A Review on the Use of Active Power Filter for Grid-Connected Renewable Energy Conversion Systems
Abstract
:1. Introduction
2. Harmonics Mitigation and Distributed Device Generation
2.1. Grid-Synchronized APF-PV Based Inverter
2.2. Wind Energy APF Grid-Interlinked
3. Taxonomy of Grid Connected APF
4. Reduced APF-Inverter Topologies: A Comparative Study and Regulation
4.1. Topology of AC–AC Inverters
4.2. APFs with Two Wires (Single Phase)
4.3. Four-Wire, Three-Phase APFs
5. Inverter Topology for Back-to-Back Inverters
5.1. APFs with Two Wires (Single Phase)
5.2. APFs with Three Phases (Wires)
5.3. Three-Phase (Four-Wire) APFs
5.4. Common-Leg Inverter Methodology
5.5. Single-Leg APFs
5.6. Three-Leg APFs
6. Classification of Variable by Compensation
6.1. Compensation for Reactive Power
6.2. Harmonic Compensation
6.3. Compensation for Harmonic Voltage
6.4. Compensation of Harmonics Current
7. A Three-Phase Balance System
7.1. Network Voltage Balance in Three-Phase Systems
7.2. Current Balances in Three-Phase Systems
7.3. Various Compensation Schemes
7.4. Reactive Power Compensation in Harmonic Currents
7.5. Reactive Power Compensating Harmonic Voltages
7.6. Currents and Voltages Harmonic
7.7. Harmonic and Reactive Power Compensation
8. Classification According to Control Technology
8.1. Open-Loop Control Systems
8.2. Closed-Loop Control Systems
8.3. Scheme of Constant-Capacitor-Voltage
8.4. Scheme of Constant-Inductor-Current
- Modulation of current pulse-width: the PWM controls supply pulses, such asin the case of the continuous condenser voltage, to represent the medium signal at a given period.
- Modulation of current pulse-amplitude: active filters are available to modulate the current wavelength needed under the new method for controlling [52]. Although the concept is well established, the current power technology cannot be implemented.
8.5. Optimization Techniques
8.6. Linear-Voltage-Control Technique
8.7. Intelligent Control Schemes
8.7.1. Fuzzy Control
8.7.2. Artificial Neural Network Control
8.7.3. Neuro-Fuzzy Control
8.7.4. Adaptive Neuro-Fuzzy Inference System (ANFIS) Controller
8.8. Robust Control Schemes
8.8.1. H infinity Controller
8.8.2. Sliding Mode Control (SMC)
8.9. Optimal/Predictive Controllers
8.9.1. Predictive Dead-Beat Control
8.9.2. Linear Quadratic Regulator
8.10. Predictive Control
8.11. Other Techniques
9. Discussion and Analysis
9.1. Reduced-Switch-Count Inverters
- The differences between the reduced transformer-less and the reduced transformer-grid-related inverter topologies are summarized in Table 6, which can be found here. To create considerable amplitudes of alternating current voltage in a back-to-back architecture, a much bigger DC connecting condenser and a significantly higher DC voltage is necessary. Because of the high voltage, it is difficult to overdress the buttons on the semiconductor. To tackle this problem, a z-source network and a modulator interruptive system [75] are used. On the other hand, for the B8 converter, eight switches are employed, and there is a shared DC connector [76]. When both systems are up and running and in sync at the same time, the DC connection does not transport any vital data streams between them. To get around the B8 converter restriction, a five-leg converter is used to exchange the fifth-phase beam between the two converters [134]. Because the usual frequency imposition between two AC interface conditioning machines, including series shunt drives and DC-settling drives, does not significantly differ in tension, the normal frequency imposition between them is limited. SAPF has lately gained prominence as a tool for improving power efficiency in networked and renewable energy conversion systems. In recent years, both classic and sophisticated techniques and capacity controls, harmonic lowering, and dynamic reactive power compensation, as well as supplementary functions, have been investigated. Table 6 presents a summary of the findings and parameters derived from the APF topologies that were recently discussed in Section 4. For each topology, the most cost-efficient, effective, and appropriate architectures are identified and tested. The findings of this research are as follows:
- The traditional back-to-back power converters restrict the use of a DC-Link condenser, reduced amplitude shares, and unregulated phase transmission at the output terminals between the two converters.
- The back-to-back topology allows for individual adaptation of both converters while they are disconnected. It is constrained by the low modulation ratio, which, despite the topological function, creates calculative difficulties [135].
- While this is based on the number of switches used, lowering the number of switches improves overall reliability and decreases dissipated conduction and switching errors. High voltage and current tension are applied to both switching components in a high-power rating device, influencing the inverter’s performance.
- The output terminals are set for the same output voltages by replacing the carrier with two converters, doubling the DC connection voltage, and doubling the semiconductor voltage. This doubling effect is avoided by using lower switch counting topologies.
9.2. PV Inverter Linked with a Grid
9.3. Recommendations
- ⮚
- To reduce harmonics and improve energy quality in transmission systems, some reports claim that grid-connected inverter circuit topologies and SAPF circuit methods have been recommended.
- ⮚
- Linear and nonlinear load mode operations will be recommended.
- ⮚
- Cost-efficient, effective, and appropriate architectures need to be recommended.
