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Abstract: Crude oil, Bitcoin, and carbon dioxide emissions are major issues that are significantly
impacting the global economy and environment. These three issues are complexly interlinked, with
profound economic and environmental implications. In this study, we explore the correlation among
these three issues and attempt to understand the influence of crude oil and Bitcoin on carbon dioxide
emissions. We created a novel approach, named quantile mediation analysis, which blends media‑
tion regression with quantile regression, enabling us to explore the influence of Brent crude oil on
carbon dioxide emissions by considering the mediating impact of Bitcoin. According to the findings
fromusing our new approach, the impact of Brent crude oil on carbon dioxide emissions is partlyme‑
diated by Bitcoin, and the association between Brent crude oil and carbon dioxide emissions involves
both direct and indirect effects. Since the carbon dioxide generated by the extraction of crude oil and
Bitcoin has a great impact on the environment, accelerating the use of clean energy technologies to
reduce our reliance on crude oil should be the direction that the cryptocurrency industry ought to
pursue in the future.

Keywords: Brent crude (BRT); cryptocurrency; CO2 emissions; renewable energy; nonlinear
inverted U‑shaped curve

1. Introduction
In recent years, with the sustained growth of the global economy, energy consump‑

tion has risen sharply. This phenomenon has led to exacerbated global air pollution, severe
ecological damage, and an increasing threat to global sustainable development. For exam‑
ple, the rising demand for energy has resulted in the burning of large amounts of fossil
fuels, which releases significant amounts of carbon dioxide and other greenhouse gases,
accelerates the pace of climate change, and has a serious impact on the ecological envi‑
ronment, such as by causing increased extreme weather events and declining biodiversity.
Therefore, it is necessary to propose solutions to address this issue in order to achieve
global sustainable development goals. Governments have become increasingly concerned
about the problem of carbon dioxide (CO2) emissions. The Intergovernmental Panel on
Climate Change (IPCC) enacted the United Nations Framework Convention on Climate
Change (UNFCCC) in 1992 as the first global agreement aimed at comprehensively con‑
trolling greenhouse gas emissions, taking into account CO2 emissions. Subsequently, the
global community established a series of international conventions, including the Kyoto
Protocol and the Paris Convention, in an effort to mitigate the disasters stemming from
global warming.

Crude oil ranks among the primary energy sources on the global scale and its price
movements have a significant impact on the global economy. It is an essential product
for industrial production and a crucial raw material for gasoline, diesel, and lubricating
oil used in transportation. Many daily necessities rely on the extraction and manufacture
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of crude oil because crude oil is connected to human economic conditions and the day‑to‑
day lives of citizens countries around theworld pay close attention to the economic impacts
caused by oil crises and political factors [1–5]. Due to the inseparable relationship between
crude oil and the economy, many countries highly rely on it, resulting in increased CO2
emissions and making it a major contributor to global warming. In 2016, BP published a
report on countries that are highly dependent on crude oil, ranking them in the following
order: the United States, China, India, Japan, and Saudi Arabia [6]. Renewable energy is
an alternative to reliance on crude oil, e.g., electric vehicles.

It is widely agreed that petroleum consumption is one of the major causes of CO2
emissions. The effects include land and ocean pollution caused by accidental leaks and
pipeline ruptures, as well as upstream industry activities such as oil well drilling, produc‑
tion, transportation, and storage, and downstream activities such as refining, transporta‑
tion, and sales [7,8]. In addition, the indiscriminate disposal of waste products from crude
oil refining can also pollute the environment. The continued burning of fossil fuels has
already caused the release of over 75% of CO2 emissions into the aerosphere, leading to
depletion of the Earth’s ozone layer and extreme weather phenomena such as El Niño,
resulting in frequent global disasters [9,10].

