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Abstract: Hemi-pyocyanin (HPC) is a heterocyclic nitrogenous compound with some reported
potential medical effects. The current report aimed to investigate the potential use of organic
industrial waste for the production of HPC via microbial fermentation. The novel antidiabetic
activity of HPC was also accessed and reported in this work. A peanut oil processing by-product
(groundnut cake) was screened as the best substrate for Pseudomonas aeruginosa TUN03 conversion
to obtain high-yield HPC. This compound was further produced in a 14 L bioreactor system on a
large scale (6 L per pilot) and reached higher productivity (35.1 µg/mL) in a shorter time course
of cultivation (8 h) compared to fermentation on a small scale in flasks (19.5 µg/mL; 3 days of
fermentation). On assessing its activity, HPC demonstrated potent inhibition against α-glucosidase,
an antidiabetic enzyme, with a low IC50 value (0.572 mg/mL) and a maximum inhibition rate of
100%. In an in silico study, HPC was found to inhibit α-glucosidase with a good binding energy score
(−9.0 kcal/mol) via interaction with amino acids Lys156, Leu313, and Arg315 at the active site, and
three bonds (1 H-acceptor and 2 pi-H) were generated. The data from five Lipkin’s rules and ADMET-
based pharmacokinetics and pharmacology revealed that HPC possesses drug-like properties and
good ADMET properties within the required allotted limitations. The data obtained in the current
work highlighted the potential application of groundnut cakes for the eco-friendly and scaled-up
production of HPC, a new anti-α-glucosidase agent that should be further investigated for type 2
diabetes management.

Keywords: diabetes; α-glucosidase inhibitors; hemi-pyocyanin; organic industrial waste; peanut oil
processing by-product; fermentation; bioreactor systems

1. Introduction

Agricultural production releases a significant amount of organic waste. Untreated
waste may cause serious pollution for the environment, which is becoming a threat to
global health and food security [1]. However, agricultural waste (AW) is rich in essential
nutrients, such as proteins, lipids, glucid, and minerals, and as such, AW may be used for
many purposes [2,3]. Recently, recycling AW for the bioproduction of valuable secondary
metabolites via bacterial conversion has become an emerging topic [1,4]. In this work, a
peanut oil processing by-product (named groundnut cake, GNC) was investigated for the
bioproduction of bioactive hemi-pyocyanin (HPC) via microbial conversion.

The peanut belongs to the family Fabaceae, commonly known as the legume family,
and is native to Central and South America [5]. Up to now, this crop has been widely
planted in Asian countries and Asia was ranked first in the world for total area under
peanut plantations, with Vietnam ranked 15th with 456,513 tons [6]. Peanut seeds are rich
in oil; as such, it is considered a major oil crop and is ranked fourth among oil-producing
seeds worldwide [7]. During peanut seed processing for peanut oil, approximately 50%
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of the generated material is the by-product groundnut cake (GNC) [8]. GNC is widely
used for feeding animals or as fertilizer [9]. Recently, GNC has also been used as an N/C
source for microbial fermentation to produce bioactive secondary metabolites [10–12]. In
the current work, we studied the use of GNC for the bioproduction of an α-glucosidase
inhibitor compound targeting anti-diabetic drugs.

Diabetes mellitus is a major health issue that has significant negative effects on the
quality of life and health of people worldwide [13]. The two major types of diabetes
mellitus include type 1 and type 2 diabetes (T2D). Of these, T2D accounts for 90% of
diabetes cases [14]. Among the several modes of T2D management, α-glucosidase in-
hibitors (aGIs) are considered effective [15,16]. To date, some commercial aGIs (acarbose,
voglibose, and miglitol) have been synthesized and are available for use; however, these
inhibitors have been reported to show various side effects and as such, the search for
novel aGIs from natural sources continues [17]. aGIs are isolated from several natural
sources, particularly medicinal plants [16,18,19]. However, it is quite difficult to acquire
a large amount of aGIs from medicinal herbs [20–22]. Microbial fermentation is a ro-
bust tool for producing high yields of various bioactive secondary metabolites, including
aGIs [20,23–25]. In this work, we reported the scaled-up production of the aGI hemi-
pyocyanin (HPC) via microbial fermentation.

Phenazine is a heterocyclic nitrogenous compound with the formula (C6H4)2N2. From
the basic structure of phenazine, various derivatives of phenazine compounds have been
created and more than 100 natural phenazines from microbes have been investigated [26,27].
Pseudomonas species produce more than 50 phenazine compounds [28,29]. Of these, Pseu-
domonas aeruginosa is a major phenazine-producing strain; however, almost all previous
works have used commercial media for the biosynthesis of phenazine compounds and
fermentation has been performed on a small scale in flasks. In addition, pyocyanin, a major
phenazine compound, has been extensively investigated, while there are only a few reports
on HPC production by P. aeruginosa and its biological effects [30–32].

In our previous work [33], HPC was investigated as the main secondary metabolite
produced by TUN03 strain fermentation. In this study, we explored the potential use of
organic waste for the eco-friendly production of HPC via P. aeruginosa TUN03 fermentation.
This active compound was further studied for scaled-up production utilizing a bioreactor
system. The α-glucosidase inhibitory effect of HPC was also investigated via in vitro assays
and virtual performance.

