Life Cycle Assessment of Pilot-Scale Bio-Refining of Invasive Japanese Knotweed Alien Plant towards Bio-Based Bioactive Compounds
Abstract
:1. Introduction
2. Materials and Methods—Environmental Impact Assessment
2.1. Lab-Scale Extract Production
2.2. Proposed Pilot-Scale Extract Production
2.3. Environmental Impact Assessment
Unit Process | Equipment | |
---|---|---|
Lab Scale | Pilot Scale | |
Eradication | Manual work | Mini excavator with rated power of 42 kW and engine tier IV and engine displacement of 2.83 L [29] |
Transport | Manual handling | Light-medium track with EU certification diesel fuel (Euro 5 or Euro 6) [30] |
Washing | Manual work | Manual work |
Peeling | Manual work | Manual work |
Freeze-drying | Freeze-dryer with electricity consumption of 310 W | Freeze-dryer with capacity of 10 kg and electricity consumption of 9 kW [31] |
Pulverization | Dismembrator with electricity consumption of 100 W | Roll ball mill with capacity of 5 L and electricity consumption of 0.75 kW [32] |
Extraction |
| |
Evaporation | (Evaporation under N2) | Rotary evaporator (100 L capacity) with:
|
3. Results and Discussion
3.1. Environmental Impact Assessment
3.2. Electricity Demand Distribution and Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database; Invasive Species Specialist Group: Auckland, New Zealand, 2000; Volume 12. [Google Scholar]
- Dommanget, F.; Cavaillé, P.; Evette, A.; Martin, F. Asian knotweeds-an example of a raising threat. In Introduced Tree Species in European Forests: Opportunities and Challenges? European Forest Institute: Joensuu, Finland, 2016. [Google Scholar]
- Seebode, D.; Jeanrenaud, S.; Bessant, J. Managing innovation for sustainability. RD Manag. 2012, 42, 195–206. [Google Scholar]
- Mulvihill, M.J.; Beach, E.S.; Zimmerman, J.B.; Anastas, P.T. Green chemistry and green engineering: A framework for sustainable technology development. Annu. Rev. Environ. Resour. 2011, 36, 271–293. [Google Scholar] [CrossRef]
- Cucu, A.-A.; Baci, G.-M.; Dezsi, Ş.; Nap, M.-E.; Beteg, F.I.; Bonta, V.; Bobiş, O.; Caprio, E.; Dezmirean, D.S. New Approaches on Japanese Knotweed (Fallopia japonica) Bioactive Compounds and Their Potential of Pharmacological and Beekeeping Activities: Challenges and Future Directions. Plants 2021, 10, 2621. [Google Scholar] [CrossRef]
- Glavnik, V.; Vovk, I. Extraction of anthraquinones from Japanese knotweed rhizomes and their analyses by high performance thin-layer chromatography and mass spectrometry. Plants 2020, 9, 1753. [Google Scholar] [CrossRef]
- Glavnik, V.; Vovk, I. High performance thin-layer chromatography–mass spectrometry methods on diol stationary phase for the analyses of flavan-3-ols and proanthocyanidins in invasive Japanese knotweed. J. Chromatogr. A 2019, 1598, 196–208. [Google Scholar] [CrossRef]
- Nawrot-Hadzik, I.; Ślusarczyk, S.; Granica, S.; Hadzik, J.; Matkowski, A. Phytochemical diversity in rhizomes of three Reynoutria species and their antioxidant activity correlations elucidated by LC-ESI-MS/MS analysis. Molecules 2019, 24, 1136. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J. Profile of bioactive compounds in the morphological parts of wild Fallopia japonica (Houtt) and Fallopia sachalinensis (F. Schmidt) and their antioxidative activity. Molecules 2019, 24, 1436. [Google Scholar] [CrossRef]