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
GCPVS | Grid connected PV system |
APF | Active Power Filter |
WT | Wind turbine |
AC | Alternating Current |
SAPF | Shunt active power filter |
HAPF | Hybrid active power filter |
MFI | Multifunctional Inverter |
THD | Total harmonic distortion |
WECS | Wind energy conversion system |
PCC | Point of common coupling |
PWM | Pulse width modulation |
SDBR | Series Dynamic Braking Resistance |
DBR | Dynamic Braking Resistance |
SVC | Static VAR Compensator |
STATCOM | Static Synchronous Compensator |
TCSC | Thyristor Controlled Sequencing |
OLTC | On Load Tap Changers |
UPQC | Unified Power Quality Controller |
CSI | Current source Inverter |
VSI | Voltage Source Inverter |
UPS | Uninterrupted Power Supply |
IGBT | Insulated Gate Bipolar Transistor |
MOSFET | Metal Oxide Semiconductor Field Effect Transistor |
ZVS | Zero Voltage Switching |
PF | Power Filter |
ANN | Artificial Neural Network |
MPPT | Maximum Power Point Tracking |
ANFIS | Adaptive Network based Fuzzy Interface System |
SMC | Sliding Mode Controller |
LQR | Linear Quadratic Regulator |
MPC | Model Predictive Control |
Vs | Source Voltage |
Is | Instantaneous source current |
IL | Instantaneous load current |
Ic | Filter Current |
Vdc | DClink Voltage |
Ls | Source side inductor |
LAC | Load side inductor |
CF | Filter capacitor |
LF | Filter Inductor |
Cdc | DClink Capacitor |
L | Inductor |
C1 | DC link Capacitor |
C2 | Capacitor of Boost Circuit |
D | Diode of Boost Circuit |
r(k) | Control input |
e(k) | Error |
y(k) | Measured output |
w | Noise |
u | Control input |
K(s) | Controller |
W(s) | Weight function |
Z | Controlled output |
Y | Measured output |
Id | Active Current |
Iq | Reactive Current |
Id* | Reference current |
Iq* | Reference current |
Kd | Constant |
Kq | Constant |
References
- Wu, G.; Ruan, X.; Ye, Z. Non-isolated high step-up DC–DC converters adopting switched-capacitor cell. IEEE Trans. Ind. Electron. 2015, 62, 383–393. [Google Scholar] [CrossRef]
- Liang, T.-J.; Lee, J.-H.; Chen, S.-M.; Chen, J.-F.; Yang, L.-S. Novel isolated high-step-up DC–DC converter with voltage lift. IEEE Trans. Ind. Electron. 2013, 60, 1483–1491. [Google Scholar] [CrossRef]
- Sitbon, M.; Schacham, S.; Suntio, T.; Kuperman, A. Improved adaptive input voltage control of a solar array interfacing current mode controlled boost power stage. Energy Convers. Manag. 2015, 98, 369–375. [Google Scholar] [CrossRef]
- Lotfy, M.E.; Senjyu, T.; Farahat, M.A.; Abdel-Gawad, A.F.; Yona, A. Enhancement of a small power system performance using multi-objective optimization. IEEE Access 2017, 5, 6212–6224. [Google Scholar] [CrossRef]
- Cumulative Development of Various Renewable Energy System/Devices in Country. Available online: http://mnre.gov.in/mission-and-vision-2/achievements (accessed on 30 April 2017).
- Pathan, N.T.; Adhau, S.P.; Adhau, P.G.; Sable, M. MPPT for grid connected hybrid wind driven PMSG-solar PV power generation system with single stage converter. J. Elect. Power Syst. Eng. 2017, 3, 41–59. [Google Scholar]
- Li, S.; Li, J. Output predictor-based active disturbance rejection control for a wind energy conversion system with PMSG. IEEE Access 2017, 5, 5205–5214. [Google Scholar] [CrossRef]
- Fathabadi, H. Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems. Energy 2016, 116, 402–416. [Google Scholar] [CrossRef]
- Fathabadi, H. Novel fast and high accuracy maximum power point tracking method for hybrid photovoltaic/fuel cell energy conversion systems. Renew. Energy 2017, 106, 232–242. [Google Scholar] [CrossRef]
- Fathabadi, H. Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems. Appl. Energy 2016, 183, 1498–1510. [Google Scholar] [CrossRef]
- Hong, C.M.; Chen, C.H. Intelligent control of a grid-connected wind-photovoltaic hybrid power systems. Int. J. Elect. Power Energy Syst. 2014, 55, 554–561. [Google Scholar] [CrossRef]
- Baghdadi, F.; Mohammedi, K.; Diaf, S.; Behar, O. Feasibility study and energy conversion analysis of stand-alone hybrid renewable energy system. Energy Convers. Manag. 2015, 105, 471–479. [Google Scholar] [CrossRef]
- Bhandari, B.; Poudel, S.R.; Lee, K.-T.; Ahn, S.-H. Mathematical modeling of hybrid renewable energy system: A review on small hydro- solar-wind power generation. Int. J. Precis. Eng. Manuf. Green Technol. 2014, 1, 157–173. [Google Scholar] [CrossRef]
- Kwan, T.H.; Wu, X. Maximum power point tracking using a variable antecedent fuzzy logic controller. Sol. Energy 2016, 137, 189–200. [Google Scholar] [CrossRef]
- Kabalci, E. Design and analysis of a hybrid renewable energy plant with solar and wind power. Energy Convers. Manag. 2013, 72, 51–59. [Google Scholar] [CrossRef]
- Dihrab, S.S.; Sopian, K. Electricity generation of hybrid PV/wind systems in Iraq. Renew. Energy 2013, 35, 1303–1307. [Google Scholar] [CrossRef]
- Kirubakaran, A.; Jain, S.; Nema, R.K. The PEM fuel cell system with DC/DC boost converter: Design, modeling and simulation. Int. J. Recent Trends Eng. 2009, 1, 157–161. [Google Scholar]
- Nejabatkhah, F.; Danyali, S.; Hosseini, S.H.; Sabahi, M.; Niapour, S.M. Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system. IEEE Trans. Power Electron. 2012, 27, 2309–2324. [Google Scholar] [CrossRef]
- Revathi, B.S.; Prabhakar, M. Non-isolated high gain DC-DC converter topologies for PV applications—A comprehensive review. Renew. Sustain. Energy Rev. 2016, 66, 920–933. [Google Scholar]
- Montuori, L.; Alcázar-Ortega, M.; Álvarez-Bel, C.; Domijan, A. Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator. Appl. Energy 2014, 132, 15–22. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Li, P.; Wang, K.; Xue, M.; Wang, C. Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Appl. Energy Jan. 2014, 113, 1656–1666. [Google Scholar] [CrossRef]