2. Results and Discussion
2.1. Determination of the Mineral Salt Content of the Peanut Oil Processing By-Product GNC

Some of the essential nutrient contents, such as proteins, lipids, glucid, and minerals,
in the starting material (GNC) were determined and the results are presented in Table 1.
The results indicated that the GNC was rich in protein (35.04%) and lipids (9.66%), while
a small amount of total sugar (2.51%) and reducing sugar (0.612%) was found in this
substrate. The total mineral content of the GNC was 12.52%. To elucidate the composition
of mineral elements, we used SEM capture for the analysis of GNC ash. The data (Figure 1)
showed that there were diverse elements (O, C, Al, Fe, Si, and K) contained in the GNC
ash. Of these, Al, Fe, Si, and K were the main mineral elements of the GNC ash. These
elements have been evidenced as having important roles in the growth of bacteria [12]. The
results obtained in this work were similar to those in some previous reports, indicating that
GNC is rich in protein, lipids, and minerals, as well as some other components [9,10,34].
These data indicated that GNC would be a suitable substrate for bacterial fermentation to
produce secondary metabolites.

Table 1. The determination of the nutrient contents contained in the GNC.

Proteins Lipids Total Sugar Reducing Sugar Total Minerals

35.04% 9.66% 2.51% 0.612% 12.52%
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Figure 1. The analysis of the mineral elements of the GNC ash using SEM capture: the SEM image
of the analyzed point on the surface of the GNC ash (a); the mineral elements of the GNC ash, as
detected by EDX spectra (b).

2.2. Production of Hemi-Pyocyanin via P. aeruginosa TUN03 Conversion

Several significant factors affecting HPC yield were examined to establish the process
of culturing TUN03 bacteria to produce high yields of hemi-pyocyanin (HPC). We examined
the effects of C/N sources (1), salt composition (2), and scaled-up HPC production in a
bioreactor system (3).

(1) Effects of C/N sources on hemi-pyocyanin bioproduction. Various C/N sources, in-
cluding the peanut oil processing by-product groundnut cake (GNC) and some commercial
culture broths, including tryptic soy broth (TSB), nutrient broth (NB), and King’s B (KB),
were used for fermentation. For comparison, soybean waste (SBW) and squid pen waste
(SPW) were also used for fermentation by P. aeruginosa TUN03 over 6 days and then the
HPC contents in the fermented culture broths were determined. The data in Figure 2a show
that the highest production of HPC was found on day 3 of fermentation. The HPC yield was
moderate (in the range of 8–13 µg/mL) in the culture broths containing commercial media
(NB, TSB, and KB), while HPC was found to be produced at a higher yield (13.1–18 µg/mL)
in the culture broths containing organic processing by-products (GNC, SBW, and SPW). Of
these, GNC was the best C/N source for bacterial cultivation with the highest HPC yield of
18 µg/mL. Thus, this low-cost material was chosen for further experiments. Various culture
broths containing different concentrations of GNC (0.5–2.0%) were used for fermentation
and then the HPC contents were determined on day 3 of cultivation. The experimental
data (Figure 2b) indicated that high yields of HPC were produced when the concentration
of GNC was from 1.25% to 1.75%. Thus, for the cost-effective bioproduction of HPC, 1.25%
GNC was used in the subsequent bacterial cultivation experiments.

(2) Effects of salt composition on HPC bioproduction. The bacterial culture media
were supplemented with some sulfate and phosphate salt sources to assess their effects
on HPC bioproduction. Among the tested sulfate salts, MgSO4 significantly enhanced
HPC production (19.5 µg/mL; Figure 2c) via P. aeruginosa TUN03 and the most suitable
concentration was found to be 0.075% (Figure 2d). K2HPO4 was found to be the most
suitable kind of phosphate salt (Figure 2e) and its most suitable concentration was recorded
to be 0.075% (Figure 2f).
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Figure 2. The effects of C/N source (a), GNC concentration (b), sulfate salt source (c), MgSO4 concentra-
tion (d), phosphate salt source (e), and K2HPO4 concentration (f) on HPC production via P. aeruginosa
TUN03. The tests were conducted in triplicate. HPC yield values in the same figure with the same letters
were considered as not significantly different via Duncan’s multiple range test (p = 0.05).
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(3) Effects of selected culture parameters on HPC biosynthesis.
To reach higher HPC production via TUN03 strain conversion, selected culture con-

ditions, such as the temperature of cultivation (25, 27.5, 30, 32.5, and 35 ◦C), the culture
medium pH (pH 6.0, 6.5, 6.0, 7.5, 8.0, 8.5, and 9.0), and the time course of cultivation
(0, 1, 2, 3, and 4 days), were examined. Taken together, P. aeruginosa TUN03 was found
to produce the highest HPC content when it was fermented under the conditions of a
cultivation temperature of 30–32.5 ◦C (Figure 3a), an initial pH of 6.5–7.0 (Figure 3b), and
a fermentation time of 2–3 days (Figure 3c). The density of bacteria was also examined
during the fermentation; however, no correlations between HPC yield and bacterial culture
density (the data are not shown) were observed.
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Figure 3. The effects of culture temperature (a), the initial pH of the culture medium (b), and
fermentation time (c) on HPC production via P. aeruginosa TUN03 fermentation. The tests were
conducted in triplicate. HPC yield values in the same figure with the same letters were considered as
not significantly different via Duncan’s multiple range test at p = 0.05 (b) and Fisher’s LSD test at
p = 0.05 (a,c).