As crude oil represents the largest proportion of primary energy sources, it inevitably
contributes to major environmental damage through, e.g., CO2 emissions. The Interna‑
tional Energy Agency (IEA) notes that the ongoing surge in CO2 emissions resulting from
crude oil is a substantial factor in the amplification of global warming and the regular oc‑
currence of natural disasters, and the increasing use of renewable energy sources has yet
to offset this trend [11]. However, the impact of CO2 emissions varies considerably among
countries that export and import oil [12]. As an illustration, Alshehry and Belloumi [13] ex‑
plored the environmental Kuznets curve (EKC) theory [14] in Saudi Arabia between 1971
and 2011 and found no indication of an inverted U‑shaped link between CO2 emissions
from oil transportation and economic growth [15]. This indicates that crude oil exporting
countries do not necessarily increase their CO2 emissions due to economic growth. How‑
ever, taking Pakistan as an example, Rahman and Ahmad [16] identified that coal and
crude oil consumption play a crucial role in CO2 emissions, and proved that there is an
inverted U‑shaped correlation in both the long run and the short run under the extended
EKC theory [17]. This indicates that crude oil importing countries tend to experience a
decrease in CO2 emissions after an initial increase due to economic growth. Similarly, in
developing countries such as Bangladesh, which have no renewable energy sources, crude
oil, natural gas, and refined oil are the major resources for the transportation sector, power
production, and manufacturing plants, and there is a close correlation between the deple‑
tion of such energy inputs and CO2 emissions [18].

There are many reasons for the increase in CO2 emissions beyond petroleum con‑
sumption, including Bitcoin, which is based on blockchain technology. Given that Bitcoin
has the largest market share in the cryptocurrency market as the top virtual currency, we
suspected that there might be a connection between crude oil and Bitcoin, with Bitcoin
representing a vital factor. Due to its decentralized nature, its price and trading volume
are influenced by many factors. Some studies have shown that the price fluctuation of Bit‑
coin and crude oil have a two‑way interrelation. For example, Jin et al. found a two‑way
spillover effect between oil and Bitcoin [19,20]. Bouri et al. found a significant connection
between oil shocks and Bitcoin volatility, verifying the existence of a causal relationship
over time at different time scales [21,22]. Jareño et al. confirmed that crude oil and cryp‑
tocurrency are more interdependent in times of economic turmoil [23–27]. Wang et al.
found that the cryptocurrency environment attention index (ICEA) shows a significant
positive correlation between Brent crude oil and Bitcoin [28]. Notably, a drastic reduction
in the price of Bitcoin substantially affects the price of crude oil, with a noticeable impact
on oil exporting countries [29]. Due to factors such as geopolitical events, production sup‑
ply constraints in oil‑producing countries, natural disasters, etc., the crude oil market can
experience price volatility. Investors may seek decentralized and non‑traditional markets,
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with factors influenced by Bitcoin as a hedge tool to mitigate the risks. However, Bitcoin’s
hedging properties do not just depend on market conditions, but also on various types of
oil price trends. Selmi et al. used quantile regression to suggest that gold and Bitcoin can
act as refuges in the crude oil market during turbulent times [30,31]. To our knowledge,
there has not yet been any systematic investigation into the correlations among crude oil,
Bitcoin, and CO2 emissions across time periods.

Bitcoin is strongly correlated with CO2 emissions. The process of mining Bitcoin re‑
quires a significant amount of electricity and computing power, which has a negative ef‑
fect on the environment. As Bitcoin becomes more popular, its environmental damage is a
worrying concern. Moreover, Bitcoin’s high energy consumption and CO2 emissions also
raise questions about the sustainability of cryptocurrency. The interrelation between Bit‑
coin and crude oil is reflected in the fact that Bitcoin mining uses a considerable amount of
energy, and both require a lot of energy [32,33]. According to a 2017 report by China’s Na‑
tional Bureau of Statistics (NBSC), the crude oil refining sector accounts for 12.5% of the
country’s power consumption. The CO2 emissions from the crude oil refining industry
involve the generation of electricity, steam, and heat [11]. Similarly, Bitcoin is a power‑
hungry entity, with annual power consumption for mining exceeding the electricity usage
of Argentina, Austria, and Cyprus, and its CO2 emissions equivalent to the average level
of Kansas City [34–40]. It is expected that in China, Bitcoin energy consumption will result
in 130.5 million tons of CO2 emissions by 2024, exceeding the total annual carbon emis‑
sions of both Qatar and the Czech Republic [41]. In simpler terms, cryptocurrency mining
contributes to the rise in energy consumption and the generation of CO2 emissions from
mining‑related pollution [41,42]. Studies have suggested that Bitcoin’s energy consump‑
tion and carbon footprint are directly related to its transaction volume, with an increase in
transaction volume causing a dynamic impact, leading to a 46.54%upsurge in its energy de‑
pletion and carbon footprint [43–47]. To address this issue, China banned cryptocurrency
mining in 2021, leading to approximately half of the global miners migrating to neighbor‑
ing countries such as Iran and Kazakhstan. While CO2 emissions immediately decreased
in China, the problem shifted to those other regions and resulted in increased CO2 emis‑
sions there [48]. The CO2 emissions generated by cryptocurrency mining cause significant
harm to the environment.

