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Abstract: Providing a minimum of theory, this review focuses on practical aspects of analyzing the
kinetics of nonisothermal crystallization as measured with differential scanning calorimetry (DSC).
It is noted that kinetic analysis is dominated by approaches based on the Avrami and Arrhenius
equations. Crystallization kinetics should not be considered synonymous with the Avrami model,
whose nonisothermal applications are subject to very restrictive assumptions. The Arrhenius equation
can serve only as a narrow temperature range approximation of the actual bell-shaped temperature
dependence of the crystallization rate. Tests of the applicability of both equations are discussed. Most
traditional kinetic methods tend to offer very unsophisticated treatments, limited only to either glass
or melt crystallization. Differential or flexible integral isoconversional methods are applicable to both
glass and melt crystallization because they can accurately approximate the temperature dependence of
the crystallization rate with a series of the Arrhenius equations, each of which corresponds to its own
narrow temperature interval. The resulting temperature dependence of the isoconversional activation
energy can be parameterized in terms of the Turnbull–Fisher or Hoffman–Lauritzen theories, and the
parameters obtained can be meaningfully interpreted and used for kinetic simulations.

Keywords: calorimetry; crystallization; glass; kinetics; melt; nonisothermal

1. Introduction

Crystallization typically generates substantial amounts of heat that can be monitored
calorimetrically. This makes the technique of differential scanning calorimetry (DSC) a
major tool in crystallization studies. The Scopus database lists close to 37,000 publications
associated with the application of calorimetry to the process of crystallization [1]. More
than 20% of these publications deal with kinetics. Currently, the absolute majority of
crystallization kinetic studies are performed under nonisothermal conditions. In spite of
persistent research interest, the topic of the kinetic methodology of analyzing DSC data
on nonisothermal crystallization kinetics has not been a subject of a systematic review for
over 20 years. Although many aspects of the early review articles [2–4] continue to remain
relevant, significant progress has been made in the methodology of nonisothermal kinetics
of simple [5] and complex [6] processes, including crystallization. In particular, more
accurate and efficient methods have been developed, whereas certain widespread methods
reviewed earlier [2–4] have been found to be inadequate or downright faulty. Moreover,
the previous reviews present only a particular perspective limited to the crystallization of
either low molecular weight glasses [2,3] or macromolecular melts [4], so the techniques
surveyed tend to be specific to either heating or cooling conditions.

The present review endeavors to highlight approaches that are equally applicable for
treating the crystallization kinetics taking place on cooling as well as on heating. While
giving a minimum of theory, it focuses on practical aspects of proper kinetic analysis that
can be accomplished by a variety of contemporary and traditional methods. It is hoped
that this review will be of interest and value to the broad community of researchers intent
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on advancing their understanding of the nonisothermal crystallization kinetics of materials
with the aid of DSC.

2. Some Basics

The heat flow measured with DSC is proportional to the process rate. It is almost
universally accepted that the proportionality is linear, i.e.,:

dα

dt
=

1
Q0

dQ
dt

(1)

where α is the extent of conversion from the initial to the final state, t is the time, dQ/dt is
the heat flow, Q0 is the total heat released or absorbed during conversion. In fact, the linear
proportionality results from a simplifying assumption introduced originally by Borchardt
and Daniels [7]. They assumed that the so-called thermal inertia term could be neglected in
the heat flow equation. However, this assumption may not hold under certain experimental
conditions and, thus, have a detrimental effect on kinetic evaluations [8,9]. Note that some
early crystallization kinetics studies were conducted with an account of thermal inertia [10].

Generally, the raw heat flow (RHF) signal, i.e., a DSC peak uncorrected for thermal in-
ertia, is shifted to some degree to a higher temperature. This temperature shift is eliminated
by adjusting RHF as follows:

dQ
dt

= RHF + τ
d(RHF)

dt
(2)

where the second term on the right-hand side is the thermal inertia term (Figure 1). The
time constant, τ, is readily determined from a DSC peak for the melting of a pure metal [11].
The magnitude of the temperature shift can be estimated as βτ, where β is the heating rate.
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(dashed line) DSC peaks. Thermal inertia term (dotted line).

Because τ is proportional to the total heat capacity and, thus, the sample mass, the
effect of thermal inertia is diminished by conducting DSC measurements on smaller masses
and at slower heating rates. However, such conditions may not be suitable for low enthalpy
processes. By way of example, recrystallization of copper releases only 1 J/g of heat, so
the process has to be measured on a rather heavy 200 mg sample and at fast heating rates
(2–80 K/min) [12]. The respective time constant is 17 s, which means that at 80 K/min, the
temperature shift (i.e., βτ) should be about 23 K. In such a situation, one must obviously
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make a correction (Equation (2)) for thermal inertia. Remarkably, the use of the raw
data yields an activation energy estimate of 98 kJ/mol, whereas adjusting the data via an
additional calibration [12] and correction for thermal inertia causes the activation energy to
increase by 34% to 131 kJ/mol [9]. The importance of the thermal inertia effect in the case
of large τ values is discussed in detail elsewhere [13,14].

On the other hand, for a 3 mg sample of isotactic polystyrene, τ is only 4 s, so at the
fastest heating rate of 20 K/min, the temperature shift is just a little over 1 K [9]. Then, the
correction for thermal inertia causes the activation energy to rise by less than 3%, which
is less than the experimental uncertainty of the respective estimate. In this situation, the
effect of thermal inertia can be considered negligible. It should normally be negligible
as long as βτ does not exceed 2–3 K [9]. It must be stressed that using smaller masses
and slower heating rates is generally a good approach because it minimizes the deviation
between the programmed and actual sample temperature, which is critical for reliable
kinetic calculations. Acceptable heating rates and masses differ depending on the process
enthalpy and thermal conductivity [15,16]. For crystallizations, one rarely needs masses
heavier than 10 mg and heating rates faster than 20 K/min. Perhaps the simplest advice is
to select conditions such that the DSC heat flow signal does not exceed 8 mW [17] which
corresponds approximately to a 0.5 K [18] deviation between the programmed and actual
sample temperature.

Subject to the proper measurement conditions, DSC provides data on the overall
crystallization rate, which can be utilized for adequate kinetics analysis. Its starting point
usually is parameterizing the rate via two variables: temperature (T) and conversion (α):

dα

dt
= k(T) f (α) (3)

The conversion is determined as the ratio of the partial and total areas of a DSC peak. In
the case of crystallization, the conversion represents the relative degree of crystallinity. The
word “relative” is used to emphasize the fact that many substances, especially polymers,
do not crystallize completely. The temperature and conversion dependencies of the rate are
described, respectively, by the rate constant, k(T) and the reaction model, f (α). Oftentimes,
Equation (3) is more convenient to use in its integral form:

g(α) =
∫ α

0

dα

f (α)
=
∫ t

0
k(T)dt (4)

The conversion dependence of the crystallization rate is most commonly described
by the Avrami model. The model is sometimes called the Johnson–Mehl–Avrami–Erofeev-
Kolmogorov [19–22] model to reflect the independent contributions of several scholars to
its development. A concise overview of the theory behind the Avrami model is available
elsewhere [23–26]. One of its commonly used mathematical forms is as follows:

g(α) = [− ln(1 − α)]1/m =
∫ t

0
k(T)dt (5)

where m is the Avrami exponent.
Theoretically, the value of m is linked to the dimensionality of the crystal growth.

However, this link is not straightforward, as it depends on the conditions of nucleation
and growth [25]. For the same growth dimensionality, the Avrami exponent is larger
by 1 for the steady state than for instantaneous nucleation. Additionally, relative to the
surface-controlled growth, the m values for the growth controlled by diffusion are smaller
and can be fractional. For instance, for the three-dimensional growth, m is 4 (steady-state
nucleation, surface-controlled growth), 3 (instantaneous nucleation, surface-controlled
growth), 2.5 (steady-state nucleation, diffusion-controlled growth), and 1.5 (instantaneous
nucleation, diffusion-controlled growth). In all, the theoretically justified m values span
the range from 0.5 to 6 [25]. (m > 4 is expected for sheaf-like growth per analysis by
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Morgan [27]), so experimentally determining some value of m from that range cannot be
directly interpreted in terms of the dimensionality without additional supporting evidence.

