Assessment of Adhesively Bonded Joints of Similar and Dissimilar Materials: Industrial Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
2.3. Adhesive Bonding Parameters
2.4. Tensile Test and Hardness Measurement
2.5. An Industrial Case Study
3. Results and Discussion
3.1. Hardness and Tensile Experiments
3.2. Fracture Surface Images
4. Conclusions
- The greatest % elongation value was obtained in TPU/TPU (100%) joints, while the lowest elongation value was observed in Galvanized Steel/Tough PLA joints. The high elongation ability of TPU material contributed positively to the amount of elongation regardless of the material it was bonded to. The elongation values of Tough PLA and Galvanized steel were low due to their hardness, and the elongation value of the joints formed with these two materials was also low.
- Although the tensile strength of the TPU material increased with the increase in the fill rate, the tensile strength of the Tough PLA material was higher.
- The strength values of the joints made with similar materials were lower than those made with dissimilar materials. This result supports the main reason for joining different materials, which is to obtain systems with better properties.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grujicic, M.; Sellappan, V.; Omar, M.A.; Seyr, N.; Obieglo, A.; Erdmann, M.; Holzleitner, J. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components. J. Mater. Process. Technol. 2008, 197, 363–373. [Google Scholar] [CrossRef]
- Bergmann, J.P.; Stambke, M. Potential of laser-manufactured polymer-metal hybrid joints. Phys. Procedia 2012, 39, 84–91. [Google Scholar] [CrossRef]
- Ozlati, A.; Movahedi, M.; Tamizi, M.; Tartifzadeh, Z.; Alipour, S. An alternative additive manufacturing-based joining method to make Metal/Polymer hybrid structures. J. Manuf. Process. 2019, 45, 217–226. [Google Scholar] [CrossRef]
- Amancio-Filho, S.T.; Dos Santos, J.F. Joining of polymers and polymer-metal hybrid structures: Recent developments and trends. Polym. Eng. Sci. 2009, 49, 1461–1476. [Google Scholar] [CrossRef]
- Boumerzoug, Z. Joining of dissimilar materials by friction stir welding. MATEC Web Conf. 2018, 224, 01118. [Google Scholar] [CrossRef]
- Glaser, M.; Matthes, S.; Hildebrand, J.; Bergmann, J.P.; Schaaf, P. Hybrid Thermoplastic-Metal joining based on Al/Ni multilayer foils—Analysis of the joining zone. Mater. Des. 2023, 226, 111561. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, Q.; Yang, H.; Yang, C.; Liu, Y.; Wang, C. Effect of surface treatments on the laser welding performance of dissimilar materials. J. Manuf. Process. 2022, 74, 465–473. [Google Scholar] [CrossRef]
- Dorn, L.; Liu, W. The stress state and failure properties of adhesive-bonded plastic/metal joints. Int. J. Adhes. Adhes. 1993, 13, 21–31. [Google Scholar] [CrossRef]
- Budzik, M.K.; Wolfahrt, M.; Reis, P.; Kozłowski, M.; Sena-Cruz, J.; Papadakis, L.; Nasr Saleh, M.; Machalicka, K.V.; de Teixeira de Freitas, S.; Vassilopoulos, A.P. Testing mechanical performance of adhesively bonded composite joints in engineering applications: An overview. J. Adhes. 2021, 98, 1–77. [Google Scholar] [CrossRef]
- Mariam, M.; Afendi, M.; Majid, M.A.; Ridzuan, M.; Azmi, A.; Sultan, M. Influence of hydrothermal ageing on the mechanical properties of an adhesively bonded joint with different adherends. Compos. Part B Eng. 2019, 165, 572–585. [Google Scholar] [CrossRef]
- Fernandes, R.L.; de Freitas, S.T.; Budzik, M.K.; Poulis, J.A.; Benedictus, R. Role of adherend material on the fracture of bi-material composite bonded joints. Compos. Struct. 2020, 252, 112643. [Google Scholar] [CrossRef]
- Seong, M.-S.; Kim, T.-H.; Nguyen, K.-H.; Kweon, J.-H.; Choi, J.-H. A parametric study on the failure of bonded single-lap joints of carbon composite and aluminum. Compos. Struct. 2008, 86, 135–145. [Google Scholar] [CrossRef]