- Kuhn, V.; Klemeš, J.; Bulatov, I. MicroCHP: Overview of selected technologies, products and field test results. Appl. Therm. Eng. 2008, 28, 2039–2048. [Google Scholar] [CrossRef]
- Patel, N.; Gupta, N.; Babu, B.C. Design, Development, and Implementation of Grid-Connected Solar Photovoltaic Power Conversion System. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 43, 1–20. [Google Scholar] [CrossRef]
- Ranaboldo, M.; Lega, B.D.; Ferrenbach, D.V.; Ferrer-Martí, L.; Moreno, R.P.; GarcíaVilloria, A. Renewable energy projects to electrify rural communities in Cape Verde. Appl. Energy 2014, 118, 280–291. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L. A feasibility study of a stand-alone hybrid solar–wind– battery system for a remote island. Appl. Energy 2014, 121, 149–158. [Google Scholar] [CrossRef]
- Deshmukh, M.K.; Deshmukh, S.S. Modeling of hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2008, 12, 235–249. [Google Scholar] [CrossRef]
- Natarajan, K.; Sankaramoorthy, M.; Rajkumar, A.; Shamshabad, T.; Kandlakoya, T. Controlling the Power Loss in Radial Distribution Network by Optimally Placing UPQC through Reconfiguration Using Evolutionary Algorithms. Int. J. Pure Appl. Math. 2018, 118, 161–179. [Google Scholar]
- Calise, F.; Cipollina, A.; Dentice d’Accadia, M.; Piacentino, A. A novel renewable poly generation system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment. Appl. Energy 2014, 135, 675–693. [Google Scholar] [CrossRef]
- Chen, H.-C. Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability. Appl. Energy 2013, 103, 155–164. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Attalage, R.A.; Perera, K.K.C.K.; Dassanayake, V.P.C. A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems. Appl. Energy 2013, 107, 412–425. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Attalage, R.A.; Perera, K.K.C.K.; Dassanayake, V.P.C. Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission. Energy 2013, 54, 220–230. [Google Scholar] [CrossRef]
- Bhandari, B.; Lee, K.-T.; Lee, C.S.; Song, C.-K.; Maskey, R.K.; Ahn, S.-H. A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources. Appl. Energy 2014, 133, 236–242. [Google Scholar] [CrossRef]
- Esmaeili, M.; Shayeghi, H.; Valipour, K.; Safari, A.; Sedaghati, F. Power quality improvement of multimicrogrid using improved custom power device called as distributed power condition controller. Int. Trans. Electr. Energy Syst. 2020, 30, e12259. [Google Scholar] [CrossRef]
- Bekele, G.; Tadesse, G. Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia. Appl. Energy 2012, 97, 5–15. [Google Scholar] [CrossRef]
- Bekele, G.; Palm, B. Feasibility study for a standalone solar–wind-based hybrid energy system for application in Ethiopia. Appl. Energy 2010, 87, 487–495. [Google Scholar] [CrossRef]
- Rehman, S.; Mahbub Alam, M.; Meyer, J.P.; Al-Hadhrami, L.M. Feasibility study of a wind–pv–diesel hybrid power system for a village. Renew. Energy 2012, 38, 258–268. [Google Scholar] [CrossRef]
- Fadaee, M.; Radzi, M.A.M. Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renew. Sustain. Energy Rev. 2012, 16, 3364–3369. [Google Scholar] [CrossRef]
- Abbes, D.; Martinez, A.; Champenois, G. Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems. Math. Comput. Simul. 2014, 98, 46–62. [Google Scholar] [CrossRef]
- Hu, Y.; Solana, P. Optimization of a hybrid diesel-wind generation plant with operational options. Renew. Energy 2013, 51, 364–372. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kavadias, K.A.; Filios, A.E. A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems. Appl. Energy Jul. 2009, 86, 1011–1023. [Google Scholar] [CrossRef]
- Alsayed, M.; Cacciato, M.; Scarcella, G.; Scelba, G. Multicriteria optimal sizing of photovoltaic-wind turbine grid connected systems. IEEE Trans. Energy Convers. 2013, 28, 370–379. [Google Scholar] [CrossRef]
- Ma, T.A.; Yang, H.; Lu, L.; Peng, J. Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong. Renew. Energy 2014, 69, 7–15. [Google Scholar] [CrossRef]
- Kapsali, M.; Anagnostopoulos, J.S.; Kaldellis, J.K. Wind powered pumped-hydro storage systems for remote islands: A complete sensitivity analysis based on economic perspectives. Appl. Energy 2012, 99, 430–444. [Google Scholar] [CrossRef]
- Baquero, G.; Esteban, B.; Riba, J.-R.; Rius, A.; Puig, R. An evaluation of the life cycle cost of rapeseed oil as a straight vegetable oil fuel to replace petroleum diesel in agriculture. Biomass Bioenergy 2011, 35, 3687–3697. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimization algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Lakum, A.; Mahajan, V. Optimal placement and sizing of multiple active power filters in radial distribution system using grey wolf optimizer in presence of nonlinear distributed generation. Electr. Power Syst. Res. 2019, 173, 281–290. [Google Scholar] [CrossRef]
- Moghbel, M.; Masoum, M.A.; Fereidouni, A.; Deilami, S. Optimal sizing, siting and operation of custom power devices with STATCOM and APLC functions for real-time reactive power and network voltage quality control of smart grid. IEEE Trans. Smart Grid 2017, 9, 5564–5575. [Google Scholar] [CrossRef]
- Li, Y.; Feng, B.; Li, G.; Qi, J.; Zhao, D.; Mu, Y. Optimal distributed generation planning in active distribution networks considering integration of energy storage. Appl. Energy 2018, 210, 1073–1081. [Google Scholar] [CrossRef]
- Sarker; Goswami, S. Optimal location of unified power quality conditioner in distribution system for power quality improvement. Int. J. Electr. Power Energy Syst. 2016, 83, 309–324. [Google Scholar] [CrossRef]
- Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [Google Scholar] [CrossRef]