The most common description of the temperature dependence is by means of the
Arrhenius equation:

k(T) = A exp
(
−E
RT

)
(6)

where A is the preexponential factor, E is the activation energy, and R is the gas constant. It
is noteworthy that in crystallization kinetics, the Arrhenius equation is seen as a convenient
approximation of the actual temperature dependence. A more accurate form of the latter
can be presented by the Vogel–Tammann–Fulcher (VTF) equation by analogy with the
temperature dependence of viscosity [2,3]. However, as shown in an early review [3], this
type of dependence did not gain universal acceptance in crystallization kinetics. Up to this
day, the Arrhenius form continues to be used most commonly.

Equation (5) can be differentiated with respect to time to obtain the rate (i.e., differ-
ential) equation. The latter, however, takes a cumbersome form [3] for nonisothermal
conditions because T and, therefore, k(T) become a function of t. If temperature is changed
with time at a constant rate, β:

β =
dT
dt

(7)

Equation (5) takes the following form:

[− ln(1 − α)]1/m =
A
β

∫ T

T0

exp
(
−E
RT

)
dT (8)

Equation (8) is, at least in principle, applicable to either heating or cooling, i.e., to the
crystallization of either glasses or melts. The left-hand side of Equation (8) is invariably
positive. For cooling, the temperature integral turns negative because T0 > T. Yet, the
right-hand side remains positive because β < 0.

Since the temperature integral in Equation (8) cannot be solved analytically, it is
commonly replaced with approximations of the following type:

[− ln(1 − α)]1/m =
A
β

∫ T

0
exp

(
−E
RT

)
dT =

AE
βR

p(x) (9)

where x = E/RT, and p(x) is an approximating function [28]. This type of approximation
replaces the lower integration limit in Equation (8) with zero. This is done to streamline
integration with the aim of obtaining simple equations for parameterizing the process rate.
Without going into unnecessary technical details, it is easy to arrive at an approximately
linear equation of this kind [29–33]:

ln[− ln(1 − α)] ∼= C − γ
mE
RT

(10)

where C is the temperature-independent constant containing the pre-exponential factor,
and γ is a constant that, depending on p(x), is either equal or nearly equal to 1.

Knowing the kinetic triplet (i.e., m, A, and E) allows one to simulate the overall
crystallization kinetics under desired temperature conditions. It is, for example, of practical
importance to be capable of simulating the so-called time-temperature-transformation
(T-T-T) and temperature-heating rate-transformation (T-HR-T) diagrams [34,35]. In essence,
a T-T-T diagram is a set of plots of t vs. T related to specific values of α. They are simulated
with Equation (11):

tα =
[− ln(1 − α)]1/m

A exp
(
−E
RT

) (11)
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which is arrived at by integrating and rearranging Equation (5) for isothermal conditions.
In it, tα is the time to reach a specific conversion. By plugging a selected value of α and the
estimated kinetic triplet into Equation (11) and then varying T, one obtains a tα vs. T plot.

A T-HR-T diagram is a set of Tα vs. β plots corresponding to the selected α values. It is
built by employing Equation (9). Again, one plugs a selected value of α and the estimated
kinetic triplet into Equation (9). Then, β is varied in steps, finding at each step the upper
integration limit Tα that secures the equality of the left- and right-hand sides of Equation
(9). As a result, Tα vs. β plots are obtained. Successful examples of the simulated T-HR-T
and T-T-T diagrams are found elsewhere [35–37].

3. Avrami–Arrhenius Treatment for Limited Temperature Range

The applications of the Avrami model are limited to the process of primary crystal-
lization, i.e., the formation and growth of the crystallites until they spread throughout the
space of the original noncrystalline phase. In turn, the crystallites can involve disordered
or poorly ordered phases capable of further, i.e., secondary, crystallization. It is worth
mentioning that there is a possibility to incorporate secondary crystallization into the
Avrami model [38].

Speaking of the Avrami model limitations specific to nonisothermal conditions, they
are discussed at length elsewhere [2,3,39]. Briefly, they arise from the fact that the Avrami
equation results from the integration of the nucleation and growth rates under isothermal
conditions. Under such conditions, the temperature dependencies of those rates can be com-
bined into a single constant parameter, i.e., k(T) in Equation (5). When temperature varies
continuously, this creates a problem because both rates are temperature-dependent, and the
corresponding dependencies generally are quite different. This limits the nonisothermal
application of the Avrami model to two specific situations.

The first one was identified by Avrami as an isokinetic temperature range, which is the
range where the ratio of the growth and nucleation rates remains constant [40]. Basically,
it means that both rates have the same temperature dependencies or, simply, the same
Arrhenius activation energy. This situation is explored by Farjas and Roura [32], who
find that the inequality of the activation energies gives rise to a constant multiplier in
Equation (8), which remains valid.

The second situation is known as site saturation, which occurs when a system becomes
saturated with nuclei at the early stages of crystallization [3,39,41]. Then, the rate of
crystallization becomes limited by the nuclei growth. This permits reducing the temperature
dependence of the crystallization rate to that of the growth that is assumed to be Arrhenian.

It is noteworthy that the problems associated with the Avrami model have received
much more attention than those related to the use of the Arrhenius equation. There is no
doubt that the temperature dependence of the crystallization rate is not Arrhenian [42].
Actual forms of the dependence are discussed briefly in the next sections. For now, we only
mention that a non-Arrhenian behavior of the dependence is readily detectable when the
crystallization kinetics is studied in a sufficiently broad temperature range. An example
of such a study is presented in Figure 2 [43]. This is melt and glass crystallization of
poly(trimethylene terephthalate) conducted under isothermal conditions [44]. Fitting
the Avrami model has produced the rate constants at each temperature. The results are
presented as an Arrhenius plot, lnk(T) vs. 1/T, which, according to Equation (6), is supposed
to be linear. The distinct nonlinearity of the resulting plot becomes unmistakably detectable
as the temperature range approaches 20 K (Figure 2). It is also seen that as the temperature
rises, the slope of the plot is continuously changing, turning its value from negative to
positive. Respectively, the corresponding value of E decreases with increasing temperature,
turning its value from positive (glass crystallization) to negative (melt crystallization). This
means that in the latter case, the temperature dependence becomes anti-Arrhenian.
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Overall, the Arrhenius equation is no more than a convenient approximation that can
hold for a relatively narrow temperature range, apparently less than 20 K. In nonisothermal
crystallization studies, the temperature ranges covered tend to be broader. Normally,
the width of a crystallization DSC peak is no less than 30–40 K. Whether the Arrhenius
approximation holds can and should be tested by checking the experimentally determined
activation energy for constancy, as discussed further.

Relatedly, before applying the Avrami model, it is critical to test whether it is applicable
to the crystallization under study. Simply fitting data and finding that the fit is characterized
by a statistically significant correlation coefficient (or other statistical criteria) is a necessary
but not sufficient condition of applicability. The Avrami model is known to be flexible
enough to imitate other solid-state reaction models [45]. For instance, it can fit near perfectly
a process following the Jander diffusion model in the α range of about 0–0.8 [30].

Malek [46] has proposed a rather definitive criterion based on the position of the
maximum of the z(α) function:

z(α) =
dα

dt
T2 (12)

This function is readily obtained from experimentally measured DSC curves and should be
nearly identical at different heating rates. Regardless of the Avrami exponent value, the
z(α) function should have a maximum at α = 0.632 ± 0.02 [46]. Svoboda has argued that
the application of the Avrami model can still be justified if the z(α) maximum is found in a
broader range of α [47].

If the Avrami model is found inapplicable, a viable alternative is to employ the general
autocatalytic model:

f (α) = αM(1 − α)N (13)

which is also known as the extended Prout–Tompkins or truncated Sestak–Berggren
model [5]. The advantage of this model is two-fold. First, the Avrami models having
different m values can be almost perfectly represented by certain combinations of M and
N in Equation (13) [48,49]. In principle, a combination of the M and N values can be
used to identify a variety of solid-state reaction models [49]. Second, Equation (13) is still
applicable when the crystallization kinetic curve is not of sigmoid type. Such is an example
of zero-order kinetics that is apparently associated with surface crystallization [50,51].
The situation is analogous to the zero-order kinetics encountered in other surface-limited



Processes 2023, 11, 1438 7 of 30

processes, such as the vaporization of liquids [52], solid-state polymerization [53], and
certain topochemical reactions of solids [54].