- Brockmann, W.; Geiß, P.L.; Klingen, J.; Schröder, B. Adhesive Bonding: Materials, Applications and Technology; John Wiley & Sons: Weinheim, Germany, 2008. [Google Scholar]
- Kah, P.; Suoranta, R.; Martikainen, J.; Magnus, C. Technıques for Joınıng Dıssımılar Materıals: Metals and Polymers. Rev. Adv. Mater. Sci. 2014, 36, 152–164. [Google Scholar]
- Meschut, G.; Hahn, O.; Janzen, V.; Olfermann, T. Innovative joining technologies for multi-material structures. Weld. World 2013, 58, 65–75. [Google Scholar] [CrossRef]
- Jun, G.; Lee, J.-W.; Shin, Y.; Kim, K.; Hwang, W. Solvent-aided direct adhesion of a metal/polymer joint using micro/nano hierarchical structures. J. Mater. Process. Technol. 2020, 285, 116744. [Google Scholar] [CrossRef]
- Aliakbari, M.; Jazani, O.M.; Sohrabian, M. Epoxy adhesives toughened with waste tire powder, nanoclay, and phenolic resin for metal-polymer lap-joint applications. Prog. Org. Coat. 2019, 136, 105291. [Google Scholar] [CrossRef]
- Dantas, M.; Carbas, R.; Marques, E.; Kushner, D.; da Silva, L. Flexible tubular metal-polymer adhesive joints under torsion loading. Int. J. Adhes. Adhes. 2020, 105, 102787. [Google Scholar] [CrossRef]
- Liu, Y.; Carnegie, C.; Ascroft, H.; Li, W.; Han, X.; Guo, H.; Hughes, D.J. Investigation of Adhesive Joining Strategies for the Application of a Multi-Material Light Rail Vehicle. Materials 2021, 14, 6991. [Google Scholar] [CrossRef]
- Elkins, D.S. Metal-Polymer Adhesive Bond Characterization in an Additive Manufacturing Environment. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2018. [Google Scholar]
- Hohimer, C.; Christ, J.; Aliheidari, N.; Mo, C.; Ameli, A. 3D printed thermoplastic polyurethane with isotropic material properties. In Behavior and Mechanics of Multifunctional Materials and Composites 2017; SPIE: Bellingham, WA, USA, 2017. [Google Scholar]
- BCN3D. How Flexible is TPU? Available online: https://www.bcn3d.com/everything-you-should-know-about-tpu/ (accessed on 3 October 2021).
- Incorporated. P.S. 3 Types of Plastic Used in 3D Printing. Available online: https://www.polymersolutions.com/blog/plastic-in-3d-printing/ (accessed on 12 February 2023).
- Kyutoku, H.; Maeda, N.; Sakamoto, H.; Nishimura, H.; Yamada, K. Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites. Carbohydr. Polym. 2019, 203, 95–102. [Google Scholar] [CrossRef]
- TWI. What is PLA. Available online: https://www.twi-global.com/technical-knowledge/faqs/what-is-pla (accessed on 9 February 2022).
- Ultimaker. Ultimaker Tough PLA TDS. Available online: https://support.makerbot.com/s/article/1667411002379 (accessed on 17 February 2023).
- Ultimaker. Tough PLA. Available online: https://ultimaker.com/materials/tough-pla (accessed on 10 December 2022).
- Petrović, Z.S.; Ferguson, J. Polyurethane elastomers. Prog. Polym. Sci. 1991, 16, 695–836. [Google Scholar] [CrossRef]
- Abdullahi, T.; Ahmad, N.; Wahit, M.U.; Harun, Z. Adhesive Bonding of Thermoplastic Polyurethane with Metallic Wire. Adv. Sci. Lett. 2018, 24, 4045–4049. [Google Scholar] [CrossRef]
- Evlen, H. Investigation of the Effect of Infill Rate on Mechanical Properties of TPU and TPE Specimens Produced in 3D Printer. Dokuz Eylül Univ. Fac. Eng. J. Sci. Eng. 2019, 21, 793–804. [Google Scholar]
- Filament, S. TPU 92A. Available online: https://savafilament.com/standart-92a (accessed on 11 April 2022).
- Anaç, N.; Doğan, Z. The Effect of Organic Fillers on the Mechanical Strength of the Joint in the Adhesive Bonding. Processes 2023, 11, 406. [Google Scholar] [CrossRef]
- ISO, B. Plastics-determination of tensile properties. Br. Stand. Ger. 1997. Available online: https://scholar.google.com.hk/scholar?q=Plastics-determination+of+tensile+properties&hl=zh-TW&as_sdt=0&as_vis=1&oi=scholart (accessed on 11 April 2022).