- Shahzad, M.K.; Zahid, A.; Rashid, T.; Rehan, M.A.; Ali, M.; Ahmad, M. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renew. Energy 2017, 106, 264–273. [Google Scholar] [CrossRef]
- Sen, R.; Bhattacharyya, S.C. Off-grid electricity generation with renewable energy technologies inIndia: An application of HOMER. Renew. Energy 2014, 62, 388–398. [Google Scholar] [CrossRef]
- Patel, A.M.; Singal, S.K. Economic analysis of integrated renewable energy system for electrification of remote rural area having scattered population. Int. J. Renew. Energy Res. 2018, 8, 523–539. [Google Scholar]
- Yang, H.; Lu, L.; Zhou, W. A novel optimization sizing model for hybrid solar-wind power generation system. Sol. Energy 2007, 81, 76–84. [Google Scholar] [CrossRef]
- Januar, R. Comparative Analysis of 20-MW Solar Thermal and PV Power Plant in Rongkop, Indonesia Using LCOE Simulation Method. J. Clean Energy Technol. 2017, 5, 383–388. [Google Scholar] [CrossRef]
- Das, H.S.; Dey, A.; Wei, T.C.; Yatim, A.H.M. Feasibility analysis of standalone PV/wind/battery hybrid energy system for rural Bangladesh. Int. J. Renew. Energy Res. 2016, 6, 402–412. [Google Scholar]
- Mousa, M.; Sagar, V.R.; Gajbhiye, V.T.; Kumar, R. Pesticides persistence in/on fresh and dehydrated brinjal. J. Food Sci. Technol. 2004, 41, 429–431. [Google Scholar]
- Kamran, M.; Asghar, R.; Mudassar, M.; Ahmed, S.R.; Fazal, M.R.; Abid, M.I.; Zameer, M.Z. Designing and optimization of stand-alone hybrid renewable energy system for rural areas of Punjab, Pakistan. Int. J. Renew. Energy Res. 2018, 8, 2585–2597. [Google Scholar]
- Dash, D.K.; Sadhu, P.K.; Subudhi, B. Spider monkey optimization (SMO) – lattice Levenberg–Marquardt recursive least squares based grid synchronization control scheme for a three-phase PV system. Arch. Control. Sci. 2021, 31/3, 707–730. [Google Scholar] [CrossRef]
- Bouakkaz, A.; Haddad, S.; Martín-García, J.A.; Gil-Mena, A.J.; Jiménez-Castañeda, R. Optimal scheduling of household appliances in off-grid hybrid energy system using PSO algorithm for energy saving. Int. J. Renew. Energy Res. 2019, 9, 427–436. [Google Scholar]
- Okonkwo, E.C.; Okwose, C.F.; Abbasoglu, S. Techno-economic analysis of the potential utilization of a hybrid PV-wind turbine system for commercial buildings in Jordan. Int. J. Renew. Energy Res. 2017, 7, 908–914. [Google Scholar]
- Bai, S.; Rao, K.V.S. Design and integration of solar-biomass hybrid energy system for drip irrigation pumping. J. Chem. Pharm. Sci. 2014, 247–248. [Google Scholar]
- Adaramola, M.S.; Agelin-Chaab, M.; Paul, S.S. Analysis of hybrid energy systems for application in southern Ghana. Energy Convers. Manag. 2014, 88, 284–295. [Google Scholar] [CrossRef]
- Kim, S.-K.; Jeon, J.-H.; Cho, C.-H.; Ahn, J.-B.; Kwon, S.-H. Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer. IEEE Trans. Ind. Electron. 2018, 55, 1677–1688. [Google Scholar] [CrossRef]
- Arivoli, S.; Karthikeyan, R.; Chitra, V. Implementation of Suitable Control Strategy for Improved Dynamics in Hybrid Grid Connected System. In Proceedings of the 2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Elsayed, A.T.; Mohamed, A.A.; Mohammed, O.A. DC microgrids and distribution systems: An overview. Electr. Power Syst. 2015, 119, 407–417. [Google Scholar] [CrossRef]
- Naresh, M.; Tripathi, R.K. Intelligent control strategy for power management in hybrid renewable energy system. In Proceedings of the 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 22–23 March 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Soliman, M.A.; Hasanien, H.M.; Azazi, H.Z.; El-kholy, E.E.; Mahmoud, S.A. Hybrid ANFIS-GA-based control scheme for performance enhancement of a grid-connected wind generator. IET Renew. Power Gener. 2018, 12, 832–843. [Google Scholar] [CrossRef]
- García, P.; García, C.A.; Fernández, L.M.; Llorens, F.; Jurado, F. ANFIS-Based Control of a Grid-Connected Hybrid System Integrating Renewable Energies Hydrogen and Batteries. IEEE Trans. Ind. Inform. 2014, 10, 1107–1117. [Google Scholar] [CrossRef]
- Hornik, T.; Qing-Chang, Z. A current-control strategy for voltagesource inverters in microgrids based onH∞ and repetitive control. IEEE Trans. Power Electron. 2011, 26, 943–952. [Google Scholar] [CrossRef]
- Lamichhane, A.; Zhou, L.; Yao, G.; Luqman, M. LCL Filter Based Grid-Connected Photovoltaic System with Battery Energy Storage. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 1569–1574. [Google Scholar] [CrossRef]
- Patel, N.; Kumar, A.; Gupta, N.; Ray, S.; Babu, B.C. Optimized PI-4VPI Current Controller for Three-Phase Grid-integrated Photovoltaic Inverter under Grid Voltage Distortions. IET Renew. Power Gener. 2019, 14, 779–792. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Kafiul, I. Design and Simulation of A PV System with Battery Storage Using Bidirectional DC-DC Converter Using Matlab Simulink. Int. J. Sci. Technol. Res. 2017, 7, 403. [Google Scholar]
- Ruan, X.; Wang, X.; Pan, D.; Yang, D.; Li, W.; Bao, C. Introduction. In Control Techniques for LCL-Type Grid-Connected Inverter; Springer: Singapore, 2017; pp. 1–23. [Google Scholar]
- Guo, Y.; LI, J.; Shi, T.; Wang, X.; Miao, M. Research on Coordinated Control Strategies of Hybrid PV/CSP Power Plants. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17–19 September 2018; pp. 2077–2081. [Google Scholar] [CrossRef]
- Seema; Singh, B. Grid synchronization control for an autonomous PV-wind-battery based microgrid. In Proceedings of the 2018 IEEMA Engineer Infinite Conference (eTechNxT), New Delhi, India, 13–14 March 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Naqvi, S.B.Q.; Kumar, S.; Singh, B. A PV-Battery System Operating in Islanded and Grid Connected Modes with Shunt Active Filter Capability. In Proceedings of the IEEE Industry Applications Society Annual Meeting 2020, Detroit, MI, USA, 10–16 October 2020; pp. 1–8. [Google Scholar]