When the Avrami model is applicable, one can employ Equation (10) (or similar)
for estimating the kinetic parameters. One problem to notice, though, is that plotting
ln[−ln(1 − α)] against 1/T yields m and E in a conjoint form, i.e., as a single combined
parameter mE. It may seem that this problem can be resolved by dividing both sides of
Equation (10) by m, which results in a plot whose slope is E. That is, by varying m, one
might possibly find m and E individually as the values corresponding to the best statistical
fit. Nevertheless, this approach fails when the fitting is performed on the data obtained at a
single heating rate.

A remarkable example of such failure is provided by Perez–Maqueda et al. [55], who
demonstrate that simulated data (m = 2) can be fitted equally well (correlation coefficient
equals 1) by a set of the Avrami models having m from 1.5 to 4. The respective Arrhenius
parameters vary over a wide range falling on a straight line (Figure 3). The essence of this
effect, also known as the compensation effect, is that estimating an incorrect value of E
is compensated by estimating an incorrect value of lnA in such a way that the respective
k(T) value in the middle of the experimental temperature range remains practically unaf-
fected [56]. This is the primary reason why several models with widely differing Arrhenius
parameters can satisfactorily describe the same set of experimental data.
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Nonetheless, no such failure occurs when the fitting is performed by simultaneously
employing the datasets obtained at several heating rates. Indeed, in this situation, fitting
the Avrami model results in uniquely retrieving the correct kinetic triplet [55]. This example
reinforces the recommendation of the International Confederation for Thermal Analysis
and Calorimetry (ICTAC) that single heating rate methods should be avoided in favor of
methods that use multiple heating rates simultaneously [5]. Ignoring this simple recom-
mendation leads to estimating invalid kinetic triplets, which, when used in simulations,
produce entirely meaningless results [57,58].

As already mentioned, fitting Equation (10) to crystallization data yields the conjoint
parameter mE. It can be separated into its components using the methods that afford
estimating either m or E individually. The Avrami exponent can be determined directly
with the aid of the classical method by Ozawa [59]. The method does not assume any
particular temperature dependence for the crystallization process. Rather, it avoids the
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issue by using isothermal cuts through the nonisothermal data. Then, the m value is
estimated from Equation (14).

ln[− ln(1 − α)] = Const − m ln β (14)

as the slope of a linear plot of the left-hand side against lnβ. In Equation (14), the α values
are the conversions corresponding to a selected temperature but at different β’s. The
equation holds for both heating and cooling, i.e., glass and melt crystallization.

A disadvantage of the Ozawa plot is that it usually has very few points, i.e., at most,
as many as the number of the heating or cooling rates used. This is illustrated in Figure 4
for the melt and glass crystallization of poly(ethylene 2,5-furandicarboxylate) (PEF) [60].
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It is seen that as the temperature approaches the limits of the experimental range, the
range of α narrows so that the use of either the fastest or slowest rates of heating/cooling
becomes practically impossible. This disadvantage is overcome in a recent modification of
the method by Toda [61,62]. It permits obtaining modified Ozawa plots that have as many
points as the number of points on an experimentally measured α vs. T curve.

When it comes to estimating m, there is a popular misconception that it can be per-
formed by substituting nonisothermal data in the isothermal form of the Avrami equation:

ln[− ln(1 − α)] = m ln k(T) + m ln t (15)

Equation (15) is obtained by integrating Equation (5) at T = const. The erroneous idea is that
the time in Equation (15) can be determined from nonisothermal data by using Equation (7).
That is, for heating:

t =
T − T0

β
(16)

where T0 is the temperature at which crystallization starts, and β is the heating rate. A
similar expression is easily obtained for cooling. The fallacy of such an approach is quite
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obvious; Equation (15) is undoubtedly isothermal, whereas each value of t determined
from Equation (16) corresponds to a different temperature. Unfortunately, this approach is
the essence of a popular method by Jeziorny [63]. A failure of the method to determine the
correct values of m is well demonstrated for simulated [64] and experimental data [65]. A
recent theoretical analysis of the method shows [33] that for nonisothermal data, the slope
of the Avrami plot ln[−ln(1 − α)] vs. lnt does not yield the expected value of m. Instead,
the value of the slope has a rather complex form [33]:

d ln[− ln(1 − α)]

d ln t
= 1.92m

βt
T0 + βt

+ 1.0008m
E
R

βt

(T0 + βt)2 (17)

Furthermore, Equation (17) indicates that, typically, the slope value should significantly
exceed the correct m values [33]. This inference is consistent with previous reports [61,64,65].
Clearly, neither the Jeziorny method nor any other approach based on combining
Equations (15) and (16) should be used in kinetic analysis of nonisothermal crystallization.

Not only m but also E can be determined individually. This is done routinely with
the help of isoconversional methods [5,43,66]. The most straightforward isoconversional
method is that of Friedman [67]. Its equation:

ln
(

dα

dt

)
α

= ln[Aα f (α)]− Eα

RTα
(18)

is obtained directly by combining Equations (3) and (6). Henceforth, the subscript α
denotes the values related to a specific value of conversion. The method does not require
any assumptions about the reaction model f (α) as it affords estimating the activation energy
directly from the slope of the linear plot of the natural logarithm of the rate vs. reciprocal
temperature. Naturally, both of these values should correspond to the same conversion at
different heating or cooling rates, β.

Isoconversional methods allow one to test whether the Arrhenius approximation holds.
This is accomplished by checking the constancy of the isoconversional activation energy,
Eα. Isoconversional methods yield Eα as a function of α in a broad range of conversions.
Usually, less than 10% variability in Eα within the α range 0.1–0.9 [6] or 0.3–0.7 [46] is
judged as acceptable constancy.

An instructive example is displayed in Figure 5, which shows the Eα dependencies
for two DSC crystallization peaks, which occur during the crystallization of Si12.5Te87.5
glass [68]. Clearly, for the first peak, Eα is practically constant and, therefore, can be replaced
with a single average value. Nevertheless, for the second peak, the variability in Eα exceeds
either of the above criteria, so one cannot replace Eα with the mean value. This complicates
further kinetic analysis, some options of which are discussed later.

If Eα is deemed reasonably constant, one can safely use the previously mentioned
methods for estimating the kinetic triplet. One should also be aware of a number of other
time-proven methods recommended by ICTAC [5].

It is important to notice that the differential isoconversional method of Friedman is
applicable to the data obtained on heating as well as on cooling. In other words, it can be
used for the crystallization of glasses as well as of melts. As far as integral isoconversional
methods, they may or may not be applicable to the processes conducted on cooling. The
applicability depends on the manner of integration, which can be characterized as either
rigid or flexible [43,66].
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Some integral methods are derived via integration from 0 to T (c.f., Equation (9)), which
gives rise to equations that contain only one temperature (the upper limit of integration).
This means that the equations of such methods are obtained with integration for the
conditions of heating that are built into these methods in a rigid manner, i.e., it cannot be
changed. Other integral methods are derived with integration between two temperature
limits (c.f., Equation (8)) which makes these methods flexible because the limits can be
changed in a flexible manner. In the flexible methods, integration can be performed
from lower to higher as well as from higher to lower temperature, which corresponds,
respectively, to heating and cooling. Nevertheless, the most popular integral methods
(Ozawa [69], Flynn–Wall [70,71], Kissinger–Akahira–Sunose [72], Starink [73]) are rigid
and, thus, cannot be used to study the kinetics on cooling. The same applies to Equation
(10). Unfortunately, this crucial issue never comes up in the early reviews [2,3], perhaps
because they focus only on the crystallization of glasses, which occurs on heating.

On the other hand, the flexible isoconversional methods are entirely suitable for kinetic
studies on both heating and cooling. Among about a dozen of the flexible methods [6,43,66],
those by Vyazovkin [74] and Ortega [75] are probably used most commonly.