(4) Scaled-up HPC production using a 14 L bioreactor system.
In fermentation technology, bioreactor systems are valuable pieces of equipment that

can effectively produce high yields of secondary metabolites with quick fermentation
processes [35]. In this study, a 14 L bioreactor system was utilized for scaled-up HPC
production. As shown in Figure 4, HPC was biosynthesized after 4 h and the maximal
productivity was produced after 8 h of fermentation. Thus, HPC was biosynthesized with
higher yields (35.1 µg/mL) in a much shorter fermentation period (8 h) than when it was
biosynthesized on a small scale in flasks, which had a lower productivity of 30.2 µg/mL
and a longer cultivation time (3 days).

Phenazine compounds possess numerous valuable bioactivities and applications and
thus, their production has received much attention. In most previous studies, phenazines have
been produced by P. aeruginosa, utilizing commercial broths as the main C/N sources, includ-
ing King’s B, King’s A, peptone, tryptone, and nutrient broth, for fermentation. Phenazines
have been produced with productivity values in the range of 5.2–33 µg/mL [36–40]. To lower
the costs of the bioproduction of phenazines, several low-cost organic materials, such as cot-
tonseed, corn, grape seed, taro leaves, peat moss, sweet potato, soya bean, groundnut, and
watermelon seeds, have been used for fermentation; however, these produced low yields
of phenazines (under 4.0 µg/mL) [39,41,42]. For cost-effective and eco-friendly production,
several organic by-products/waste materials have been used for fermentation, such as
waste cheese whey, tea wastewater, waste frying oil, maize wastewater, olive waste, sugar
beet molasses, peapods, and craft beer waste, which produced phenazine yields of 1.62, 2.0,
3.0, 3.2, 1.3, 1.6, 17.1, and 21–58 µg/mL, respectively [41,43–46]. In our current report, GNC
was used as the main C/N source for the biosynthesis of HPC, resulting in the high-level
productivity of 35.1 µg/mL. In addition, in almost all previous works, phenazine produc-
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tion has been conducted on a small scale in flasks over long fermentation times. Different
from those, in our study, the phenazine compound was mass-biosynthesized utilizing a
14 L reactor over a shortened cultivation period (12 h). The results recorded in this work
demonstrate the new and green utilization of GNC for the eco-friendly production of HPC.
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2.3. Purification and Identification of Hemi-Pyocyanin

The yellow compound was purified according to the method presented in our earlier
report [33] and this purification protocol is summarized in Figure 5.
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Figure 5. The process of the bioproduction, purification, and identification of hemi-pyocyanin (HPC).
The liquid culture medium (5 L) containing 1.25% GNC (a) was fermented by the TUN03 strain in a
reactor for 8 h (b). The pigment (HPC) was purified by a liquid layer of chloroform (c) and was then
isolated using a column loaded with silica gel (d) to obtain the pure compound in yellow form (e), which
was identified as HPC by GCMS. The pure grade of the HPC was then checked by HPLC analysis.
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The compound purified from the medium fermented by the TUN03 strain was recon-
firmed as HPC and its purity grade was also determined by HPLC and GCMS analysis. As
shown by the data presented in Figure 6, the purified HPC appeared with a single peak at
the retention time of 3.317 min. For comparison purposes, the reference HPC compound ob-
tained in our previous report [33] also underwent HPLC analysis. This reference compound
also appeared at the retention time of 3.323 min during HPLC fingerprinting (Figure 6),
approximately similar to that of the HPC purified in this study (RT = 3.317 min). The HPC
had 100% of the relative area, thus indicating that the HPC produced and purified in this
report had a high grade of purity and could be used for bioactivity testing. GCMS was also
conducted for identification. The GCMS data indicated that the compound purified in this
study was HPC (Figure A1 in Appendix A). For a more careful confirmation, the 1H-NMR
and 13C-NMR spectra of the HPC were also analyzed. The HPC compound was obtained
as a yellow amorphous powder with 1H-NMR (600 MHz; CDCl3) (δH = 8.38 (1H, m);
δH = 8.279–8.366 (2H, m); δH = 7.826–7.919 (4H, m); δH = 7.260–7.289 (1H, m)) (Figure A2a
in Appendix A) and 13C-NMR (151 MHz; CDCl3) (δC = 151.69; 144.30; 144.50; 141.19;
134.70; 131.89; 130.80; 130.50; 129.68; 129.18; 119.90; 108.89) (Figure A2b in Appendix A).
These assigned 1H-NMR and 13C-NMR data were approximately similar to those of the
compound reported in our earlier study [33].
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2.4. The α-Glucosidase Inhibitory Effects of Hemi-Pyocyanin: In Vitro Experiments
and Docking Studies