- Korada, N.; Mishra, M.K. Grid Adaptive Power Management Strategy for an Integrated Microgrid with Hybrid Energy Storage. IEEE Trans. Ind. Electron. 2017, 64, 2884–2892. [Google Scholar] [CrossRef]
- Karimi-Ghartemani, M.; Khajehoddin, S.A.; Piya, P.; Ebrahimi, M. Universal Controller for Three-Phase Inverters in a Microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1342–1353. [Google Scholar] [CrossRef]
- Jia, W.; Ren, Y.; Xu, J.; Wu, X.; Zhou, L.; Qian, Z. Modeling and Control of Wind Storage Microgrid in Grid-connected and Off-grid Mode. In Proceedings of the 2020 IEEE Sustainable Power and Energy Conference (iSPEC), Chengdu, China, 23–25 November 2020; pp. 1419–1424. [Google Scholar] [CrossRef]
- Tang, X.; Sun, Y.; Zhou, G.; Miao, F. Coordinated Control of Multi-Type Energy Storage for Wind Power Fluctuation Suppression. Energies 2017, 10, 1212. [Google Scholar] [CrossRef]
- Hajiaghasi, S.; Salemnia, A.; Hamzeh, M. Hybrid energy storage system for microgrids applications: A review. J. Energy Storage 2019, 21, 543–570. [Google Scholar] [CrossRef]
- Neira, S.; Pereda, J.; Rojas, F. Three-Port Full-Bridge Bidirectional Converter for Hybrid DC/DC/AC Systems. IEEE Trans. Power Electron. 2020, 35, 13077–13084. [Google Scholar] [CrossRef]
- Perera, C.; Salmon, J.; Kish, G.J. DC/AC Voltage Sourced Converter with Auxiliary DC Port for Renewable Energy Applications. In Proceedings of the Energy Conversion Congress and Exposition (ECCE) 2020 IEEE, Detroit, MI, USA, 11–15 October 2020; pp. 1842–1849. [Google Scholar]
- Neira, S.; Lizana, A.; Pereda, J. A Novel Three-Port NPC Converter for Grid-Tied Photovoltaic Systems with Integrated Battery Energy Storage. In Proceedings of the 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, Croatia, 6 August 2020; pp. 104–109. [Google Scholar]
- Shen, X.; Tan, D.; Shuai, Z.; Luo, A. Control techniques for bidirectional interlinking converters in hybrid microgrids: Leveraging the advantages of both ac and dc. IEEE Power Electron. Mag. 2019, 6, 39–47. [Google Scholar] [CrossRef]
- Moradisizkoohi, H.; Elsayad, N.; Mohammed, O.A. A family of three-port three-level converter based on asymmetrical bidirectional half-bridge topology for fuel cell electric vehicle applications. IEEE Trans. Power Electron. 2019, 34, 11706–11724. [Google Scholar] [CrossRef]
- Mahmood, H.; Michaelson, D.; Jiang, J. Decentralized power management of a PV/battery hybrid unit in a droop-controlled islanded microgrid. IEEE Trans. Power Electron. 2015, 30, 7215–7229. [Google Scholar] [CrossRef]
- Kim, N.; Parkhideh, B. PV-battery series inverter architecture: A solar inverter for seamless battery integration with partial-power dc–dc optimizer. IEEE Trans. Energy Convers. 2019, 34, 478–485. [Google Scholar] [CrossRef]
- Hamouda, N.; Benalla, H.; Hemsas, K.; Babes, B.; Petzoldt, J.; Ellinger, T.; Hamouda, C. Type-2 fuzzy logic predictive control of a grid connected wind power system with intergrated active power filter capabilities. J. Power Electron. 2017, 17, 1587–1599. [Google Scholar]
- Birik, S.; Redif, S.; Khadem, S.K.; Basu, M. Improved harmonic suppression efficiency of single-phase APFs in distorted distribution systems. Int. J. Electron. 2016, 103, 232–246. [Google Scholar] [CrossRef]
- Babes, B.; Rahmani, L.; Chaoui, A.; Hamouda, N. Design and experimental validation of a digital predictive controller for variable speed wind turbine systems. J. Power Electron. 2017, 17, 232–241. [Google Scholar] [CrossRef]
- Hamouda, N.; Babes, B.; Kahla, S.; Soufi, Y.; Petzoldt, J.; Ellinger, T. Predictive Control of a Grid Connected PV System Incorporating Active power Filter functionalities. In Proceedings of the 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), Tebessa, Algeria, 4–5 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Farhadi, P.; Sedaghat, M.; Sharifi, S.; Taheri, B. Power point tracking in photovoltaic systems by sliding mode control. In Proceedings of the 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2017; pp. 781–785. [Google Scholar] [CrossRef]
- Touil, S.-A.; Boudjerda, N.; Boubakir, A.; Boudouda, A. Sliding mode control of a grid-connected photovoltaic source via a three-phase inverter using incremental conductance MPPT. In Proceedings of the 2017 5th International Conference on Electrical Engineering—Boumerdes (ICEE-B), Boumerdes, Algeria, 29–31 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Saravanan, S.; Babu, N.R. Maximum power point tracking algorithms for photovoltaic system—A review. Renew. Sustain. Energy Rev. 2016, 57, 192–204. [Google Scholar] [CrossRef]
- Arafa, O.; Mansour, A.; Sakkoury, K.; Atia, Y.; Salem, M. Realization of single-phase single-stage grid-connected PV system. J. Electr. Syst. Inf. Technol. 2017, 4, 1–9. [Google Scholar] [CrossRef]
- Roy, T.; Mahmud, M. Active power control of three-phase grid-connected solar PV systems using a robust nonlinear adaptive backstepping approach. Sol. Energy 2017, 153, 64–76. [Google Scholar] [CrossRef]
- Twaha, S.; Zhu, J.; Yan, Y.; Li, B.; Huang, K. Performance analysis of thermoelectric generator using dc-dc converter with incremental conductance based maximum power point tracking. Energy Sustain. Dev. 2017, 37, 86–98. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, T.; Zhang, Z.; Cao, Y.; Yang; Yi, Y. Sliding mode control of MIMO Markovian jump systems. Automatica 2016, 68, 286–293. [Google Scholar] [CrossRef]
- Zouga, S.; Benchagra, M.; Abdallah, A. Backstepping Control Based on the PSO Algorithm for a Three-Phase PV System Connected to the Grid under Load Variation. In Proceedings of the Electrical and Information Technologies (ICEIT) 2020 International Conference, Rabat, Morocco, 4–7 March 2020; pp. 1–6. [Google Scholar]
