Oxidative Conversion of Chars Generated from the Fixed-Bed Pyrolysis of Wood Torrefied at Different Temperatures and Holding Times
Abstract
:1. Introduction
2. Materials and Methods
2.1. Char Formation and Thermogravimetric Conditions
2.2. Kinetic Modelling
3. Results
3.1. Thermogravimetric Curves
3.2. Kinetic Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teh, J.S.; Teoh, Y.H.; How, H.G.; Sher, F. Thermal analysis technologies for biomass feedstocks: A state-of-the-art review. Processes 2021, 9, 1610. [Google Scholar] [CrossRef]
- Silveira, E.A.; Oliveira Galvão, L.G.; Alves de Macedo, L.; Sá, I.A.; Chaves, B.S.; Girão de Morais, M.V.; Rousset, P.; Caldeira-Pires, A. Thermo-acoustic catalytic effect on oxidizing woody torrefaction. Processes 2020, 8, 1361. [Google Scholar] [CrossRef]
- Mutlu, Ö.; Roy, P.; Zeng, T. Downstream torrefaction of wood pellets in a rotary kiln reactor—Impact on solid biofuel properties and torr-gas quality. Processes 2022, 10, 1912. [Google Scholar] [CrossRef]
- Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T.; Dastjerdi, B. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renew. Sustain. Energy Rev. 2020, 123, 109763. [Google Scholar] [CrossRef]
- Sen, A.U.; Pereira, H. State-of-the-art char production with a focus on bark feedstocks: Processes, design, and applications. Processes 2021, 9, 87. [Google Scholar] [CrossRef]
- Di Blasi, C. Combustion and gasification rates of lignocellulosic chars. Prog. Energy Combust. Sci. 2009, 35, 121. [Google Scholar] [CrossRef]
- Fisher, E.M.; Dupont, C.; Darvell, L.I.; Commandré, J.-M.; Saddawi, A.; Jones, J.M.; Grateau, M.; Nocquet, T.; Salvador, S. Combustion and gasification characteristics of chars from raw and torrefied biomass. Bioresour. Technol. 2012, 119, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.M.; Bridgeman, T.G.; Darvell, L.I.; Gudka, B.; Saddawi, A.; Williams, A. Combustion properties of torrefied willow compared with bituminous coals. Fuel Proc. Technol. 2012, 101, 1. [Google Scholar] [CrossRef]
- Li, J.; Bonvicini, G.; Biagini, E.; Yang, W.; Tognotti, L. Characterization of high-temperature rapid char oxidation of raw and torrefied biomass fuels. Fuel 2015, 143, 492. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Geier, M.; Wang, L.; Ku, X.; Matas Güell, B.; Løvas, T.; Shaddix, C.R. Effect of torrefaction on physical properties and conversion behavior of high heating rate char of forest residue. Energy Fuels 2015, 29, 177. [Google Scholar] [CrossRef]
- McNamee, P.; Darvell, L.I.; Jones, J.M.; Williams, A. The combustion characteristics of high-heating-rate chars from untreated and torrefied biomass fuels. Biomass Bioenergy 2015, 82, 63. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Li, X.; Jian, J.; Yao, S. Flame combustion of single wet-torrefied wood particle: Effects of pretreatment temperature and residence time. Fuel 2019, 250, 160. [Google Scholar] [CrossRef]
- Li, K.; Yan, W.; Huang, X.; Yu, L.; Zhou, H. In-situ measurement of combustion characteristics and potassium release concentration during torrefied biomass burning based on spontaneous emission spectroscopy. Fuel 2022, 328, 125249. [Google Scholar] [CrossRef]
- Lu, Z.; Jian, J.; Arendt Jensen, P.; Wu, H.; Glarborg, P. Impact of KCl impregnation on single particle combustion of wood and torrefied wood. Fuel 2017, 206, 684. [Google Scholar] [CrossRef] [Green Version]
- Broström, M.; Nordin, A.; Pommer, L.; Branca, C.; Di Blasi, C. Influence of torrefaction on the devolatilization and oxidation kinetics of wood. J. Anal. Appl. Pyrolysis 2012, 96, 100. [Google Scholar] [CrossRef]
- Tapasvi, D.; Khalil, R.; Várhegyi, G.; Skreiberg, Ø.; Tran, K.; Grønli, M. Kinetic behavior of torrefied biomass in an oxidative environment. Energy Fuels 2013, 27, 1050. [Google Scholar] [CrossRef] [Green Version]
- Branca, C.; Di Blasi, C. Devolatilization and combustion kinetics of wood chars. Energy Fuels 2003, 17, 1609. [Google Scholar] [CrossRef]
- Varhegyi, G.; Meszaros, E.; Antal, M.J.; Bourke, J.; Jakab, E. Combustion kinetics of corncob charcoal and partially demineralized corncob charcoal in the kinetic regime. Ind. Eng. Chem. Res. 2006, 45, 4962. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Combustion kinetics of secondary biomass chars in the kinetic regime. Energy Fuels 2010, 24, 5741. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Thermogravimetric analysis of the combustion of dry distiller’s grains with solubles (DDGS) and pyrolysis char under kinetic control. Fuel Process. Technol. 2015, 129, 67. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Self-heating effects in the thermogravimetric analysis of wood char oxidation. Fuel 2020, 276, 118012. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Burning dynamics of straw chars under the conditions of thermal analysis. Energy Fuels 2021, 35, 12187. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Effects of heat/mass transfer limitations and process exothermicity on the kinetic parameters of the devolatilization and oxidation reactions of wood chars. Thermochim. Acta 2022, 716, 179321. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Enhancement and inhibition of the oxidation rates of pyrolytic chars from wood loaded with potassium compounds. Fuel 2023, 331, 125886. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C.; Galgano, A.; Brostrom, M. Effects of the torrefaction conditions on the fixed-bed pyrolysis of Norway spruce. Energy Fuels 2014, 28, 5882. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Galgano, A. Effects of diammonium phosphate on the yields and composition of products from fir wood pyrolysis. Ind. Eng. Chem. Res. 2007, 46, 430. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Galgano, A. Biomass screening for furfural production via thermal decomposition. Ind. Eng. Chem. Res. 2010, 49, 2658. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C.; Galgano, A. Pyrolysis of corncobs catalyzed by zinc chloride for furfural production. Ind. Eng. Chem. Res. 2010, 49, 9743. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C.; Galgano, A. Catalyst screening for the production of furfural from corncob pyrolysis. Energy Fuels 2012, 26, 1520. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Lombardi, V.; Ciappa, P.; Di Giacomo, C. Effects of particle size and density on the packed-bed pyrolysis of wood. Energy Fuels 2013, 27, 6781. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Sarnataro, F.E.; Gallo, A. Thermal runaway in the pyrolysis of some lignocellulosic biomasses. Energy Fuels 2014, 28, 2684. [Google Scholar] [CrossRef] [Green Version]
- Branca, C.; Di Blasi, C.; Horacek, H. Analysis of the combustion kinetics and the thermal behaviour of an intumescent system. Ind. Eng. Chem. Res. 2002, 41, 2104. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C.; Casu, A.; Morone, V.; Costa, C. Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion. Thermochim. Acta 2003, 399, 127. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. A multi-step mechanism for the devolatilization of biomass fast pyrolysis oils. Ind. Eng. Chem. Res. 2006, 45, 5891. [Google Scholar] [CrossRef]
- Branca, C.; Iannace, A.; Di Blasi, C. Devolatilization and combustion kinetics of Quercus Cerris bark. Energy Fuels 2007, 21, 1078. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. A unified mechanism of the combustion reactions of lignocellulosic fuels. Thermochim. Acta 2013, 565, 58. [Google Scholar] [CrossRef]
- Trubetskaya, A.; Grams, J.; Leahy, J.J.; Johnson, R.; Gallagher, P.; Monaghan, R.F.D.; Kwapinska, M. The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction. Renew. Energy 2020, 160, 998. [Google Scholar] [CrossRef]
- Shoulaifar, T.K.; DeMartini, N.; Zevenhoven, M.; Verhoeff, F.; Kiel, J.; Hupa, M. Ash-forming matter in torrefied birch wood: Changes in chemical association. Energy Fuels 2013, 27, 5684. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.K. Characterization of thermal reaction by peak temperature and height of DTG curves. Thermochim. Acta 1995, 264, 137. [Google Scholar] [CrossRef]
Char Sample | Ttor [K], ttor [min] | Ytor [wt%] | Ychar [wt%] |
---|---|---|---|
a | untreated wood | 100 | 22.7 |
b | 533 K, 25 min | 89.2 | 27.7 |
c | 558 K, 16.5 min | 80.3 | 30.7 |
d | 583 K, 8 min | 76.5 | 32.3 |
e | 583 K, 25 min | 45.9 | 57.3 |
Parameter | Char Sample, Ychar [wt%] | ||||
---|---|---|---|---|---|
(a) 22.7 | (b) 27.7 | (c) 30.7 | (d) 32.3 | (e) 57.3 | |
Ed [kJ/mol] | 117.0 | 66.0 | 66.8 | 66.6 | 91.7 |
Ad [s−1] | 5.9 × 106 | 4.70 × 102 | 5.09 × 102 | 4.97 × 102 | 4.85 × 104 |
υd | 0.17 | 0.18 | 0.18 | 0.19 | 0.19 |
Eb [kJ/mol] | 192.8 | 170.2 | 169.8 | 169.8 | 167.7 |
Ab [s−1] | 3.0 × 1011 | 6.05 × 109 | 9.85 × 109 | 5.47 × 109 | 2.82 × 109 |
nb | 0.89 | 0.83 | 0.866 | 0.87 | 0.81 |
devTG [%] | 1.10 | 1.48 | 1.38 | 1.36 | 1.46 |
devDTG [%] | 0.69 | 0.68 | 0.68 | 1.21 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branca, C.; Di Blasi, C. Oxidative Conversion of Chars Generated from the Fixed-Bed Pyrolysis of Wood Torrefied at Different Temperatures and Holding Times. Processes 2023, 11, 997. https://doi.org/10.3390/pr11040997
Branca C, Di Blasi C. Oxidative Conversion of Chars Generated from the Fixed-Bed Pyrolysis of Wood Torrefied at Different Temperatures and Holding Times. Processes. 2023; 11(4):997. https://doi.org/10.3390/pr11040997
Chicago/Turabian StyleBranca, Carmen, and Colomba Di Blasi. 2023. "Oxidative Conversion of Chars Generated from the Fixed-Bed Pyrolysis of Wood Torrefied at Different Temperatures and Holding Times" Processes 11, no. 4: 997. https://doi.org/10.3390/pr11040997
APA StyleBranca, C., & Di Blasi, C. (2023). Oxidative Conversion of Chars Generated from the Fixed-Bed Pyrolysis of Wood Torrefied at Different Temperatures and Holding Times. Processes, 11(4), 997. https://doi.org/10.3390/pr11040997