Diabetes mellitus has significant negative effects on the quality of life and health
of people worldwide [13]. Of the two major types of this disease, type 2 diabetes (T2D)
accounts for up to 90% of diabetes cases [14]. To date, there are several therapies for
the treatment of T2D; of these, the use of inhibitors for α-glucosidase and α-amylase is
considered an effective treatment for T2D [15,16]. In our previous work [33], the anti-α-
amylase effect of HPC was recorded for the first time. In this work, we investigated the
potential anti-α-glucosidase effects of this microbial secondary metabolite via in vitro and
docking studies.
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2.4.1. The Assessment of α-Glucosidase Inhibitory Effects

The crude extract, crude pigments (chloroform layer), purified HPC compound, and
acarbose (a commercial α-glucosidase inhibitor compound) were tested at various con-
centrations to investigate their effects against the α-glucosidase enzyme from yeast. As
shown in Figure 7a, the crude extract showed a moderate anti-α-glucosidase effect with
a maximum inhibition value of 82% at a high concentration (5 mg/mL). The crude pig-
ments demonstrated a high effect with an inhibition value of 100% at a concentration of
2.5 mg/mL. The purified HPC compound showed the highest effect with a maximum
inhibitory effect (approximately 100%) at the low concentration of 1.25 mg/mL. This result
indicated that the activity significantly increased after purification and that the purified
HPC compound was a major α-glucosidase inhibitor when produced by P. aeruginosa
TUN03. Acarbose, a commercial α-glucosidase inhibitor, was also assessed for comparison
and showed a maximum inhibition value of 85% at 2.5 mg/mL.
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conducted in triplicate. HPC yield values in the same figure with the same letters were considered as
not significantly different via Fisher’s LSD test at p = 0.05.

For a further clarification of the results, the inhibitory effects were also expressed as
IC50 values, defined as the concentration of an inhibitor that inhibits 50% of enzymatic ac-
tivity. Therefore, the lower the IC50 value that an inhibitor shows, the greater the inhibition
it achieves [19]. Based on the IC50 values (Figure 7b), the crude extract demonstrated the
lowest activity since it possessed the highest IC50value (1.82 mg/mL). The crude pigments
showed comparable activity to acarbose with IC50 values of 0.994 and 1.19 mg/mL, respec-
tively. Meanwhile, the HPC inhibited α-glucosidase with a low IC50 value (0.572 mg/mL);
therefore, it had a higher effect than acarbose. This experimental data confirmed that HPC
is a potential α-glucosidase inhibitor. Notably, the novel and potential anti-α-glucosidase
effect of HPC is presented for the first time in our current report.

Postprandial hyperglycemia is an important effect of T2D development; thus, to delay
or prevent T2D, it is necessary to control blood glucose [47]. The inhibitory effect of a-
amylase and a-glucosidase, the glycosidases that convert dietary starch into glucose, has
been widely used to control plasma glucose [15,48] and this therapy has been found to be
a more effective method than controlling insulin secretion due to its economic benefits,
convenience, and minimization of negative effects [49]. The basic biochemical process of
using glycosidase inhibitors may be briefly summarized as follows. The enzyme α-amylase
catalyzes a-(1,4)-glycosidic linkages in starch to release mainly disaccharide (maltose),
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which is finally hydrolyzed into monosaccharide (glucose) via the action of α-glucosidase
before entering blood circulation via intestinal epithelial absorption [49]. Notably, HPC
has demonstrated a potent effect against both α-amylase [33] and α-glucosidase (a novel
finding in this study) and thus, HPC may be a potent microbial compound for the treatment
of T2D and obesity.

Among the phenazine compounds biosynthesized by P. aeruginosa, numerous studies
have reported the bioproduction of pyocyanin and its various bioactivities; however, there
have only been a few reports on the production and bioactivities of HPC [31,50–55]. To
date, HPC has been reported to have some bio-effects, such as anti-cancer [51,52], anti-
microbial [31,51–54], and anti-inflammatory effects [55]. Thus, the novel α-glucosidase
inhibitory activity of HPC reported in this work may enrich the catalog of the biological
activities of HPC.

2.4.2. The α-Glucosidase Inhibitory Effect via Docking Simulations

Docking simulations were performed to understand the energy binding and interaction
of the inhibitors with the target enzyme. α-Glucosidase structure data were downloaded
from Worldwide Protein Data Bank and then their 3D structures were prepared using
MOE-2015.10 software. The active sites (ASs) of ligands on α-glucosidase were found using
a site finder and the five most active sites (AS1, AS2, AS3, AS4, and AS5) were determined
(Figure A3). Both ligands effectively bound to the target enzyme at AS1; thus, this active
site was chosen for assessing the docking simulation performance.