- Ndiaye, E.H.M.; Ndiaye, A.; Tankari, M.A.; Lefebvre, G. Adaptive Neuro-Fuzzy Inference System Application for the Identification of a Photovoltaic System and the Forecasting of Its Maximum Power Point. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 1061–1067. [Google Scholar] [CrossRef]
- Cordeiro, A.; Foito, D.; Pires, V. A PV Panel Simulator Based on a Two Quadrant DC/DC Power Converter with a Sliding Mode Controller. In Proceedings of the 4th International Conference on Renewable Energy Research and Application (ICRERA), Birmingham, UK, 20–23 November 2023; pp. 928–932. [Google Scholar]
- Kirmani, S.; Jamil, M.; Akhtar, I. Effective low cost Grid-Connected Solar Photovoltaic System to Electrify the Small Scale industry/Commercial Building. In Proceedings of the International Journal of Renewable Energy Research (IJRER), San Diego, CA, USA, 5–8 December 2017; Volume 7, pp. 797–806. [Google Scholar]
- Priyadarshi, N.; Anand, A.; Sharma, A.; Azam, F.; Singh, V.; Sinha, R. An Experimental Implementation and Testing of GA based Maximum Power Point Tracking for PV System under Varying Ambient Conditions Using dSPACE DS 1104 Controller. Int. J. Renew. Energy Res. 2017, 7, 255–265. [Google Scholar]
- Boukenoui, R.; Bradai, R.; Mellit, A.; Ghanes, M.; Salhi, H. Comparative Analysis of P&O Modified Hill Climbing-FLC and Adaptive P&O-FLC MPPTs for Microgrid Standalone PV System. In Proceedings of the 4th International Conference on Renewable Energy Research and Application (ICRERA), Birmingham, UK, 20–23 November 2016; pp. 1095–1099. [Google Scholar]
- Shabaan, S.; El-Sebah, M.; Bekhit, P. Maximum Power Point Tracking for photovoltaic solar pump based on ANFIS tuned system. J. Electr. Syst. Inf. Technol. 2018, 5, 11–22. [Google Scholar] [CrossRef]
- Amara, K.; Fekik, A.; Hocine, D.; Bakir, M.L.; Bourennane, E.B.; Malek, T.A.; Malek, A. Improved Performance of a PV Solar Panel with Adaptive Neuro Fuzzy Inference System ANFIS based MPPT. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 1098–1101. [Google Scholar] [CrossRef]
- Yilmaz, U.; Kircay, A.; Borekci, S. PV system fuzzy logic MPPT method and PI control as a charge controller. Renew. Sustain. Energy Rev. 2018, 81, 994–1001. [Google Scholar] [CrossRef]
- Singh, S.N. Selection of non-isolated DC-DC converters for solar photovoltaic system. Renew. Sustain. Energy Rev. 2017, 76, 1230–1247. [Google Scholar]
- Valarezo, D.; Peralta-Sevilla, A.; Icaza, D.; Méndez, G.; Ochoa, P.C.; Espinoza, J.R. Special Outlook of Energy Optimization for A Bioecological Infrastructure. In Proceedings of the 2021 10th Renewable Energy Research and Application (ICRERA)International Conference, Istanbul, Turkey, 26–29 September 2021; pp. 250–257. [Google Scholar]
- Iqbal, A.; Abu-Rub, H.; Ahmed, S.M. Adaptive neuro-fuzzy inference system based maximum power point tracking of a solar PV module. In Proceedings of the 2010 IEEE International Energy Conference, Manama, Bahrain, 18–22 December 2010; pp. 51–56. [Google Scholar] [CrossRef]
- Hichami, N.E.L.; Abbou, A.; Rhaili, S.E.; Ziouh, A.; Marhraoui, S. Grid Connected Photovoltaic System using a Fuzzy Logic Control Approach. In Proceedings of the 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 11 December 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Zerouali, M.; El Ougli, A.; Tidhaf, B.; Zrouri, H. Fuzzy logic MPPT and battery charging control for photovoltaic system under real weather conditions. In Proceedings of the 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco, 2–3 December 2020. [Google Scholar] [CrossRef]
- Assahout, S.; El Aissaoui, H.; El Ougli, A.; Tidhaf, B.; Zrouri, H. A Neural Network and Fuzzy Logic based MPPT Algorithm for Photovoltaic Pumping System. Int. J. Power Electron. Drive Syst. 2018, 9, 1823. [Google Scholar] [CrossRef]
- Motahhir, S.; El Hammoumi, A.; El Ghzizal, A. Photovoltaic system with quantitative comparative between an improved MPPT and existing INC and P&O methods under fast varying of solar irradiation. Energy Rep. 2018, 4, 341–350. [Google Scholar]
- Arunkumari, T.; Indragandhi, V.; Sreejith, S. Topologies of a DC–DC Converter for Micro-Grid Application and Implementation of Parallel Quadratic Boost Converter. Adv. Smart Grid Renew. Energy 2018, 435, 633–644. [Google Scholar]
- Gude, S.; Chu, C.C. Three-phase PLLs by using frequency adaptive multiple delayed signal cancellation prefilters under adverse grid conditions. IEEE Trans. Ind. Appl. 2018, 54, 3832–3844. [Google Scholar] [CrossRef]
- Miqoi, S.; El Ougli, A.; Boutouba, M.; Tidhaf, B. Fuzzy sliding mode control for maximum power point tracking of a photovoltaic pumping system. J. Electr. Syst. 2017, 13, 95–114. [Google Scholar]
- Aidoud, M.; Feraga, C.E.; Bechouat, M.; Sedraoui, M.; Kahla, S. Development of photovoltaic cell models using fundamental modeling approaches. Energy Procedia 2019, 162, 263–274. [Google Scholar] [CrossRef]
- Babu P, N.; Guerrero, J.M.; Siano, P.; Peesapati, R.; Panda, G. An Improved Adaptive Control Strategy in Grid-Tied PV System with Active Power Filter for Power Quality Enhancement. IEEE Syst. J. 2021, 15, 2859–2870. [Google Scholar] [CrossRef]
- Kumar, V.; Pandey, A.S.; Sinha, S.K. Grid integration and power quality issues of wind and solar energy systems: A review. In Proceedings of the International Conference on Emerging Trends in Electrical, Electronics and Sustainable Energy Systems 2016, Sultanpur, India, 11–12 March 2016; pp. 71–80. [Google Scholar]
- Kumar, V.N.; Babu, P.N.; Kiranmayi, R.; Siano, P.; Panda, G. Improved power quality in a solar PV plant integrated utility grid by employing a novel adaptive current regulator. IEEE Syst. J. 2020, 14, 4308–4319. [Google Scholar] [CrossRef]