In addition, one should bear in mind that the rigid methods introduce a systematic
error in the Eα value when it varies with α. The error increases with the magnitude of
variation and can easily reach 20% [76]. The error does not occur in the flexible integral
methods, and, of course, it does not appear in the differential method of Friedman. Related
to that error is the issue of the concurrent use of several isoconversional methods. Typically,
they tend to produce the Eα dependencies that are qualitatively similar, e.g., Eα that
decreases with α regardless of the method used. The dependencies will also usually be
almost identical quantitatively when one applies several rigid methods concurrently. This
is sometimes mistakenly taken as a sign of the validity of the obtained Eα dependencies. In
reality, this is only a sign that the p(x) approximations (Equation (9)) used by these methods
have very similar accuracy. That is why the ICTAC recommendations [5] advocate avoiding
concurrent use in favor of using one of the most accurate methods. The latter include the
flexible integral as well as differential methods. When the Eα dependence evaluated by such
methods is compared to the dependence evaluated by a rigid method, the two dependencies
are likely to manifest qualitative similarities but reveal significant quantitative differences.
This difference becomes critical when the Eα dependence is employed for further numerical
evaluations, examples of which are discussed in Sections 4 and 5.
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Some comments must also be made regarding the use of the Kissinger method [77],
the basic equation of which is:

E = −R
d ln
(

β

T2
p

)
dT−1

p
(19)

where Tp is the temperature that corresponds to the rate peak maximum. Tp is easily
determined as the DSC peak temperature. Then, E is found as the slope of the plot of

ln
(

β

T2
p

)
vs. T−1

p . While being extremely popular, the method has multiple shortcomings,

as discussed at length in a recent review paper [78]. To avoid unnecessary repetitions, we
only bring up two issues that are most critical for the process of crystallization.

First, the method cannot be applied to the data obtained on cooling [79]. That is, it
should never be used to study the melt crystallization kinetics. Alas, the earlier review [4]
suggests the Kissinger method as a possible way of estimating the activation energy from
cooling data. In fact, forcing the method to treat data obtained on cooling yields entirely
erroneous values of E [79,80]. It must be stressed that a similar conclusion is reached by Shi
et al. [81] regarding the method of Matusita and Sakka [82], which is a close analog of the
Kissinger method.

Second, unlike isoconversional methods, the Kissinger method is not well suited for
testing whether the Arrhenius approximation holds. If it does not, the Kissinger plot
should, in principle, become nonlinear. However, such nonlinearity is difficult to detect,
even when an isoconversional method demonstrates obvious variability in Eα [78]. An
example relevant to crystallization is shown in Figure 6. This is the crystallization of
poly(ethylene 2,6-naphthalate) (PEN) glass measured with DSC at five heating rates from
the range of 5–15 K/min [83]. It is seen that Eα demonstrates a significant variability.
However, the Kissinger plot reveals no obvious signs of nonlinearity. The latter is likely
masked by the natural scatter in the experimental Tp values. Usually, one has a better
chance to detect the Kissinger plot nonlinearity when using more heating rates from a
broader range.
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Finally, some discussion is due regarding kinetic analysis in the case when Eα is
found to be significantly variable (c.f., Figures 5 and 6). Significant variation in Eα is
a strong indicator of the process kinetics being driven by more than a single step. In
practical terms, it means that the single-step kinetic analysis based on a combination of
Equations (3) and (6) becomes unsound. Some alternative kinetic treatments should be
used instead. The basic principles of such treatments are quite simple and applicable to
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various kinds of processes, not only to crystallization [6]. It seems reasonable to accept the
fact that a significant variability in Eα most commonly arises from the kinetics that face
at least two energy barriers [84]. To date, there are two ways to account for this fact. The
first is to maintain Equation (3) but replace the Arrhenius temperature dependence in k(T)
with one appropriate for the crystallization kinetics. This approach is discussed in the next
two sections.

The second way is to preserve the Arrhenius temperature dependence in k(T) but
use more than one rate Equation (3). In the field of crystallization, such an approach has
been explored by the so-called “deconvolution” technique. As already pointed out [6],
nowadays, this term is frequently applied to mean the procedure of resolving overlapped
peaks, which differs from the original mathematical meaning of the term. The procedure is
used in two variants: mathematical and kinetic deconvolution [6].

In mathematical deconvolution, overlapped rate peaks are separated into individual
peaks by using some mathematical functions Fi(t) as follows:

dα

dt
=

N

∑
i=1

Fi(t) (20)

where N is the number of individual peaks, and Fi(t) is a function having the peak shape.
For example, the Fraser–Suzuki function appears to have been employed most frequently.
Conceptually, each separated peak is expected to represent an individual reaction step.
Then, these individual steps are subjected to the regular single-step kinetic analysis as
discussed above as well as elsewhere [5]. In particular, it is necessary to apply an isocon-
versional method to test the constancy of Eα, which would confirm that an individual,
separated step is indeed a single step. If the constancy of Eα cannot be confirmed, it can also
mean that the experimentally measured overall rate in Equation (20) cannot be represented
as the sum of the rates related to several independent steps.

In kinetic deconvolution, overlapped rate peaks are resolved into separate peaks by
employing a set of the rate Equation (3), i.e., in the following fashion:

dα

dt
=

N

∑
i=1

ciki(T) fi(αi) (21)

where ci is the contribution (weight) of the i-th kinetic step. Although, per Equation (21),
the overlapped rate peaks are separated into several single steps, it does not mean that
each resulting individual peak necessarily represents single-step kinetics. This only has to
happen when the experimentally measured overall rate in Equation (21) can be represented
as the sum of the rates related to several independent steps. Thus, testing the constancy of
Eα for each of the peaks is relevant.

Note that the multistep kinetic model implicit in Equations (20) and (21) is that of
parallel independent reactions. It is valid when a system has at least two independent
reaction centers. The simplest example is a mechanical mixture of two reactants or a
single reactant that is complex enough to possess more than one reaction center. However,
one must not forget that overlapped rate peaks also arise from consecutive steps. The
consecutive steps are not independent, and their overall kinetics cannot be reduced to
Equation (20) or Equation (21).

A systematic application of deconvolution in crystallization kinetics has been initiated
by Svoboda and Malek [85], who carefully explored the use of the Fraser–Suzuki function.
In particular, they succeeded in separating surface and bulk crystallization in the overall
crystallization of a SeTe glass. Of particular interest is a discussion [86] of the pros and
cons of mathematical and kinetic deconvolution. Regardless of the deconvolution type,
one should be wary of the computational aspect of the procedure. Since the Fraser–Suzuki
function has four fit parameters, one has to optimize eight of them in the simplest case of
resolving two peaks. For the same case, the kinetic deconvolution based on the Avrami
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model boils down to the optimization of six parameters, whereas the one based on the
autocatalytic model to the optimization of eight. These are the types of computations that
tend to converge to multiple local minima so that finding a unique and stable solution is a
problem on its own [6].

According to Liland et al. [87], it appears that both types of deconvolution work
reasonably well on partially overlapped peaks, whereas neither of them can adequately
treat the kinetics that manifests themselves as fully overlapped peaks. In this regard,
some promising results are obtained by utilizing artificial neural networks [87]. The first
applications of this methodology in thermal analysis kinetics date back to an early work by
Sbirrazzuoli et al. [88,89].

To conclude, it should be recognized that these days most crystallization kinetics
analyses are conducted by means of the single-step Avrami–Arrhenius treatment. Unfortu-
nately, this is commonly done without a proper justification. Namely, the Avrami model
and single-step Arrhenius equation are employed without testing their applicability to a
process under study. Even when tested, a significant dependence of Eα on α is frequently
ignored by replacing it with an average value in order to force unjustifiably oversimplified
single-step treatment. The computational simplicity of such treatment oftentimes inspires
inconsequential studies when a small set of DSC data is treated by several similar methods
to redundantly generate multiple sets of the Avrami exponents and/or activation energies.
Hopefully, the discussion presented in this and the following sections will help to hold
back this type of unnecessary computational exercise in favor of physically meaningful
kinetic analyses.