In the virtual performance, root mean square deviation (RMSD) and docking score
(DS) were used as indicators for the determination of the successful interactions between
the inhibitors and the enzyme and its effective inhibition, respectively. The interactions
between the ligands and the enzyme were considered as significant and acceptable when
the RMSD value was less than 2.0 Å [56]. A compound was determined to be an effective
enzyme inhibitor when the DS value was less than −3.20 kcal/mol [57]. As summa-
rized in Table 2, the HPC and ACA ligands bound to the enzyme with RMSD values of
1.298 and 1.496 Å, respectively, which were lower than 2.0 Å; thus, the interactions between
these ligands and the enzyme were significant and accepted [56]. In addition, both of these
ligands interacted with the target enzyme to generate the very low DS values of −9.0 and
−10.1 kcal/mol, respectively; thus, both HPC and acarbose were confirmed as effective and
potential α-glucosidase inhibitors via our docking simulations. The docking simulation
results (Table 2) and in vitro assays (Figure 7) were in agreement.

Table 2. The docking study results for the interactions between the inhibitors and the target protein
α-glucosidase (aG).

Ligand Symbol RMSD
(Å)

DS
(kcal/mol) Bonds Amino Acids Interacting with the Ligands

(Distance(Å)/E(kcal/mol)/Linkage Type)

Hemi-pyocyanin HPC-aG 1.298 −9.0 3 bonds (1 H-acceptor,
2 pi-H)

Lys156 (3.21/−3.2/H-acceptor)
Leu313 (4.08/−0.6/pi-H)
Arg315 (4.22/−0.6/pi-H)

Acarbose ACA-aG 1.496 −10.1 9 bonds (6 H-donor,
2 H-acceptor, 1 H-pi)

Glu411 (2.65/−3.2/H-donor)
Tyr158 (2.96/−2.3/H-donor)
Pro312 (2.65/−3.2/H-donor)
Asp352 (2.79/−2.2/H-donor)
Glu277 (2.78/−3.8/H-donor)
Asp242 (3.21/−1.0/H-donor)

Arg442 (3.30/−0.9/H-acceptor)
Lys156 (3.01/−1.0/H-acceptor)

Tyr158 (3.36/−0.7/H-pi)
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To explore the interactions between the ligands and the target protein, simultaneous
interactions and bonds were examined in detail, as illustrated in Figures 8 and 9. As shown
in Figure 8, HPC bound to the enzyme at the AC1 site via interactions with some prominent
amino acids at the biding sites, including Lys156, Leu313, and Arg315, and generated three
bonds: one H-acceptor bond and two pi-H bonds. Of these, the H-acceptor bond was
formed by the connection of the N2 atom of the HPC ligand to the NZ of Lys156, with a
distance of 3.21 Å and an energy binding of 3.2 kcal/mol, while the six rings of the HPC
ligand were found to be connected to the CA and N of the amino acids Leu313 and Arg315.
The two pi-H bonds were formed with the distance and energy binding values of 4.08 Å
and 4.22 Å and −0.6 kcal/mol and −0.6 kcal/mol, respectively. The commercial inhibitor,
acarbose bound effectively to α-glucosidase at active site 1 by creating nine bonds, including
six H-donor bonds, two H-acceptor bonds, and one H-pi bond (Figure 9). The detailed
distance and energy binding values of these bonds were also recorded and are summarized
in Table 2. Based on the results of the in vitro studies and docking investigation, the
HPC compound produced in this work could be recommended as a good candidate as a
potential α-glucosidase inhibitor, which may be useful for T2D management. However,
further studies should be conducted in animal models, as well as clinical investigations, for
the development of HPC into a drug with antidiabetic and anti-obesity functions.
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2.5. Lipkin’s Rules and ADMET-Based Pharmacokinetics and Pharmacology

Five Lipkin’s rules are commonly used to explore whether an active compound
possesses drug-like properties, such as a molecular mass less than 500 Da (rule 1), high
lipophilicity with a LogP value < 5 (rule 2), H-donors < 5 (rule 3), H-acceptors < 10 (rule 4),
and molar refractivity between 40–130 (rule 5). The probability of success for drug-like
compounds can be predicted when they possess more than two Lipkin’s rules [58]. As
shown in Table 3, hemi-pyocyanin complied with all five Lipkin’s rules; as such, this
inhibitor has a high probability of being successfully developed as a drug. Acarbose,
a commercial α-glucosidase inhibitor, was also examined against these rules; however,
this compound only satisfied approximately two rules. The ADMET properties of hemi-
pyocyanin and acarbose were also studied and the data are presented in Table A1 in
Appendix A. In general, these tested inhibitor compounds also had good ADMET properties
in the required allotted limitations.
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Table 3. The results of the five Lipkin’s rules for hemi-pyocyanin and acarbose.

Compound Mass
(Dalton) H-Donor H-Acceptors LogP Molar Refractivity

Hemi-pyocyanin 196.0 1 3 2.49 58.7
Acarbose 646.0 15 19 −9.6 136.5

Lipkin’s rules ≤500 ≤5 ≤10 ≤5 40–130

3. Materials and Methods
3.1. Materials

The P. aeruginosa TUN03 strain used for fermentation in this report was acquired
from our earlier study [33]. The α-glucosidase originated from S. cerevisiae and the com-
mercial anti-α-glucosidase compound (acarbose) was acquired from Sigma Chemical Co.,
St. Louis City, MO, USA. The substrate (p-nitrophenyl glucopyranoside, pNPG) was pur-
chased from Sigma Aldrich (3050 Spruce Street, St. Louis, MO, USA). The silica gel (Geduran®

Si 60, size 0.040–0.063 mm) was commercially obtained from Merck Sigma Chemical Co.
(St. Louis City, MO, USA) and some solvents were obtained from Sigma Aldrich.