- Babu, P.N.; Choudhury, B.K.; Kar, B.; Halder, B. Modelling of a hybrid active power filter for power quality improvement using synchronous reference frame theory. Int. J. Eng. Tech. Res. 2017, 6, 369–374. [Google Scholar]
- Ibrahim, S.A.; Nasr, A.; Enany, M.A. Maximum Power Point Tracking Using ANFIS for a Reconfigurable PV-Based Battery Charger Under Non-Uniform Operating Conditions. Access IEEE 2021, 9, 114457–114467. [Google Scholar] [CrossRef]
- Pradhan, S.; Hussain, I.; Singh, B.; Panigrahi, B.K. Modified VSS-LMS-based adaptive control for improving the performance of a single-stage PV integrated grid system. IET Sci. Meas. Technol. 2017, 11, 388–399. [Google Scholar] [CrossRef]
- Chilipi, R.S.R.; Al Sayari, N.; Al Hosani, K.H.; Beig, A.R. Adaptive notch filter-based multipurpose control scheme for grid-interfaced three-phase four-wire DG inverter. IEEE Trans. Ind. Appl. 2017, 53, 4015–4027. [Google Scholar] [CrossRef]
- Xin, Z.; Wang, X.; Qin, Z.; Lu, M.; Loh, P.C.; Blaabjerg, F. An improved second-order generalized integrator based quadrature signal generator. IEEE Trans. Power Electron. 2016, 31, 8068–8073. [Google Scholar] [CrossRef]
- Rodriguez, P.; Luna, A.; Candela, I.; Mujal, R.; Teodorescu, R.; Blaabjerg, F. Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Trans. Ind. Electron. 2011, 58, 127–138. [Google Scholar] [CrossRef]
- Liu, Z.; Mohammadzadeh, A.; Turabieh, H.; Mafarja, M.; Band, S.S.; Mosavi, A. A New Online Learned Interval Type-3 Fuzzy Control System for Solar Energy Management Systems. IEEE Access 2021, 9, 10498–10508. [Google Scholar] [CrossRef]
- Chakir, A.; Tabaa, M.; Moutaouakkil, F.; Medromi, H.; Julien-Salame, M.; Dandache, A.; Alami, K. Optimal energy management for a grid connected PV-battery system. Energy Rep. 2020, 6, 218–231. [Google Scholar] [CrossRef]
- Guo, Y.; Dai, X.; Jermsittiparsert, K.; Razmjooy, N. An optimal configuration for a battery and PEM fuel cell-based hybrid energy system using developed krill herd optimization algorithm for locomotive application. Energy Rep. 2020, 6, 885–894. [Google Scholar] [CrossRef]
- Hamzeh, M.; Farhangi, S.; Farhangi, B. A new control method in PV grid connected inverters for anti-islanding protection by impedance monitoring. In Proceedings of the 2008 11th Workshop on Control and Modeling for Power Electronics, Zurich, Switzerland, 17–20 August 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Awasthi, A.; Shukla, A.K.; Dondariya, M.M.S.R.C.; Shukla, K.N.; Porwal, D.; Richhariya, G. Review on sun tracking technology in solar PV system. Energy Rep. 2020, 6, 392–405. [Google Scholar] [CrossRef]
- Zaouche, F.; Rekioua, D.; Gaubert, J.-P.; Mokrani, Z. Supervision and control strategy for photovoltaic generators with battery storage. Int. J. Hydrog. Energy 2017, 42, 19536–19555. [Google Scholar] [CrossRef]
- Zhang, R.; Hredzak, B. Nonlinear sliding mode and distributed control of battery energy storage and photovoltaic systems in AC microgrids with communication delays. IEEE Trans. Ind. Informat. 2019, 15, 5149–5160. [Google Scholar] [CrossRef]
- Errouha, M.; Derouich, A.; Motahhir, S.; Zamzoum, O.; El Ouanjli, N.; El Ghzizal, A. Optimization and control of water pumping PV systems using fuzzy logic controller. Energy Rep. 2019, 5, 853–865. [Google Scholar] [CrossRef]
- Parvaneh, M.H.; Khorasani, P.G. A new hybrid method based on fuzzy logic for maximum power point tracking of photovoltaic systems. Energy Rep. 2020, 6, 1619–1632. [Google Scholar] [CrossRef]
- Mosavi, M.S.S.S.A.; Qasem, S.N.; Mohammadzadeh, A. Fractional-order fuzzy control approach for photovoltaic/battery systems under unknown dynamics variable irradiation and temperature. Electronics 2020, 9, 1455. [Google Scholar] [CrossRef]
- Pradhan, S.S.; Pradhan, R.; Subudhi, B. Design and Analysis of an H∞ Controller for a Single Phase Grid Connected Photovoltaic System with Parametric Uncertainties. In Proceedings of the 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), Gangtok, India , 25–28 February 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Mao, W.; Dai, N.; Li, H. Economic dispatch of microgrid considering fuzzy control based storage battery charging and discharging. J. Electr. Syst. 2019, 15, 417–428. [Google Scholar]
- Li, X.; Yan, H. Fuzzy logic-based coordinated control method for multi-type battery energy storage systems. Artif. Intell. Rev. 2018, 49, 227–243. [Google Scholar] [CrossRef]
- Kim, J.-C.; Huh, J.-H.; Ko, J.-S. Improvement of MPPT control performance using fuzzy control and VGPI in the PV system for micro grid. Sustainability 2019, 11, 5891. [Google Scholar] [CrossRef]
- Wang, Y.; Ahn, C.K.; Yan, H.; Xie, S. Fuzzy control and filtering for nonlinear singularly perturbed Markov jump systems. IEEE Trans. Cybern. 2021, 51, 297–308. [Google Scholar] [CrossRef]
- Noman, A.M.; Alkuhayli, A.; Al-Shamma’a, A.A.; Addoweesh, K.E. Hybrid MLI Topology Using Open-End Windings for Active Power Filter Applications. MDPI. Energies 2022, 15, 6434. [Google Scholar] [CrossRef]
- Panati, P.U.; Ramasamy, S.; Ahsan, M.; Haider, J.; Rodrigues, E.M.G. Indirect Effective Controlled Split Source Inverter-Based Parallel Active Power Filter for Enhancing Power Quality. Electronics 2021, 10, 892. [Google Scholar] [CrossRef]
- Jayaram, J.; Srinivasan, M.; Prabaharan, N.; Senjyu, T. Design of Decentralized Hybrid Microgrid Integrating Multiple Renewable Energy Sources with Power Quality Improvement. Sustainability 2022, 14, 7777. [Google Scholar] [CrossRef]
- Chowdhury, M. Dual-loop H∞controller design for a grid-connected single-phasephotovoltaic system. Elseiver Solar Energy 2016, 139, 640–649. [Google Scholar] [CrossRef]