- Glavnik, V.; Vovk, I.; Albreht, A. High performance thin-layer chromatography–mass spectrometry of Japanese knotweed flavan-3-ols and proanthocyanidins on silica gel plates. J. Chromatogr. A 2017, 1482, 97–108. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Wojdyło, A.; Cebulak, T.; Hirnle, L.; Siewiński, M. UPLC-PDA-Q/TOF-MS identification of bioactive compounds and on-line UPLC-ABTS assay in Fallopia japonica Houtt and Fallopia sachalinensis (F. Schmidt) leaves and rhizomes grown in Poland. Eur. Food Res. Technol. 2019, 245, 691–706. [Google Scholar] [CrossRef]
- Nawrot-Hadzik, I.; Granica, S.; Domaradzki, K.; Pecio, Ł.; Matkowski, A. Isolation and determination of phenolic glycosides and anthraquinones from rhizomes of various Reynoutria species. Planta Med. 2018, 84, 1118–1126. [Google Scholar] [CrossRef]
- Fan, P.; Hay, A.-E.; Marston, A.; Lou, H.; Hostettmann, K. Chemical variability of the invasive neophytes Polygonum cuspidatum Sieb. and Zucc. and Polygonum sachalinensis F. Schmidt ex Maxim. Biochem. Syst. Ecol. 2009, 37, 24–34. [Google Scholar] [CrossRef]
- Chan, C.L.; Gan, R.Y.; Corke, H. The phenolic composition and antioxidant capacity of soluble and bound extracts in selected dietary spices and medicinal herbs. Int. J. Food Sci. Technol. 2016, 51, 565–573. [Google Scholar] [CrossRef]
- Jug, U.; Naumoska, K.; Vovk, I. (−)-Epicatechin—An Important Contributor to the Antioxidant Activity of Japanese Knotweed Rhizome Bark Extract as Determined by Antioxidant Activity-Guided Fractionation. Antioxidants 2021, 10, 133. [Google Scholar] [CrossRef]
- Naumoska, K.; Jug, U.; Kõrge, K.; Oberlintner, A.; Golob, M.; Novak, U.; Vovk, I.; Likozar, B. Antioxidant and antimicrobial biofoil based on chitosan and Japanese knotweed (Fallopia japonica, Houtt.) rhizome bark extract. Antioxidants 2022, 11, 1200. [Google Scholar] [CrossRef]
- Drago, E.; Campardelli, R.; Pettinato, M.; Perego, P. Innovations in smart packaging concepts for food: An extensive review. Foods 2020, 9, 1628. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, D.; Chen, X.; Xu, Q.; Lu, F.; Nie, J. Electrospun water-soluble carboxyethyl chitosan/poly (vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 2008, 9, 349–354. [Google Scholar] [CrossRef]
- Klančnik, M. Screen printing with natural dye extract from Japanese knotweed rhizome. Fibers Polym. 2021, 22, 2498–2506. [Google Scholar] [CrossRef]
- Jug, U.; Naumoska, K.; Malovrh, T. Japanese Knotweed Rhizome Bark Extract Inhibits Live SARS-CoV-2 In Vitro. Bioengineering 2022, 9, 429. [Google Scholar] [CrossRef]
- van der Giesen, C.; Cucurachi, S.; Guinée, J.; Kramer, G.J.; Tukker, A. A critical view on the current application of LCA for new technologies and recommendations for improved practice. J. Clean. Prod. 2020, 259, 120904. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Inaba, A.; Tan, R.; Christiansen, K.; Klüppel, H.-J. The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [Google Scholar] [CrossRef]
- Gordon, J. Cradle to Grave—Explained. Available online: thebusinessprofessor.com/en_US/mgmt-operations/cradle-to-grave-definition (accessed on 20 April 2022).
- Klöpffer, W. Life cycle sustainability assessment of products. Int. J. Life Cycle Assess. 2008, 13, 89–95. [Google Scholar] [CrossRef]
- Tsoy, N.; Steubing, B.; van der Giesen, C.; Guinée, J. Upscaling methods used in ex ante life cycle assessment of emerging technologies: A review. Int. J. Life Cycle Assess. 2020, 25, 1680–1692. [Google Scholar] [CrossRef]
- openLCA. Green Delta. Available online: openlca.org (accessed on 9 April 2022).
- ecoinvent. ecoinvent Database. Available online: ecoinvent.org/the-ecoinvent-database/ (accessed on 10 April 2022).
- Nexus, O. Agribalyse. Available online: nexus.openlca.org/database/Agribalyse (accessed on 10 April 2022).