3.2. Methods
3.2.1. Production of Hemi-Pyocyanin via Microbial Fermentation Experiments

n Protocols for determining the nutrient contents of GNC. The essential nutrient ingre-
dients contained in the GNC were examined. The protein content [59], total mineral
content of the ash [59], mineral composition (using a generation 5 phenom pro and
proX SEMs), total lipid content [60], total dissolved sugar content [61], and reducing
sugar content [62] were determined.
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n The effects of C/N source on hemi-pyocyanin produced by the TUN03 strain. Six
kinds of materials, including NB, TSB, KB, GNC, soybean waste, and squid pen
waste, were used as sole C/N sources for fermentation by the TUN03 strain. A liquid
medium (30 mL in a 100 mL flask) containing 1% C/N source, 0.05% MgSO4 salt, and
0.1% Ca3(PO4)2 salt with an initial pH of 7 was fermented by the TUN03 strain at 30 ◦C
with a shaking speed of 150 rpm for 6 days (*). The supernatant was collected daily
by centrifuging at a rotation speed of 10,000× g for 10 min. The collected supernatant
was then used for the determination of the HPC yields produced by the TUN03 strain.
GNC was chosen for all further experiments. To determine the optimal concentration
of GNC, different concentrations (0.5%, 0.75%, 1.0%, 1.25%, 1.5%, 1.75%, and 2.0%)
were added into a medium containing 0.05% MgSO4 salt and 0.1% Ca3(PO4)2 salt
with an initial pH of 7, which was then fermented by P. aeruginosa TUN03 using above
protocol (*) over 3 days. Then, the supernatant was harvested and used to detect the
HPC content.

n The effects of salt composition on hemi-pyocyanin produced by the TUN03 strain.

† The effect of sulfate salts on hemi-pyocyanin bioproduction. Five sources of
sulfate salts, including ZnSO4, FeSO4, (NH4)2SO4, MnSO4, and MgSO4, were
tested for their effects. A culture broth containing 1.25% GNC, 0.05% sulfate salt,
and 0.1% Ca3(PO4)2, with an initial pH of 7 was cultivated by the TUN03 strain
using the above protocol (*). The supernatant obtained after 3 days of cultivation
was used for the determination of the HPC content. MgSO4 was found to be
the most suitable for enhancing HPC yield; thus, this salt was added into the
culture broth at different concentrations (0, 0.025, 0.05, 0.075, 0.1, 0.125, and 0.15)
to check its effect on HPC production and 0.075% was found to be the most
suitable concentration. Thus, 0.075% MgSO4 was used for further investigation.

† The effect of phosphate salts on hemi-pyocyanin bioproduction. Five sources
of phosphate salts, including KH2PO4, NaH2PO4, Ca3(PO4)2, K2HPO4, and
Na2HPO4, were tested. A culture broth containing 1.25% GNC, 0.075% MgSO4,
and 0.1% phosphate salt with an initial pH of 7 was fermented by the TUN03
strain using the above protocol (*) over 3 days. The supernatant was collected
and used for the detection of the HPC content. K2HPO4 was found to be the most
suitable for enhancing HPC yield; thus, this salt was added into the medium
at different concentrations (0, 0.025, 0.05, 0.075, 0.1, 0.125, and 0.15) to check its
effect on HPC production and the most suitable concentration was 0.075%. Thus,
this concentration was used for further investigation.

n Mass-production of hemi-pyocyanin via P. aeruginosa TUN03 fermentation in a biore-
actor. HPC bioproduction was scaled up using a 14 L bioreactor system.
P. aeruginosa TUN03 was pre-incubated in a nutrient broth using 500 mL flasks at
30 ◦C for 1.5 days. Then, 600 mL of bacterial seed was added to the reactor, which
contained 5.4 L of a newly designed culture broth containing 1.25% GNC, 0.075%
MgSO4, and 0.0.075% K2HPO4 with an initial pH of 7. The cultivation was performed
at 30 ◦C (culture temperature), 250 rpm (shaking speed), and 1.2 vvm (dissolved
oxygen content) for 14 h. The HPC yield was determined every 2 h.

3.2.2. Quantitation, Purification, and Identification of Hemi-Pyocyanin

Quantitation of HPC via HPLC analysis. The residues of the culture medium and
P. aeruginosa TUN03 biomass were removed by centrifuging at 8000 rpm for 10 min. Then,
the supernatant was collected and used to determine the HPC content via HPLC analysis.
Then, 5 µL of supernatant was injected into the HPLC system for analysis. A column
(C18) was used to separate the sample with the use of solvent systems, including methanol
and acidified 0.1% H3PO4 at a ratio of 70/30 (v/v). The flow rate (0.2 mL/min) was
set and the HPC compound was detected at a wavelength of 265 nm. A reference HPC
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compound purified in our earlier report was tested to establish the following equation for
the stimulation of HPC content:

HPC content: y = 0.3954x + 0.1583

where the area value of the HPC peak and the concentration of HPC were named y and x,
respectively. All tests were performed in triplicate.