- Şentürk, B.; Çetin, K.; Nur Ürküt, S.; Anaç, N.; Koçar, O. Jig design and manufacturing for adhesive thickness control in adhesive joints. J. Mater. Manuf. 2022, 1, 17–23. [Google Scholar]
- Norelem. Rubber Buffers Steel or Stainless Steel, Type A. Available online: https://norelem.se/en/Product-overview/Systems-and-components-for-machine-and-plant-construction/26000/Rubber-buffers/Rubber-buffers-steel-or-stainless-steel-type-A/p/agid.5072 (accessed on 13 December 2022).
- Bol.com. Rubberen Metalen Element Buffer Type A. Available online: https://www.bol.com/nl/nl/p/rubberen-metalen-element-buffer-type-a-m8x20-schroefmaat-en-30x20-mm-trillingsdempers-geschikt-voor-airco-motoren-pompen/9300000011475438/?bltgh=uR--zLsy5T4N0nejnddMzA.2_49.51.ProductImage (accessed on 15 December 2020).
- Wampfler, C. Rubber to Metal Bumpers. Available online: https://www.conductix.com.tr/en/products/buffers-bumpers (accessed on 8 May 2021).
- Zhou, R.; Gao, W.; Xia, L.; Wu, H.; Guo, S. The study of damping property and mechanism of thermoplastic polyurethane/phenolic resin through a combined experiment and molecular dynamics simulation. J. Mater. Sci. 2018, 53, 9350–9362. [Google Scholar] [CrossRef]
- He, X.; Qu, M.; Shi, X. Damping Properties of Ethylene-Vinyl Acetate Rubber/Polylactic Acid Blends. J. Mater. Sci. Chem. Eng. 2016, 04, 15–22. [Google Scholar] [CrossRef]
- Ketabchi, M.R.; Ratnam, C.T.; Khalid, M.; Walvekar, R. Mechanical properties of polylactic acid/synthetic rubber blend reinforced with cellulose nanoparticles isolated from kenaf fibres. Polym. Bull. 2017, 75, 809–827. [Google Scholar] [CrossRef]
- Chang, J.; Tian, B.; Li, L.; Zheng, Y. Microstructure and Damping Property of Polyurethane Composites Hybridized with Ultraviolet Absorbents. Adv. Mater. Sci. Eng. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Qi, H.; Boyce, M. Stress–strain behavior of thermoplastic polyurethanes. Mech. Mater. 2005, 37, 817–839. [Google Scholar] [CrossRef]
- Helfenstein-Didier, C.; Taïnoff, D.; Viville, J.; Adrien, J.; Maire, É.; Badel, P. Tensile rupture of medial arterial tissue studied by X-ray micro-tomography on stained samples. J. Mech. Behav. Biomed. Mater. 2018, 78, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Nergizhan, A.; Koçar, O.; Hazer, B. Evaluation of Joint Strength in the Adhesive Bonding of Parts Produced by Additive Manufacturing. Int. J. 3D Print. Technol. Digit. Ind. 2002, 6, 449–458. [Google Scholar]
- Jasmee, S.; Omer, G.; Nordin, M.; Masripan, N.; Kamarolzaman, A. Hydrophobicity performance of thermoplastic polyurethane coated with TiO2 under thermal aging effect. In 1st Colloquium Paper: ADVANCED MATERIALS AND MECHANICAL ENGINEERING RESEARCH (CAMMER’18); Penerbit Universiti, Universiti Teknikal Malaysia Melaka: Durian Tunggal, Malaysia, 2018. [Google Scholar]
- Gooch, J.W. Encyclopedic Dictionary of Polymers; Springer Science & Business Media: Berlin, Germany, 2010; Volume 1. [Google Scholar]
- Ren, H.; Chen, X.; Chen, Y. Reliability Based Aircraft Maintenance Optimization and Applications; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Omairey, S.; Jayasree, N.; Kazilas, M. Defects and uncertainties of adhesively bonded composite joints. SN Appl. Sci. 2021, 3, 769. [Google Scholar] [CrossRef]
Mechanical Properties | Tough PLA [26] | TPU 92A [31] | Galvanized Steel [32] | |