If CO2 emissions can be effectively reduced, the benefits to the global climate and the
environment will be significant. This study argues that studying the relationship among
crude oil, Bitcoin, and CO2 emissions can help to deepen our understanding of their com‑
plex interactions. While there has been considerable discussion on the interrelation be‑
tween crude oil and CO2 emissions, crude oil and Bitcoin, or Bitcoin and CO2 emissions,
there has been no research on the relationship among all three, with Bitcoin acting as the
mediating variable.

The aim of this study was to analyze the direct or indirect relationship, or coexistence
of both, between crude oil and CO2 emissions through Bitcoin. Quantile regression was
employed to determine whether there is an inverted U‑shaped nonlinear correlation be‑
tween crude oil and CO2 emissions, and between Bitcoin and CO2 emissions. In addition,
we also investigated whether Bitcoin has a moderating intermediate effect.

This study provides an innovative approach, adapting the mediation analysis ap‑
proach proposed by Baron and Kenny [49] and Koenker and Bassett [50] with quantile
regression. This approach can explore the dynamic causal effect of crude oil on CO2 emis‑
sions in the short term, regardless of its correlation with Bitcoin volatility. The objective is
to achieve the goal of decreasing CO2 emissions based on exploring the relationships be‑
tween them. Quantile regression models are highly advantageous due to their exceptional
robustness, eliminating the need to make any presumptions about the distribution of error
terms [51,52]. In addition, compared to traditional ordinary least squares (OLS) regression,
which only explores the conditional expected value of the explanatory variable, quantile
regression investigates the full range and conditional allocation of the response variable’s
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median. Furthermore, the effect of the explanatory variable on the response variable fluc‑
tuates across quantiles, resulting in a more detailed and effective approach.

2. Methodology
The new approach proposed in this paper blends mediation analysis and quantile re‑

gression to explore the effect of crude oil on CO2 emissions, with or without the effect of
Bitcoin volatility, providing a unique perspective on the correlation between these vari‑
ables. The results can serve as a reference for governments of various countries, or the
Taiwanese government, in formulating energy‑saving and carbon reduction policies.

Our data cover a total of 1826 observations from 1 January 2018 to 31 December 2022.
To ensure cross‑sectional consistency, we relied on the Investing.com database to provide
uswith dailymarket closing prices of Brent crude oil, Bitcoin, and carbon emission futures,
which were used to create a logarithmic model.

2.1. Chow Test
The Chow test is used to test whether the regression coefficients of two different sets

of data are equal. It is widely used to test for the existence of structural changes in time se‑
ries [53]. The main purpose is to test for statistically significant differences between two or
more regression models, making it particularly suitable for detecting the presence of struc‑
tural breaks in time series data. The calculation uses the following equation (Equation (1)):

If our data model is Y = a + b X1 + c X2 + ε, we divide the data into two groups:

Data set 1. Y1 = a1 + b1 X1 + c1 X2 + ε

Data set 2. Y2 = a2 + b2 X1 + c2 X2 + ε

H0. a1 = a2, b1 = b2, and c1 = c2 are structurally similar for data sets 1 and 2.

H1. At least one of a, b, and c is structurally different for data sets 1 and 2.