4. Turnbull–Fisher Treatment for Broad Temperature Range

As stated earlier, the temperature dependence of the crystallization rate is generally
non-Arrhenian (Figure 2). In fact, in a broad temperature range, the rate of crystallization
reveals a distinct maximum. This phenomenon has been known since at least the 1898 work
by Tammann [90], who demonstrated the existence of such maxima for a series of organic
compounds. Figure 7 presents Tammann’s data for the crystallization of molten piperine in
a ~90 K temperature range. Since the data present the number of crystals formed for the
same period of time (10 min), they can be interpreted as an estimate of the nucleation rate.
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The existence of such a rate maximum is well explained by the nucleation model of
Turnbull and Fisher [91]:

n = n0 exp
(
−ED
RT

)
exp

(
−∆G∗

RT

)
(22)
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where n is the nucleation rate, n0 is the preexponential factor, ED is the activation energy of
diffusion, and ∆G* is the free energy barrier to nucleation. The model holds for a variety of
nucleation-driven processes in the condensed phase.

In Equation (22), the ED exponential term yields a regular Arrhenian temperature
dependence, i.e., an exponential rate increase with increasing temperature. The maximum
arises because the ∆G* exponential term introduces an anti-Arrhenian dependence. For a
spherical nucleus, ∆G* is derived [23–25,43] as follows:

∆G∗ =
16πσ3T2

m

3(∆Hm)
2(∆T)2 =

Ω

(∆T)2 (23)

where σ is the surface energy (surface tension), Tm is the equilibrium melting temperature,
∆Hm is the enthalpy of melting per unit volume, ∆T = Tm − T is the supercooling, and Ω
includes all parameters that are practically independent of temperature.

Per Equation (23), lowering the temperature below Tm raises ∆T that makes the ∆G*
barrier progressively smaller. As a result, the rate accelerates with decreasing temperature,
which constitutes an anti-Arrhenian temperature dependence. The product of the ED
and ∆G* exponential terms (Equation (22)), i.e., of the Arrhenian and anti-Arrhenian
dependencies, gives rise to a temperature dependence with a maximum (Figure 7).

When approximated by (i.e., fitted to) the Arrhenius equation, such dependence gives
rise to the activation energy that changes its value and sign depending on temperature
(Figure 8). Such variable activation energy is commonly termed as effective to emphasize
the fact that its value does not necessarily identify with the energy barrier of a particu-
lar reaction step [84]. At small supercoolings, the nucleation rate is dominated by the
∆G* exponential term; the temperature dependence is anti-Arrhenian, which leads to
negative E values. The latter are routinely encountered when studying nucleation-driven
processes such as crystallization, gelation, and morphological solid–solid transitions during
continuous cooling [43,66,84].
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represent the respective Arrhenius activation energies and correlation coefficients.

Understandably, cooling by itself does not cause the effective activation energy to
become negative. Performed on cooling, common chemical reactions, such as thermal
decomposition and polymerization, maintain positive activation energies [92,93]. The
negative activation energies for nucleation-driven processes are specific to the tempera-
ture region of small supercoolings (Figure 8). For crystallization, this region is normally
accessible by cooling melted substances. On the other hand, the temperature region of
large supercoolings is usually accessed by heating compounds from the glassy state. In
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this region, the nucleation rate is dominated by the ED exponential term. This is what
makes the effective activation energies for the crystallization of glasses positive and of
melts negative (Figure 8).

Upon making a simplifying assumption that at small supercoolings (i.e., in cooling
DSC runs), the temperature dependence is determined only by the ∆G* exponential term
in Equation (22), one can determine the Ω value and, therefore, ∆G* via Equation (23).
For example, Clavaguera et al. [94] have demonstrated that it can be estimated from a
Kissinger-like dependence:

d ln
(

β
(
3Tp − Tm

)
/T2

p
(
Tm − Tp

)3
)

d
(

1/
(

Tp
(
Tm − Tp

)2
)) ≈ −B (24)

where B multiplied by R gives Ω. Alternatively, Sunol [95] proposed to determine B via
linear isoconversional plots:  ∂ ln(dα/dt)

∂
(

T(∆T)2
)−1


α

= −Bα (25)

Per Equation (25), one obtains a dependence of Bα on α. An advantage of such a method is
that one can also test the constancy of Bα, which is expected based on Equation (23). Indeed,
experimental values of Bα appear to show reasonable constancy [36,96]. Most importantly,
both techniques allow one to simulate the time—cooling rate—transformation and TTT
diagrams [36,94–96].

Similar evaluations can be carried out by using the method of Dobreva et al. [97,98]. It
makes use of an equation, which is similar to Equation (22), but instead of ∆G*, it employs
the value of the work to create a nucleus. However, under iso-(thermal/baric) conditions,
these two values are equal [99]. By virtue of the aforementioned simplifying assumption,
the method derives the following linear plot for cooling DSC runs (i.e., small supercoolings):

ln β = D − C
∆T2

p
(26)

where D and C are parameters, and ∆Tp is determined from the DSC peak temperature
as Tm − Tp. Note that Barandiaran and Colmenero [100] derived Equation (26) without
specifying the meaning of the parameter C years before Dobreva et al. [97,98]. The latter,
however, made its meaning clear. All things considered, C multiplied by RTm should be
equal to Ω.

Barandiaran and Colmenro have proposed to employ Equation (26) for estimating the
so-called critical cooling rate, βcr [100], i.e., the cooling rate, above which crystallization
would be suppressed so that the melt would vitrify instead of crystallizing. Their idea
is that βcr can be estimated by Equation (26) as β corresponding to infinite supercooling,
i.e., as follows:

ln βcr = D (27)

On the other hand, Cabral et al. [101] argued that for a more accurate estimate, one should
use Equation (28):

ln βcr = D − C
Tm

(28)

Equations (27) and (28) are compared for a series of inorganic systems and found to predict
very similar βcr values that tend to be markedly overestimated [101]. Similar conclusions
are arrived at in another study of inorganic glasses [102]. Testing these equations on
a series of organic pharmaceutical systems demonstrates that the predicted βcr can be
underestimated as well as overestimated [103].
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Equation (26) is recommended [98] for estimating the nucleation activity of various
additives. It is characterized as the ratio of the C values related to the nucleated and
original material. It is naturally expected ∆G* and, thus, C to be smaller for heterogeneous
nucleation in the presence of an additive. The lower the ratio drops below 1, the higher the
nucleation activity is. The lnβ vs. ∆T−2

p plots are sometimes found to be nonlinear, which
complicates this type of analysis [104,105]. An example of such plots for the crystallization
of polyethylene terephthalate (PET) is displayed in Figure 9. To overcome this issue,
only the slower (≤10 K/min) cooling rates had to be used [104]. The applicability of this
approach for estimating the nucleation activity in a broad range of cooling rates seems
generally questionable because of the nonlinearity of lnβ vs. ∆T−2

p plots [104,105].
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For large supercoolings (i.e., DSC runs on heating), Dobreva et al. [97,98] proposed a
way of estimating the activation energy of viscous flow, whose value, to a good approxima-
tion, is equal to ED in Equation (22) [42]. The original article [97] suggests using the lnβ vs.
T−2

p plot for this purpose. The later publication [98] changes the suggestion to using the plot
of lnβ vs. T−1

p , which is similar to the plot used in the Ozawa method [69]. Unexpectedly,
some recent studies [106–108] analyze crystallization on heating by means of unusual lnβ
vs. ∆T−2

p plots. In those plots, ∆Tp is represented as “superheating” with respect to the
glass transition temperature Tg, i.e., ∆Tp = Tp − Tg. This is an entirely empirical approach
that should not be used for estimating nucleation activity. Recall that the essence of such
an estimate is in parameterizing the temperature dependence of crystallization in terms
of the nucleation energy barrier, i.e., ∆G* in Equation (22). The respective temperature
dependence is determined by Equation (23), which is derived on thermodynamic grounds
and yields ∆T as Tm − T, i.e., as the supercooling. The latter controls the magnitude
of the nucleation barrier (Equation (23)) in the whole temperature range from Tg to Tm.
That is, even for the runs conducted on heating of the glassy samples, one still has to use
∆T = Tm − T or ∆Tp = Tm − Tp in order to estimate the nucleation activity. Even then, such
an estimate can be problematic simply because the crystallization of glasses occurs at large
supercoolings, i.e., under conditions when the contribution of the ∆G* term can be too
small relative to that of the ED term in Equation (22).