- Heidari, B.; Marr, L.C. Real-time emissions from construction equipment compared with model predictions. J. Air Waste Manag. Assoc. 2015, 65, 115–125. [Google Scholar] [CrossRef]
- Volvo. Emissions from Volvo’s Trucks. Available online: volvotrucks.com/content/dam/volvo-trucks/markets/global/our-values/environmental-care/our-trucks/Emis_eng_10110_14001.pdf (accessed on 3 March 2021).
- Lyomac. LG1.0 Lyophilization Equipment for Flowers Pilot Mini Freeze Drying Lyophilizer with 10 kg Loading Capacity. Available online: lyomac.en.china.cn (accessed on 27 November 2022).
- Yonglekang. Roll Ball Mill. Available online: ylkeqpt.com/show-7-55.html (accessed on 27 November 2022).
- Stuart. SI600 Large Shaking Incubator. Available online: tequipment.net/Stuart/SI600/Incubators/#description (accessed on 27 November 2020).
- Elma. Elmasonic Xtra ST. Available online: elma-ultrasonic.com (accessed on 27 November 2020).
- Scientific, T.F. Centrifuges Designed for Reliable, High-Throughput Bioprocessing. Available online: assets.thermofisher.com/TFS-Assets/LED/brochures/BRCFGSORVALLBIOS%201220.pdf (accessed on 27 November 2020).
- HAWACH. Rotary Evaporator. Available online: hawach.com (accessed on 27 November 2020).
- Hauschild, H. Life Cycle Impact Assessment; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Aitor, A.; Christina, R.; Andreas, C. LCIA Methods. Available online: openlca.org/wp-content/uploads/2016/08/LCIA-METHODS-v.1.5.5.pdf (accessed on 25 December 2021).
- Glibert, P.M.; Seitzinger, S.; Heil, C.A.; Burkholder, J.M.; Parrow, M.W.; Codispoti, L.A.; Kelly, V. Eutrophication. Oceanography 2005, 18, 198. [Google Scholar] [CrossRef]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- BRE Group. Human Toxicity. Available online: bregroup.com/greenguide/page.jsp?id=2098 (accessed on 30 August 2021).
- UNCCC. Glasgow Climate Pact. Available online: unfccc.int/documents/310475 (accessed on 14 November 2021).
- Republika Slovenija Statistični urad SiStat. Električna Energija (GWh), Slovenija, Mesečno. Available online: pxweb.stat.si/SiStatData/pxweb/sl/Data/Data/1817601S.px/table/tableViewLayout2/ (accessed on 29 May 2021).
- Eurostat, S.E. Electricity Production, Consumption and Market Overview. Available online: ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_production,_consumption_and_market_overview#Electricity_generation (accessed on 6 October 2021).
- Urbančič, A.Č.M.; Stegnar, G.; Janša, T.; Merše, M.; Sučić, B.; Đorić, M.; Košnjek, Z.; Majcen, B.; Pretnar, G.; Verbič, J.; et al. Končno Poročilo C3.2: Povzetek Analize Scenarijev za Odločanje o Dolgoročni Podnebni Strategiji Slovenije do Leta 2050. Available online: gov.si/assets/ministrstva/MOP/Javne-objave/Javne-obravnave/podnebna_strategija_2050/dolgorocna_podnebna_strategija_2050_strokovne_podlage.pdf (accessed on 6 October 2021).