- Jendoubi, A.; Tlili, F.; Bacha, F. Sliding mode control for a grid connected PV-system using interpolation polynomial MPPT approach. Sci. Direct. 2019, 167, 202–218. [Google Scholar] [CrossRef]
- Das, S.R.; Ray, P.K.; Sahoo, A.K.; Ramasubbareddy, S.; Babu, T.S.; Kumar, N.M.; Elavarasan, R.M.; Mihet-Popa, L. A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement. Energies 2021, 14, 4589. [Google Scholar] [CrossRef]
- Zhao, Y.; An, A.; Xu, Y.; Wang, Q.; Wang, M. Model Predictive control of grid connected PV power generation system considering optimal MPPT control of PV modules. Prot. Control Mod. Power Syst. 2021, 6, 32. [Google Scholar] [CrossRef]
- Huang, L.; Chen, D.; Lai, C.S.; Huang, Z.; Zobaa, A.F.; Lai, L.L. A distributed optimization model for mitigating three-phase power imbalance with electric vehicles and grid battery. Electr. Power Syst. Res. 2022, 210, 108080. [Google Scholar] [CrossRef]
- Shen, Z.; Jiang, D.; Zou, J.; Liu, Z.; Ma, C. Current-balance mode-based unified common-mode voltage elimination scheme for dual three-phase motor drive system. IEEE Trans. Ind. Electron. 2022, 69, 12575–12586. [Google Scholar] [CrossRef]
- Aggarwal, S.; Garg, N.; Kaur, G. Performance evaluation of various dispersion compensation modules. Wirel. Pers. Commun. 2022, 123, 1–15. [Google Scholar] [CrossRef]
Ref. | Methodology | Control Scheme | Capacity | Switching Frequency (kHz) | THD (%) | DC Link Voltage | Interconnected Grid Scheme |
---|---|---|---|---|---|---|---|
Single-Phase Topology | |||||||
[14] | Four-bridge | SPWM/PI | ≤2 kVA | 18 | 2.83 | 160 V | PV-Grid-APF |
[16] | Full-bridge | SPWM/PI | 1.5 kVA | 20 | 4.2 | 240 V | PV-Grid-APF |
[17] | Full-bridge | SPWM/PI | ≤1.3 kVA | 16.4 | <3 | 250 V | PV-Grid-APF |
[18] | Four-bridge | Hysteresis | 1.1 kVA | - | <3 | 230 V | PV-Grid-APF |
[19] | Full-bridge | SPWM/PI | 3 kVA | - | 2 | 400 V | PV-Grid-APF |
[21] | Full-bridge | SPWM/Lyapunov | 3.4 kVA | 20 | 2.49 | 240 V | PV-Grid-APF |
Three-Phase Topology | |||||||
[28] | H-bridge | Hysteresis | 1.3 kVA | 16 | 1.35 | 240 V | PV-Grid-APF |
[31] | Four-bridge | SPWM/PI | 10 kVA | 12 | 2.5 | 360 V | PV-Grid-APF |
[30] | Full-bridge | SPWM/PI | 7.6 kVA | 10 | 3.6% | 340 V | PV-Grid-APF |
[35] | 4L-NPC | SPWM/TCL | 10 kVA | 8 | 4.36% | 360 V | PV-Grid-APF |
Parameters | RC Bank | AVC | DBR | SDBR | STATCOM | SVC | TCSC | UPQC |
---|---|---|---|---|---|---|---|---|
Voltage Stability | ### | ## | # | ### | ## | # | #### | |
Flicker | # | ## | # | # | ### | ## | #### | |
Power Flow | # | ## | ### | # | - | #### | ||
Oscillation Damping | # | - | ### | ## | ### | #### | ||
Active Power | - | - | # | # | ### | - | # | #### |
Harmonic Reduction | # | # | # | # | # | # | - | #### |
Schemes/Methodology | References | |||
---|---|---|---|---|
[80] | [83] | [90] | [97] | |
Methodology | One arm | Three arm | Two Arm | Two Arm |
Capacity (kVA) | 3.6 | 4 | 2.4 | 2.7 |
Switching frequency (kHz) | 4 | 5 | 6 | 12 |
Reduced switch count | 2 | 3 | 3 | 2 |
Grid voltage (V) | 220 | 205 | 110 | 220 |
THD% | 4.2 | 3.6 | 3.45 | 2.8 |
Probable Efficiency | High | Low | Medium | Medium |
DC linked voltage (V) | 220 | 320 | 240 | 110 |
Schemes/Methodology | References | |||
---|---|---|---|---|
[81] | [83] | [90] | [97] | |
Methodology | H-bridge | Four arm bridge | Full bridge | H-bridge |
Capacity (kVA) | 3 | 4.3 | 12 | 10 |
Switching frequency (kHz) | 10 | 10 | 12 | 10 |
Reduced switch count | 6 | 8 | 6 | 6 |
Grid voltage (V) | 220 | 220 | 110 | 110 |
THD % | 4.7 | 1.5 | 1.22 | 1.25 |
Probable Efficiency | Medium | Low | Medium | High |
DC linked voltage (V) | 30 | 110 | 220 | 110 |
Schemes/Methodology | References | |||
---|---|---|---|---|
[80] | [83] | [90] | [97] | |
Methodology | Four arm, Five arm | Four arm | Six arm | Three |
Capacity (kVA) | 1.5 | 1.5 | 2.5 | 2 |
Switching frequency (kHz) | 5 | 3 | 6 | 12 |
Reduced switch count | 4, 6, 7 | 8 | 4 | 6 |
Grid voltage (V) | 100 | 110 | 220 | 210 |
THD % | 3.5 | 1.6 | 1.9 | 2.3 |
Probable Efficiency | Medium | Low | Medium | High |
DC linked voltage (V) | 100 | 210 | 230 | 250 |
Schemes/Methodology | References | |||
---|---|---|---|---|
[125] | [110] | [149] | [148] | |
Methodology | ANFIS | FUZZY | SMC | H∞ |
Capacity (kVA) | 2.2 | 2.3 | 1.6 | 1.2 |
Switching frequency (kHz) | 5 | 3 | 6 | 12 |
Reduced switch count | 4, 6, 7 | 8 | 4 | 6 |
Grid voltage (V) | 110 | 220 | 240 | 210 |
THD % | 1.8 | 2.2 | 1.9 | 2.3 |
Probable Efficiency | Medium | Low | Medium | High |
DC linked voltage (V) | 100 | 230 | 230 | 220 |
Complexity Level | High | High | Medium | Low |
Application | Grid | Stand-alone | Stand-alone | Grid |
Parameter Tuning | Yes | Yes | Yes | Yes |
Converter Type | DC/AC | DC/DC | DC/AC | DC/AC |
Commercial Application | Vacuum gas oil hydrocracking plant | Facial pattern recognition, air conditioners, washing machines, vacuum cleaners | Electric drives, robotics | Commercial satellite, robust control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dash, D.K.; Sadhu, P.K. A Review on the Use of Active Power Filter for Grid-Connected Renewable Energy Conversion Systems. Processes 2023, 11, 1467. https://doi.org/10.3390/pr11051467
Dash DK, Sadhu PK. A Review on the Use of Active Power Filter for Grid-Connected Renewable Energy Conversion Systems. Processes. 2023; 11(5):1467. https://doi.org/10.3390/pr11051467
Chicago/Turabian StyleDash, Dipak Kumar, and Pradip Kumar Sadhu. 2023. "A Review on the Use of Active Power Filter for Grid-Connected Renewable Energy Conversion Systems" Processes 11, no. 5: 1467. https://doi.org/10.3390/pr11051467
APA StyleDash, D. K., & Sadhu, P. K. (2023). A Review on the Use of Active Power Filter for Grid-Connected Renewable Energy Conversion Systems. Processes, 11(5), 1467. https://doi.org/10.3390/pr11051467