Curiously, the usage of ∆Tp= Tp − Tg brings to mind a certain analogy with the VTF
equation. One of its possible forms is [109]:

ln β = Z − W
T − T0

(29)
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where Z, W, and T0 are parameters. The VTF equation is commonly used for describing
the temperature dependence of viscosity as a more accurate alternative to the Arrhenius
equation. In turn, the viscosity of supercooled liquids sets diffusional limitations on the
crystallization rate (see Equation (22)). In fact, the exponential Arrhenius ED term in
Equation (22) can be replaced with the respective exponential VTF term, as in the Hoffman–
Lauritzen theory discussed in the next section. Then, the activation energy of diffusion
becomes temperature-dependent and linked to the VTF parameters as follows [43]:

ED = R
WT2

(T − T0)
2 (30)

The reference temperature, T0 approximately equals 0.75Tg [99]. Considering that Tg
varies much less with β than Tp, it can be approximated as constant. As a result, one can
expect that for DSC on heating the plot of lnβ vs. (Tp − Tg)−1 (but not vs. (Tp − Tg)−2 as
mentioned above [108–110]) would yield a reasonable estimate of W (Equation (29)), which
can be linked to ED (Equation (30)).

From the viewpoint of the Arrhenius treatment of crystallization, the most important
implication of the Turnbull–Fisher model is that it predicts the Arrhenius activation energy
to be temperature-dependent. This dependence can be derived from Equation (22), which
describes the temperature dependence of nucleation-driven crystallization. That is, it
plays the same role as k(T) in Equation (3). Thus, we can introduce into Equation (3) the
temperature dependence appropriate for crystallization by replacing k(T) with the right-
hand side of Equation (22). After that, we determine the isoconversional activation energy,
Eα, by taking the isoconversional derivative of Equation (3) [110]:

Eα = −R
[

∂ ln(dα/dt)
∂T−1

]
α

= ED − Ω

[
2T

(Tm − T)3 − 1

(Tm − T)2

]
(31)

Equation (31) predicts that with increasing temperature, Eα should decrease from ED to
−∞ passing through 0 at the rate maximum. The ED and −∞ asymptotes are approached
at infinitely large and small supercoolings, respectively. Figure 10 depicts an example
of such dependence that has been simulated using the ED and Ω values obtained from
fitting the piperine rate data (Figure 7) and the known value of Tm = 404.7 K for this
compound [111]. The meaning of this dependence is that by parameterizing DSC data
on crystallization in terms of the Arrhenius equation, one should obtain from heating
runs (large supercoolings) an activation energy that decreases with increasing temperature
and/or conversion. Examples of such behavior are seen in Figures 5 and 6. A strong
decrease in the activation energy with temperature is also observed in an extensive study
of the crystallization of Se [112]. In the case of cooling runs (small supercoolings), one
should obtain a negative activation energy that rises with decreasing temperature and/or
increasing conversion.

Most importantly, deriving the theoretical temperature dependence for the effective
activation energy (Equation (31)) fills the variable and negative Eα values with a clear
physical meaning. The meaning of the isoconversional as well as any other effective
activation energy, is that it generally is a function of the energy barriers for the individual
steps involved in the overall process [84]. In the case of Equation (31), these barriers as ED
and ∆G*. The latter is estimated by substituting Ω in Equation (23). ∆G* is temperature-
dependent, and an example of such dependence is shown in Figure 10.

In practical terms, the knowledge of the theoretical temperature dependence for the
effective activation energy permits developing an original method [113] for analyzing the
crystallization kinetics. The method is based on fitting the theoretical dependence to the
experimental one. The experimental dependence is best determined from the dependence
of Eα on α naturally produced by an isoconversional method. One should be reminded that
an isoconversional method suitable for accurately determining the temperature dependence
of Eα must be selected from the most accurate methods. In other terms, it should be either
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one of the flexible integral methods or the differential method by Friedman, i.e., the method
that properly accounts for variability in Eα and is suitable for the data measured on cooling.
Once the dependence of Eα on α is determined, it is converted to that of Eα on T by replacing
each value of α with the temperature, which is the mean value of all temperatures related to
this α at different heating or cooling rates [66,84]. Then, the theoretical Eα vs. T dependence
is fitted to the resulting experimental one in order to estimate the parameters ED and Ω.
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Figure 10. Theoretical temperature dependence of the isoconversional activation energy (dashed
line). Circles are the boundaries of the 15 K temperature intervals used for Arrhenius fits in Figure 8.
Numerical values by these intervals represent E values at mid-temperatures of the respective intervals.
Solid line depicts temperature dependence of the free energy barrier to nucleation.

Of course, one should keep in mind that practically all isoconversional methods
are based on the Arrhenius equation, which cannot fit exactly the complex temperature
dependence set by Equation (22). In fact, an isoconversional method approximates such
dependence with a series of Arrhenius fits corresponding to relatively narrow temperature
intervals. For crystallization, the temperature interval related to given α at a series of regular
heating or cooling rates typically lies within 10–15 K. Figure 8 provides examples of such
fits for two temperature regions of 15 K wide. It is seen that the fit at larger supercoolings
is somewhat better than that at the smaller ones. However, both are quite satisfactory,
meaning statistically significant based on the correlation coefficients. The actual accuracy
of the Arrhenius approximations can be evaluated by comparing the resulting E values
(Figure 8) against the E values on the theoretical E vs. T dependence (Figure 10). At the
large supercooling, the Arrhenius fit produces E = 56 kJ/mol (Figure 8). The theoretical E
value determined at the temperature corresponding to the middle of the respective 15 K
interval is also E = 56 kJ/mol (Figure 10). At the small supercooling, the E value from
the Arrhenius fit is −490 kJ/mol (Figure 8), whereas the theoretical one is −475 kJ/mol
(Figure 8). While not identical, the values differ only by 3%, which is totally acceptable,
especially considering that experimental uncertainties in E commonly reach 5–10%.

The method based on fitting the Eα vs. T dependencies relies on nonlinear optimization.
Nevertheless, it possesses a principal advantage over the afore-discussed methods based
on linear fits. Recall that those methods work under the simplifying assumption that the
crystallization kinetics at large supercoolings can be reduced to the ED exponential term
and at small supercoolings to the ∆G* exponential term. That is, one exponential term is
used in analysis while the other is ignored. The method of nonlinear fitting of Eα vs. T
accounts for both exponential terms simultaneously. As a result, the same approach (i.e., the
same Equation (22)) is universally applied to the data obtained on heating or cooling as
well as to combined (i.e., heating together with cooling) datasets [43,66,83,114].

So far, this method has been applied efficiently to parameterize the kinetics of solid-
solid transitions (i.e., crystallization of one crystalline phase from another) [43,66,115]
and gelation (i.e., crystallization with the formation of a network or fibrillar structure
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that entraps a solvent) [110,114,116]. A recent example is the gelation of several liquids
via crystallization of stearic and 12-hydroxystearic acids (12HSA) that was studied in
bulk as well as in native (N) and organically modified (OM) 28 nm silica pores [116].
Figure 11 presents kinetic data on the gelation of mineral oil using 12HSA carried out
at the cooling rates of 2–16 K/min. The gelation in the nanopores occurs at a markedly
lower temperature than in bulk. In other words, the process is more difficult to initiate and,
therefore, requires larger supercooling. Isoconversional analysis of the DSC data yields a
set of the Eα vs. T dependencies, whose fitting with Equation (31) affords estimating the
temperature dependencies of ∆G* by Equation (23) (Figure 11). The obtained ∆G* values
suggest that the shift of the process in the nanopores to lower temperatures is linked to an
increase in the size of the ∆G* barrier.
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In conclusion, it is worth noting that the method based on fitting Equation (22) can be
readily expanded to the case when the crystallization rate is determined by the growth of
existing nuclei. Since the issue is discussed at length elsewhere [78], only the major points
are reiterated here. The rate of growth depends on temperature as [23]:

u = u0 exp
(
−ED
RT

)[
1 − exp

(
∆G
RT

)]
(32)

where u0 is the preexponential factor, and ∆G is the difference in the free energy of the
crystalline and liquid phase. ∆G in Equation (32) depends on supercooling via the following
relation [25]:

∆G = ∆Hm

(
T − Tm

Tm

)
(33)

Just as Equation (22), Equation (32) predicts the rate to pass through a maximum. It is
again due to the product of the Arrhenian and anti-Arrhenian terms. The latter (bracketed
term in Equation (32)) causes the rate to increase with decreasing temperature because
∆G becomes continuously more negative with increasing the supercooling (Equation (33)).
Replacing k(T) with the right-hand side of Equation (32) and taking the isoconversional
derivative yields the temperature dependence of the isoconversional activation energy:

Eα = ED +
∆Hm exp

[
∆Hm(T−Tm)

RTTm

]
exp

[
∆Hm(T−Tm)

RTTm

]
− 1

(34)
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The resulting Eα vs. T dependence has an appearance similar to that set by Equation (31)
(see Figure 10). That is, Eα has the same ED and −∞ asymptotes for, respectively, large
and small supercoolings and changes its sign at the temperature of the rate maximum.
Nevertheless, the Eα vs. T dependencies set by Equations (31) and (34) are not identical and
can be differentiated via statistical analysis of the fits to the same dataset [117]. Lastly, the
application area of Equation (32) appears to be much more limited than that of Equation (22)
because even at large supercoolings, the number of the growth centers still depends strongly
on temperature [3], i.e., nucleation remains relevant.

5. Hoffman–Lauritzen Treatment for Broad Temperature Range

Hoffman and Lauritzen [118] modified the Turnbull–Fisher theory to account for the
crystallization of long, flexible, and entangled polymer chains that occurs via the chain fold-
ing mechanism. According to the Hoffman–Lauritzen theory, the temperature dependence
of the microscopically measured growth rate, G, is represented by Equation (35):

G = G0 exp
[

−U∗

R(T − T∞)

]
exp

( −Kg

T∆T f

)
(35)

where G0 is a pre-exponential factor, U* is the activation energy of the segmental jump
that characterizes molecular diffusion across the interfacial boundary between melt and
crystal (its “universal” value is ~6.3 kJ/mol), Kg is the energy barrier related to nucleation,
∆T = Tm − T is the supercooling, Tm is the melting temperature, f = 2T/(Tm + T) is a
correction factor, and T∞ is taken as T∞ = Tg − 30 K, is the temperature at which the viscous
flow ceases. In Equation (35),

Kg =
2nbσσeTm

∆h f kB
(36)

σ is the lateral surface free energy, σe the fold surface free energy (work required to create
a new surface), n = 2 for the crystallization regime I and III, and 1 for regime II, b is the
surface nucleus thickness and ∆hf the enthalpy of melting per unit volume.

In contrast to the Arrhenius equation, Equation (35) takes into account both nucleation
and diffusion effects, thus, being able to describe the complex polymers’ crystallization in a
broad temperature range. The Hoffman–Lauritzen theory provides an opportunity to deter-
mine the values of U* and Kg that parameterize the effects of both diffusion and nucleation.
Vyazovkin and Sbirrazzuoli adapted the Hoffman–Lauritzen theory to nonisothermal DSC
data [113,119]. They have shown [113] that the application of the isoconversional derivative
to Equation (35) gives rise to Equation (37):

Eα = U∗ T2

(T − T∞)2 + KgR
T2

m − T2 − TmT

(Tm − T)2T
(37)

Equation (37) clearly indicates that the resulting isoconversional activation energy is
temperature-dependent. The actual dependence is reminiscent of that shown in Figure 10,
meaning that for the glass crystallization, Eα is positive and decreases with increasing
either T or α, whereas for the melt crystallization, Eα is negative and increases with either
increasing α or decreasing T. As discussed in Section 4, an experimental dependence of Eα

vs. α is readily convertible to a dependence of Eα vs. T. Then, a nonlinear fit of Equation (37)
to the respective experimental dependence of Eα vs. T yields the parameters U* and Kg.

Predictably, U* in Equation (35) is not equivalent to ED in Equation (22). This is
because these two equations use different types of temperature dependence for the diffusion
term. The dependence is of the Arrhenius type in Equation (22) and of the VTF type in
Equation (35). The ED and U* values are linked to each other as:

ED = U∗ T2

(T − T∞)2 (38)
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This link is important because the activation energy of diffusion is commonly determined
by fitting the temperature dependence of viscosity to the Arrhenius equation, i.e., as ED.
Thus, Equation (38) provides a way of comparing the U* and ED barriers. It also follows
from Equation (38) that ED is at least several times larger than U*.

The method based on fitting Equation (37) has a considerable advantage over the
classical approach, which employs laborious isothermal microscopic measurements to
determine the growth rate G and is limited to the evaluation of Kg, while U* is fixed as the
“universal” value. Using the latter is hardly a good idea because even in their original work,
Hoffman and Lauritzen [120] already found that the best-fit values of U* vary between
4 and 17 kJ mol−1 and that using a larger constant U* value leads to estimating a larger
value of Kg. Therefore, using both parameters as fit values is a more accurate approach.

In addition, the classical approach is typically limited to microscopic measurements
at small supercoolings. In the method based on fitting Equation (37), U* and Kg are
evaluated from much simpler nonisothermal DSC measurements readily conducted in
a wide temperature range. In particular, this allows one to fit Equation (37) to a dataset
that combines the Eα vs. T dependencies obtained, respectively, from the melt and glass
crystallization measurements [83]. The analysis of the combined datasets aids in increasing
the precision and accuracy of the U* and Kg estimates and can help to reveal changes in
the crystallization mechanism. Such changes are usually detected as a breakpoint in the
Eα vs. T (or vs. α) dependence associated with a significant difference in the Kg values for
different regimes of crystallization [121,122].

This method, based on Equation (37), has been repeatedly found to yield U* and
Kg values that are consistent with those determined with the classical microscopic ap-
proach [121,122]. Examples of successful applications include crystallization of many poly-
mers such as PET, poly(ethylene oxide), poly(tetrafluoroethylene), poly(dimethylsiloxane),
PEF, poly(decylene 2,5-furanoate), poly(butylene succinate), and PEN [60,83,123–131]. It
should be stressed that in all the studies where the method is applied, the results are in
agreement with the predictions of Equation (37) derived from the Hoffman and Lauritzen
theory of crystallization. That is, the general trends are that with increasing temperature,
the glass crystallization demonstrates positive decreasing Eα values, and the melt crys-
tallization reveals increasingly negative values of Eα (Figure 12). The latter is a natural
manifestation of anti-Arrhenian behavior, i.e., acceleration with decreasing temperature. It
arises from the fact that the Kg exponential term in Equation (35) increases with increasing
the supercooling. Of course, negative Eα cannot be identified with an energy barrier to a
particular step of crystallization. Instead, it is determined (see Equation (37)) by the two
barriers U* and Kg simultaneously and a particular range of T in the close vicinity of Tm. In
this temperature range, the crystallization rate is dominated by nucleation. On the other
hand, the crystallization rate is dominated by diffusion in a temperature range close to Tg,
and Equation (37) predicts positive Eα.

As already mentioned, analysis of the Eα vs. T dependence can provide important in-
sights into the crystallization kinetics and mechanisms. In particular, it can reveal a change
in the crystallization mechanism (e.g., the crystallization regime), which is independently
verifiable with other techniques. One such example is the nonisothermal crystallization of
PEF, which is a fully biobased polyester of a furandicarboxylic acid and a structural analog
of PET. It has recently attracted a great deal of attention because of its valuable barrier
and mechanical properties. Isoconversional analysis of the melt and glass crystallization
expectedly shows negative and positive Eα values that vary with temperature, as predicted
by Equation (37) [60]. More importantly, a breakpoint is revealed in the Eα dependence at
~170 ◦C (Figure 12) that manifests a change in the crystallization regime. This result has
been confirmed independently in later studies involving isothermal DSC, Small Angle X-
Ray Scattering (SAXS), and Wide-Angle X-ray Scattering (WAXS) measurements [132,133].
More examples of insightful analyses of the Eα dependencies are found elsewhere [121,122].
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Figure 12. Temperature dependence of Eα for melt (circles) and glass (diamonds) crystallization of
PEF. Dashed line is fit of Equation (37) for glass and melt crystallization. Inset shows dependence of
Eα on relative degree of crystallinity. Adapted with permission from Codou et al. [60]. Copyright ©
2014 Wiley–VCH.