Lab Scale | Pilot Scale | ||
---|---|---|---|
Eradication | Input | Manual work—no input | Mini excavator: cca. 5 L/h (3 h of work) → Total 15 L |
Output | Cca. 15 g of biomass (above-ground parts: stems, leaves, etc.)—to be incinerated (Japanese knotweed is classed as “controlled waste” and needs to be cut down carefully and either burnt on site or taken away to a licensed landfill site or incineration facility.) | cca. 15 kg of biomass (above-ground parts: stems, leaves, etc.)—to be incinerated (Japanese knotweed is classed as “controlled waste” and needs to be cut down carefully and either burnt on site or taken away to a licensed landfill site or incineration facility.) | |
Transport | Input | / | Light-medium truck: cca. 25 L/100 km (10 km back and forth) → Total 2.5 L |
Output | / | / | |
Washing | Input |
|
|
Output |
|
| |
Peeling | Input | Manually: no environmental impact | Manually: no environmental impact |
Output | From cca. 30 g rhizomes we obtain cca. 10 g of bark (for further work) and 20 g of waste biomass (possible further incineration or formulation of other products for human use). | From cca. 30 kg rhizomes we obtain cca. 10 kg of bark (for further work) and 20 kg of waste biomass (possible further incineration or formulation of other products for human use). | |
Freeze-drying | Input |
|
|
Output |
|
| |
Pulverization | Input |
|
|
Output |
|
| |
Extraction and evaporation | Input |
|
|
Output |
|
|
Lab Scale | Pilot Scale | Unit | Description | |
---|---|---|---|---|
Inputs | ||||
Diesel | / | 17.50 | L | Excavation/Transport |
Distilled water | 15.00 | 15.50 | L | Cleaning |
Electricity | 7574.13 | 2320.34 | kWh | Power equipment |
Ethanol | 71.99 | 75.99 | L | Extraction |
Japanese knotweed | 45.00 | 45.00 | kg | From Ljubljana region |
Liquid nitrogen | 20.00 | 20.00 | L | Freezing |
MiliQ water | 28.71 | 28.71 | L | Extraction |
Nitrogen gas | 5472.00 | / | m3 | Evaporation |
Paper tissue | 0.25 | 0.25 | kg | Drying of rhizomes |
Tap water | 30.00 | 45.00 | L | Washing/Cleaning |
Outputs | ||||
Bio-waste | 21.55 | 21.55 | kg | Rhizome and precipitate |
Ethanol | 71.99 | 75.99 | L | |
JKRB | 1.00 | 1.00 | kg | Main product |
Nitrogen gas | 5472.00 | / | m3 | Emitted into air |
Paper tissue | 0.25 | 0.25 | kg | Landfilled |
PP * waste | 29.1 | / | kg | Vials and pipettes |
Residual biomass | 15.00 | 15.00 | kg | For incineration |
Wastewater | 73.71 | 89.21 | L | |
Water vapors | 6.81 | 6.81 | L | Emitted into air |
Electricity Source | Slovenian a | European b | COP26 c |
---|---|---|---|
Hydro energy | 32.16 | 12.00 | 21.00 |
Thermal energy (coal) | 24.18 | 23.00 | / |
Thermal energy (oil) | 0.01 | / | / |
Thermal energy (natural gas) | 2.73 | 21.00 | / |
Thermal energy (syngas) | / | / | 5.00 |
Thermal energy (renewable fuels) | 1.27 | 0.20 | 3.00 |
Thermal energy (industrial waste) | 0.05 | / | / |
Nuclear energy | 37.76 | 26.20 | 31.00 |
Solar energy | 1.80 | 4.50 | 36.00 |
Wind energy | 0.04 | 13.00 | 4.00 |
Geothermal energy | / | 0.20 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hren, R.; Naumoska, K.; Jug, U.; Čuček, L.; Likozar, B.; Novak, U.; Vujanović, A. Life Cycle Assessment of Pilot-Scale Bio-Refining of Invasive Japanese Knotweed Alien Plant towards Bio-Based Bioactive Compounds. Processes 2023, 11, 1393. https://doi.org/10.3390/pr11051393
Hren R, Naumoska K, Jug U, Čuček L, Likozar B, Novak U, Vujanović A. Life Cycle Assessment of Pilot-Scale Bio-Refining of Invasive Japanese Knotweed Alien Plant towards Bio-Based Bioactive Compounds. Processes. 2023; 11(5):1393. https://doi.org/10.3390/pr11051393
Chicago/Turabian StyleHren, Robert, Katerina Naumoska, Urška Jug, Lidija Čuček, Blaž Likozar, Uroš Novak, and Annamaria Vujanović. 2023. "Life Cycle Assessment of Pilot-Scale Bio-Refining of Invasive Japanese Knotweed Alien Plant towards Bio-Based Bioactive Compounds" Processes 11, no. 5: 1393. https://doi.org/10.3390/pr11051393
APA StyleHren, R., Naumoska, K., Jug, U., Čuček, L., Likozar, B., Novak, U., & Vujanović, A. (2023). Life Cycle Assessment of Pilot-Scale Bio-Refining of Invasive Japanese Knotweed Alien Plant towards Bio-Based Bioactive Compounds. Processes, 11(5), 1393. https://doi.org/10.3390/pr11051393