---|---|---|---|---|
Diameter (mm) | 2.85 | 1.75 | Hardness (HRB) | 56 |
Brand | Ultimaker | SAVA | Tensile strength (MPa) | 319 |
Color | Black | Light Blue | Ultimate tensile strength (MPa) | 409 |
Tensile strength (MPa) | 45.3 | - | Elongation at break (%) | 25 |
Tensile modules (MPa) | 26 | 3.1/4.8/9.6 (50, 100, 300%) | ||
Elongation at break (%) | 9.4 | 600 | ||
Gravity (g/cm3) | 1.22 | 1.20 |
C | Mn | P | S | Si | Al | Cu | Ti |
---|---|---|---|---|---|---|---|
0.06 | 0.3 | 0.019 | 0.022 | 0.02 | 0.032 | 0.04 | 0.002 |
Parameters | Tough PLA | TPU |
---|---|---|
Build Plate Temperature (°C) | 60 | 55 |
Print Temperature (°C) | 210 | 235 |
Infill Destiny (%) | 100 | 80/100 |
Layer Height (mm) | 0.2 | 0.2 |
Print Speed (mm/s) | 45 | 30 |
Loctite EA 9466 | |
---|---|
Fixing time (minute) | 180 |
Curing time (hours) 22 °C | 24 |
Young’s modulus (MPa) | 1718 |
Glass transition temperature Tg °C | 62 |
Tensile strength (MPa) | 32 |
Density (g/cm3) | 1.0 |
Elongation % | 3 |
Shore hardness (Durometer D) | 60 |
Tests | Materials | Results | Description |
---|---|---|---|
Tensile Test (dog bone shape) | TPU (80%), TPU (100%), Tough PLA | Visual inspection | Determination of mechanical properties of filaments |
UTS | |||
Hardness | TPU (80%), TPU (100%), Tough PLA | Shore | |
Tensile Test (single lap joint) | Tough PLA/Tough PLA | Shear strength Adhesive joints % elongation Fracture Surface Images | Determination of adhesive bond strength |
Galvanized Steel/Galvanized Steel | |||
TPU/TPU (80%) | |||
Tough PLA/TPU (80%) | |||
Tough PLA/TPU (100%) | |||
Galvanized Steel/TPU (80%) | |||
Galvanized Steel/TPU (100%) | |||
Galvanized Steel/Tough PLA | |||
Tensile Test (buffer part) | TPU (80%), TPU (100%), Tough PLA and rubber buffer parts | UTS Fracture Surface Images | Determination of mechanical properties buffer parts |
Similar material joints | Elongation (%) |
---|---|
Tough PLA/Tough PLA | 4.0 |
Galvanized Steel/Galvanized Steel | 5.0 |
TPU/TPU (%80) | 169.80 |
TPU/TPU (%100) | 232.99 |
Dissimilar material joints | |
Tough PLA/TPU (%80) | 108.60 |
Tough PLA/TPU (%100) | 132.99 |
Galvanized Steel/TPU (%80) | 127.92 |
Galvanized Steel/TPU (%100) | 196.52 |
Galvanized Steel/Tough PLA | 2.3 |
TPU (%80) | TPU (%100) | Tough PLA | Galvanized Steel | |
---|---|---|---|---|
Hardness | 33 (Shore D) | 48.4 (Shore D) | 84.5 (Shore D) | 56 (HRB) |
Rubber | TPU %80 | TPU %100 | Tough PLA | |
---|---|---|---|---|
Max Force (N) | 5418.32 ± 433 | 10634.44 ± 531 | 4115.29 ± 164 | 7256.44 ± 362 |
Max Strength (MPa) | 4.78 | 8.47 | 3.28 | 5.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anaç, N. Assessment of Adhesively Bonded Joints of Similar and Dissimilar Materials: Industrial Case Study. Processes 2023, 11, 1312. https://doi.org/10.3390/pr11051312
Anaç N. Assessment of Adhesively Bonded Joints of Similar and Dissimilar Materials: Industrial Case Study. Processes. 2023; 11(5):1312. https://doi.org/10.3390/pr11051312
Chicago/Turabian StyleAnaç, Nergizhan. 2023. "Assessment of Adhesively Bonded Joints of Similar and Dissimilar Materials: Industrial Case Study" Processes 11, no. 5: 1312. https://doi.org/10.3390/pr11051312
APA StyleAnaç, N. (2023). Assessment of Adhesively Bonded Joints of Similar and Dissimilar Materials: Industrial Case Study. Processes, 11(5), 1312. https://doi.org/10.3390/pr11051312