Purification and identification of HPC. The method presented by Nguyen et al. [33] was
applied for the extraction and isolation of the yellow pigment. A culture broth fermented by
the TUN03 strain was centrifugated at 12000 rpm for 10 min for the residues of the culture
medium and P. aeruginosa TUN03 biomass to settle down. The supernatant (250 mL) was
collected and mixed with chloroform (250 mL). This mixture was slightly mixed and kept
in a glass funnel (1000 mL) for approximately 3 h. The chloroform layer was concentrated
using an evaporator (IKA, Staufen, Germany) at 55 ◦C under a vacuum. The sample was
further dried to form a powder (crude pigments) at a temperature of 55 ◦C in an air-drying
oven. Finally, the sample was separated via a column (30 × 2 cm) containing silica (size
0.040–0.063 mm; Geduran® Si 60) and chloroform to collect the yellow compound. This
pigment compound was later identified as HPC via GCMS and HPLC analysis [33].

3.2.3. Bioactivity Assays

The anti-α-glucosidase activity assay. The anti-α-glucosidase effect was examined
according to the protocol described in our previous work [23]. DMSO was used for
the preparation of the crude extract, crude pigments, purified compound (HPC), and
acarbose solution. A buffer of potassium phosphate (0.1 mol/L; pH 7) was applied for the
preparation of the α-glucosidase and p-NPG solution. The experiments were performed in
96-well templates and the protocol followed three typical steps, as follows:

1© Preincubation. Firstly, 100 µL of the α-glucosidase solution and 50 µL of a sam-
ple solution were loaded into a 96-well template. This solution was pre-incubated at a
temperature of 37 ◦C for 20 min.

2© Reaction period. To start this step, 50 µL of 10 mmol/L p-NPG solution was loaded
into a well and maintained at 37 ◦C for 30 min. Finally, the reaction was terminated after
adding 100 µL of 1 mol/L Na2CO3.

3© Measurement of absorbance and bioactivity calculation. The absorbance of the
solution obtained in step 2 was measured at a wavelength of 410 nm (namely Ex). A
control test was carried out as described in the above two steps but 50 µL of 0.1 mol/L
potassium phosphate buffer (pH 7) was used instead of the sample solution. The absorbance
was also measured at 410 nm (namely Co). The aGI (%) was estimated according to the
following equation:

aGI (%) = (Co − Ex)/Co × 100.

The IC50 value is defined as the concentration of an inhibitor that inhibits 50% of the
enzymatic effect [63].

3.2.4. The Docking Study Protocol

The virtual study was performed according to the protocol presented in our earlier
work [64] and followed three typical steps, as follows:

1© α-Glucosidase structure preparation and finding active sites. The α-glucosidase
structure data were obtained from Worldwide Protein Data Bank and then MOE-2015.10
software was applied for the preparation of their 3D structures. A virtual pH of 7 was
set to prepare the enzyme molecule structures. The active sites on α-glucosidase were
determined using the site finder in MOE by removing all of the water molecules.
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2© Ligands (inhibitor compounds) preparation. ChemBioOffice 2018 software was
applied for preparing the HPC and acarbose structures. These ligand structures were then
optimized using the MOE system with the following parameters: force field = MMFF94x;
R-Field 1 = 80; cutoff = rigid water molecules; space group p1; cell size = 10, 10, 10; cell
shape = 90, 90, 90; and gradient = 0.01 RMS kcal·mol−1A−2. A virtual pH of 7 was set to
prepare the ligand molecule structures.

3© Docking performance. The docking investigation was performed on the ligands
(HPC and acarbose) and α-glucosidase using MOE-2015.10 software. The RMSD value, DS
value, interaction type, amino acid composition, interaction between the amino acid and
binding site in α-glucosidase, and the bond distance were collected for analysis.

3.2.5. The Five Lipkin’s Rules and ADM Analysis Protocol

A virtual study to investigate the five Lipkin’s rules was performed using online
software accessed at http://www.scfbioiitd.res.in/software/drugdesign/lipinski.jsp (ac-
cessed on 15 March 2023). Some pharmacokinetic parameters were obtained for analysis
using the SwissADME web tool (http://www.swissadme.ch/ accessed on 15 March 2023).
The output data of the theoretical interpretations of the pharmacokinetic parameters have
previously been described [65] and used as public references, which can be accessed online
at http://biosig.unimelb.edu.au/pkcsm/theory accessed on 15 March 2023.

3.2.6. Statistical Analysis

All experiments were randomized. The HPG yield and anti-α-glucosidase effect data
were analyzed using simple variance. Duncan’s multiple range tests and Fisher’s LSD
tests (p = 0.05) were used to compare experiments containing ≥six items and ≤five items,
respectively. Statistical Analysis Software version SAS-9.4 (SAS Institute Taiwan Ltd.,
Taipei, Taiwan) was applied for the statistical analysis in this study.