The method based on fitting Equation (37) can be further expanded to perform simula-
tions of the crystallization process. This is accomplished by replacing k(T) in Equation (3)
with the temperature dependence that holds for a broad temperature range, i.e., the de-
pendence presented on the right-hand side of the Hoffman–Lauritzen Equation (35). The
resulting rate equation is as follows [134]:

dα

dt
= G(T) f (α) = G0 exp

[
−U∗

R(T − T∞)

]
exp

( −Kg

T∆T f

)
f (α) (39)

The mathematical function f (α) that describes the crystallization mechanism can be ex-
pressed by several equations. It can take the Avrami form:

f (α) = m(1 − α)[− ln(1 − α)]1−1/m (40)

It can also take the form of the Sestak–Berggren model [135]: the general form, SB(M,N,P)

f (α) = αM(1 − α)N [− ln(1 − α)]P (41)

where M, N, and P are the kinetic exponents, or the truncated one, SB(M,N), as presented
in Equation (13).

Parameterizing the experimental crystallization rate in terms of Equation (39) would
generally require nonlinear optimization from 4 (Equation (40)) to 6 (Equation (41)) pa-
rameters simultaneously, which typically leads to computational problems associated with
multiple local minima and mutual correlation of the parameters. Such problems do not
appear when optimization is carried out in two steps. First, U* and Kg are determined by
nonlinear fitting of Equation (37). Second, the other parameters are evaluated by nonlinear
fitting of Equation (39) while keeping U* and Kg fixed. This procedure represents a consid-
erable advantage over the simultaneous fitting of all parameters, which is likely to yield
incorrect values.

It is noteworthy that evaluating U* and Kg in the first step of the aforementioned proce-
dure is sufficient to predict an important parameter called the temperature of the maximum
of crystal growth rate, Tmax. As seen from Equation (35), the rate cannot be determined



Processes 2023, 11, 1438 23 of 30

without knowing G0. However, G0 is a constant in Equation (35), so its value affects the
magnitude of the rate but not the position of Tmax. For this reason, plugging U* and Kg in
the respective exponential terms of Equation (35) and plotting their product as a function
of temperature permits predicting the bell-shaped temperature dependence of G/G0. Its
maximum is Tmax. The use of this method for the nonisothermal crystallization of PEF has
predicted Tmax around 167 ◦C when using the parameters obtained for melt crystallization
data [60]. This result was confirmed later by isothermal DSC measurements [132–136].

However, simulations of the overall crystallization rate and/or relative extent of crys-
tallinity require employing Equation (39). As already stated, its parameters are effectively
determined via the aforementioned two-step optimization procedure. For instance, anal-
ysis of the PEF crystallization data demonstrates [134] that the use of the SB model in its
either truncated (Equation (13)) or general (Equation (41)) form results in equally accurate
simulations. The quality of simulations is illustrated in Figure 13. It is necessary to note
that the same set of parameters U*, Kg, M, and N (Equation (13)) or U*, Kg, M, N, and P
(Equation (41)) is used for both melt and glass data and for all the heating/cooling rates.
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Figure 13. Relative extent of crystallinity (α) vs. temperature (T) for melt and glass crystallization
of PEF simulated by combining Equations (13) and (39). Measured and simulated data are shown
as solid and dashed lines, respectively. Numbers by the curves are heating (glass crystallization)
and cooling (melt crystalization) rate in K·min−1. Adapted with permission from Guigo et al. [134].
Copyright © 2017 Elsevier B.V.

Although the two-step optimization procedure affords accurate simulations, their
accuracy is usually lower for the final stages of crystallization. This is due to the occurrence
of processes such as lamellar thickening, secondary crystallization, or others that are not
accounted for by Equation (39). It is shown [134] that the accuracy of simulations can be
improved by introducing an empirical correction function h(α) as follows:

h(α) = exp[H(α − αC)] (42)

where H is a constant and αC is a value of the relative extent of crystallinity, above which
additional crystallization processes become significant. The h(α) function is introduced into
Equation (39) as a multiplier.

An alternative approach to performing simulations is by employing isoconversional
predictions. It was originally proposed [137] for the rigid integral methods but later
reformulated [43,76] for the flexible ones. Such predictions are also possible with the aid
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of the differential method of Friedman [76,138]. Oftentimes, they are termed model-free
predictions because they are made without estimating f (α) or g(α). In the case of the flexible
integral methods, the only estimation needed is the Eα-dependence. Figure 14 provides an
example of isoconversional simulations for the glass and melt crystallization of PEF [134].
Remarkably, the simulations appear even more accurate than the model-based ones shown
in Figure 13. The caveat, though, is that the glass and melt crystallization simulations have
to be performed using the corresponding Eα-dependencies.
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PEF simulated as isoconversional (model-free) predictions. Measured and simulated data are shown
as solid and dashed lines, respectively. Numbers by the curves are heating (glass crystallization)
and cooling (melt crystalization) rate in K·min−1. Adapted with permission from Guigo et al. [134].
Copyright © 2017 Elsevier B.V.

It must be emphasized that the afore-discussed approaches to simulation are equally
valid when the crystallization kinetics is parameterized in terms of the Turnbull–Fisher
model (Section 4). That is, the ED and Ω parameters determined by Equation (31) can be
used for estimating the value of Tmax. Moreover, the crystallization rate can be simulated
with an equation similar to Equation (39) with the temperature dependence, G(T), having
the Turnbull–Fisher form from Equation (22). The method of isoconversional predictions is
applicable as well.

In conclusion, it should be added that the method of nonparametric kinetics (NPK) [139]
can separate the crystallization rate into the temperature and conversion dependencies
without making any assumptions about their mathematical forms. The temperature de-
pendence can then be fitted using the Hoffman–Lauritzen equation, and the conversion
dependence using the Avrami or SB equation. The capabilities of the NPK method have
been illustrated for the melt crystallization of isotactic polypropylene [140]. It should also
be borne in mind that Equation (39) can be cast in the isoconversional form so that U* and
Kg are estimated from DSC data as a function of α [141,142]. Potentially, such dependencies
may offer additional insights into the complexities of the crystallization kinetics. The
approach is exemplified by the crystallization of PET and polyamide 6 [141] as well as
of PEF [142].
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6. Conclusions

DSC is the most common technique for measuring the overall crystallization rate.
The measurements are primarily conducted under nonisothermal conditions that allow
one to explore a broad temperature range. Analysis of the nonisothermal crystallization
kinetics is dominated by approaches based on the Avrami and Arrhenius equations. The
application of the Avrami model to nonisothermal data is subject to very restrictive as-
sumptions. Contrary to popular belief, this model is not universally applicable to every
crystallization, and its applicability must necessarily be tested. The general autocatalytic
(a.k.a. truncated SB) model provides a more universal alternative. In turn, the Arrhenius
equation is only an approximation to the actual bell-shaped temperature dependence of
the crystallization rate and, thus, should only be applied to a narrow temperature range,
probably not broader than 20 K. Whatever the temperature range, the applicability of the
Arrhenius approximation is readily tested as invariability of the isoconversional activation
energy. Proper isoconversional methods (i.e., differential or flexible integral ones) accu-
rately approximate the temperature dependence of the crystallization rate by a series of the
Arrhenius equations, each of which corresponds to its own narrow temperature interval.
Thanks to this feature, the methods are applicable to the whole temperature range from Tg
to Tm or, in other words, suitable for kinetic analysis of both glass and melt crystallization.
In such a broad temperature range, the isoconversional activation energy is unavoidably
variable. Its temperature dependence can be parameterized in terms of the Turnbull–Fisher
or Hoffman–Lauritzen theories, and the resulting parameters can then be meaningfully
interpreted and used for kinetic simulations. This modern-day approach has a significant
advantage over the earlier methods that offer very unsophisticated kinetic treatment, which
is specific to either glass or melt crystallization only.
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