. IJMEA 2016, 4, 109. [Google Scholar] [CrossRef]
- Choi, Y. Influence of rake angle on surface integrity and fatigue performance of machined surfaces. Int. J. Fatigue 2017, 94, 81–88. [Google Scholar] [CrossRef]
- Liao, Z.; la Monaca, A.; Murray, J.; Speidel, A.; Ushmaev, D.; Clare, A.; Axinte, D.; M’Saoubi, R. Surface integrity in metal machining—Part I: Fundamentals of surface characteristics and formation mechanisms. Int. J. Mach. Tools Manuf. 2021, 162, 103687. [Google Scholar] [CrossRef]
- An, Q.; Ming, W.; Cai, X.; Chen, M. Effects of tool parameters on cutting force in orthogonal machining of T700/LT03A unidirectional carbon fiber reinforced polymer laminates. J. Reinf. Plast. Compos. 2015, 34, 591–602. [Google Scholar] [CrossRef]
- Jomaa, W.; Songmene, V.; Bocher, P.; Gakwaya, A. FEA-Based Comparative Investigation on High Speed Machining of Aluminum Alloys AA6061-T6 and AA7075-T651. Solid State Phenom. 2017, 261, 347–353. [Google Scholar] [CrossRef]
- Huang, K.; Yang, W. Analytical modeling of residual stress formation in workpiece material due to cutting. Int. J. Mech. Sci. 2016, 114, 21–34. [Google Scholar] [CrossRef]
Refs. | Authors (Year) | Material/ Operation | Rake Angle [°] | Clearance Angle [°] |
---|---|---|---|---|
[5] | Javidikia et al. (2020) | AA6061-T6 Orthogonal turning | −8 to +8 | 7 |
[6] | Ravikanth et al. (2022) | AA2219 Turning | 20 | 0 |
[7] | Casuso et al. (2022) | AA2024-T3 Milling | 18 | 9 |
[8] | Daoud et al. (2015) | AA2024-T351 Orthogonal turning | −8 to +8 | 11 |
[9] | Patel (2018) | AA2024-T351 Orthogonal turning | −3 to +20 | - |
Properties | AA6061-T6 | Uncoated Carbide |
---|---|---|
Density | 2700 | 11,900 |
Young’s modulus | 58.5 | 650 |
Poisson’s ratio | 0.33 | 0.25 |
Conductivity | 167 | 59 |
Specific heat capacity | 896 | 337 |
Thermal expansion coefficient | 23.5 | 5 |
Cutting Speed | Feed Rate | Tool Edge Radius | Rake Angle | Clearance Angle |
---|---|---|---|---|
950 | 0.16 | 5; 10; 20; 40 | −8; 8; 17.5; 20 | 2; 7; 11; 17.5 |
n | |||||||
---|---|---|---|---|---|---|---|
250 | 79.70 | 0.499 | 0.0249 | 1.499 | 1 | 652 | 20 |
Authors | Cutting Forces (N) | Thrust Force (N) | Temperature (°) | Residual Stress (MPa) |
---|---|---|---|---|
Javidikia et al. [3] | 384 | 77 | 473 | 55 |
Current simulation | 367 | 65 | 483 | 60.6 |
Errors | 4% | 16% | −2% | −10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tcheuhebou Tina, S.A.; Javidikia, M.; Jahazi, M.; Songmene, V. The Influence of Tool Geometry Parameters on Thermo-Mechanical Loads and Residual Stresses Induced by Orthogonal Cutting of AA6061-T6: A Numerical Investigation. Processes 2023, 11, 996. https://doi.org/10.3390/pr11040996
Tcheuhebou Tina SA, Javidikia M, Jahazi M, Songmene V. The Influence of Tool Geometry Parameters on Thermo-Mechanical Loads and Residual Stresses Induced by Orthogonal Cutting of AA6061-T6: A Numerical Investigation. Processes. 2023; 11(4):996. https://doi.org/10.3390/pr11040996
Chicago/Turabian StyleTcheuhebou Tina, Sandrine A., Mahshad Javidikia, Mohammad Jahazi, and Victor Songmene. 2023. "The Influence of Tool Geometry Parameters on Thermo-Mechanical Loads and Residual Stresses Induced by Orthogonal Cutting of AA6061-T6: A Numerical Investigation" Processes 11, no. 4: 996. https://doi.org/10.3390/pr11040996
APA StyleTcheuhebou Tina, S. A., Javidikia, M., Jahazi, M., & Songmene, V. (2023). The Influence of Tool Geometry Parameters on Thermo-Mechanical Loads and Residual Stresses Induced by Orthogonal Cutting of AA6061-T6: A Numerical Investigation. Processes, 11(4), 996. https://doi.org/10.3390/pr11040996