4. Conclusions

aGIs are considered as an effective treatment for T2D. They have been extensively
studied and can be isolated from various natural sources. However, it is quite difficult to
obtain a large amount of aGIs from natural sources. Microbial fermentation is a strong
tool for producing high yields of various bioactive secondary metabolites, including aGIs.
The aim of this study was to establish the fermentation process for the production of a
novel anti-glucosidase HPC via fermentation. GNC (a peanut oil processing by-product)
was screened as the most suitable substrate for the bioproduction of HPC. This inhibitor
compound was used for scaled-up production in a 14 L bioreactor system, resulting in
a high-level yield (35.1 µg/mL) when a liquid medium containing 1.25% GNC, 0.075%
MgSO4, and 0.0.075% K2HPO4 with an initial pH of 7 was fermented by the TUN03 strain
at 30 ◦C (culture temperature), 250 rpm (shaking speed), and 1.2 vvm (dissolved oxygen
content) over 8 h (cultivation time). The HPC was purified and in vitro and docking studies
of its bioactivity showed novel antidiabetic enzyme inhibition activity.
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Table A1. The ADMET-based pharmacokinetics and pharmacology of hemi-pyocyanin and acar-
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Absorption 

Water solubility −3.06 −1.48 log mol·L−1 

Caco2 permeability 1.32 −0.48 log Papp (10−6 cm·s−1) 

Intestinal absorption (human) 95.89 4.17 % 

Skin permeability −2.30 −2.74 log Kp 

P-glycoprotein substrate Yes Yes Yes/No 

P-glycoprotein I inhibitor No No Yes/No 

P-glycoprotein II inhibitor Yes No Yes/No 

Distribution 

VDss (human) −0.17 −0.84 log L·kg−1 

Fraction unbound (human) 0.18 0.51 log L·kg−1 

BBB permeability 0.38 −1.72 log BB 
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Figure A3. The five active sites (ASs) found on α-glucosidase using the site finder function of MOE.
The amino acids in AS1 were ASP69, TYR72, HIS112, LYS156, SER157, TYR158, PHE159, LEU177,
PHE178, GLN182, ARG213, ASP215, VAL216, SER240, SER241, ASP242, GLU277, GLN279, HIS280,
PHE303, SER304, THR306, ASP307, VAL308, GLY309, THR310, SER311, PRO312, LEU313, PHE314,
ARG315, TYR316, VAL319, PRO320, PHE321, ASP325, HIS351, ASP352, GLN353, GLU411, ARG442,
and ARG446, those in AS2 were ASP133, PHE135, PHE136, TRP137, ARG138, and ASN186, those in
AS3 were TRP15, ASN259, GLN260, ILE262, ARG263, VAL266, GLY269, ARG270, GLU271, ILE272,
MET273, THR274, TYR289, THR290, SER291, ALA292, ARG294, HIS295, GLU296, LEU297, and
SER298, those in AS4 were ASN76, TYR77, GLU78, HIS117, TRP119, and SER199, and those in AS5
were ASP64, ALA75, ASN76, GLU116, HIS117, and GLU118.

Table A1. The ADMET-based pharmacokinetics and pharmacology of hemi-pyocyanin and acarbose.

Property Hemi-Pyocyanin Acarbose Unit

Absorption
Water solubility −3.06 −1.48 log mol·L−1

Caco2 permeability 1.32 −0.48 log Papp (10−6 cm·s−1)
Intestinal absorption (human) 95.89 4.17 %
Skin permeability −2.30 −2.74 log Kp
P-glycoprotein substrate Yes Yes Yes/No
P-glycoprotein I inhibitor No No Yes/No
P-glycoprotein II inhibitor Yes No Yes/No

Distribution
VDss (human) −0.17 −0.84 log L·kg−1

Fraction unbound (human) 0.18 0.51 log L·kg−1

BBB permeability 0.38 −1.72 log BB
CNS permeability −1.74 −6.44 log PS
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Table A1. Cont.

Property Hemi-Pyocyanin Acarbose Unit

Metabolism
CYP2D6 substrate No No Yes/No
CYP3A4 substrate Yes No Yes/No
CYP1A2 inhibitor Yes No Yes/No
CYP2C19 inhibitor No No Yes/No
CYP2C9 inhibitor No No Yes/No
CYP2D6 inhibitor No No Yes/No
CYP3A4 inhibitor No No Yes/No

Excretion
Total clearance 0.60 0.43 log mL·min−1·kg−1

Renal OCT2 substrate No No Yes/No

Toxicity
AMES toxicity Yes No Yes/No
Max. tolerated dose (human) 0.02 0.44 log mg·kg−1·day−1

hERG I inhibitor No No Yes/No
hERG II inhibitor No Yes Yes/No
Oral rat acute toxicity (LD50) 1.80 2.45 mol·kg−1

Oral rat chronic toxicity (LOAEL) 2.16 5.32 log mg·kg−1_bw·day−1

Hepatotoxicity No No Yes/No
Skin sensitization No No Yes/No
T. Pyriformis toxicity 0.96 0.29 log µg·L−1

Minnow toxicity 0.68 16.82 log mM
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