F =

[
SSRpooled − (SSR1 + SSR2)

]
/k+ 1

(SSR1 + SSR2)/n− 2(k+ 1)
(1)

Critical value: Fα,k,n−2(k + 1)
Rejection rule: F > Fα,k,n−2(k + 1), thus we can reject H0.
In the above equation, SSRpooled is the residual sum of squares of the merged data,

SSR1 is the residual sum of squares of the first group of data, SSR2 is the residual sum
of squares of the second group of data, n is the number of observations in the merged
regression, and k is the total number of variables.

2.2. Augmented Dickey–Fuller (ADF) Unit Root Test
Non‑stationarity is a common occurrence among time series variables. To address

non‑stationary time series, the general strategy is to transform them into stationary series
and then use stationary time series methods to investigate them. An approach for assess‑
ing the stationarity of a time series is to detect its unit root. When a non‑stationary time
series possesses a unit root, the next step is to difference it to eliminate the unit root, which
produces a stationary time series. Unit root testing is the basis for discussing the existence
of cointegration and the persistence of sequence volatility.

To begin with, we utilize the augmented Dickey–Fuller (ADF) unit root model to per‑
form a test, which primarily involves estimating α [54,55]. Using Equation (2), we can test
the alternative hypothesis for α < 0, while the null hypothesis is α = 0:

∆yt = u+ βt + αyt−1 + ∑k
i=1 ci∆yt−1 + εt (2)

where ∆ represents first‑order differencing, yt is the tested time series, t is the time trend
variable, k is added to account for the lag of the residual, and εt is white noise. When the
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null hypothesis is not rejected, it indicates that the sequence is non‑stationary, and when
the null hypothesis is rejected, it implies stationarity of the time series.

2.3. Johansen Cointegration Test
Pagan and Wickens pointed out that if a single variable has a unit root, further coin‑

tegration tests are required [56]. When time series exhibit a cointegration relationship, it
implies that the variables may display short‑term fluctuations but will eventually move
toward equilibrium in the long term. As long as there is a cointegration relationship,
the variables do not need to be treated with first‑order differencing [56]. Therefore, our
testing method adopts the trace test of the Johansen cointegration test [57–59], as shown
in Equation (3):

λtrace(r) = −T∑n
i=r+1 ln

(
1 − λ̂i

)
(3)

where, T is the sample number, λ̂i is the estimate of the ith eigenvalue in the matrix, and
r is the number of cointegrated vectors. If there are r sets of co‑integrated vectors, then
λ1 ̸= 0, λ2 ̸= 0, . . . , λi ̸= 0, and the trace value must be greater than the critical value of 5%.

2.4. Quantile Regression
Generally speaking, regression analysis is limited to estimating the mean or average

of the response variable pursuant to the explanatory variables. However, Koenker and Bas‑
sett [50] proposed quantile regression, which can be used to further infer the conditional
assignment of the response variable. This method can replace ordinary least squares (OLS)
regression. This approach for estimating the conditional quantile function can more com‑
prehensively describe the influence of various explanatory variables, rather than being lim‑
ited to the conditional expected value. Therefore, quantile regression is widely used in var‑
ious fields, such as ecology, healthcare, and financial economics. This approach was later
extended by Koenker, Hallock, and Koenker [51,52]. Referring to Koenker [52], quantile re‑
gression can estimate any quantile, including the median and other conditional quantiles,
and even the entire range of the distribution, rather than using OLS to estimate the mean.

In addition, quantile regression has four distinct advantages. First, it does not have
to make assumptions for error terms, which helps to resist the influence of outlier observa‑
tions. Second, if the error term is not non‑normal or the variable distribution deviates sig‑
nificantly from normal or contains outliers, it is a more effective method than OLS. Third,
because it describes both statistical dispersion and central tendencies, it responds more ro‑
bustly to larger outliers, which helps to analyze the relationship between variables more
comprehensively. Finally, it is possible to estimate any quantile if there are sufficient data.

We followed Koenker and Bassett’s approach [50], and present the regression process
as shown in Equation (4), where yt, t = 1, 2, 3, . . . , T represents a stochastic sample that is
used in the following regression process:

yt = ut + xtβ (4)

Equation (5) has a conditional distribution function, given by:

Fy/x = F(Yt ≤ y) = F(yt − xtβ) (5)

Equation (6) evaluates themarginal impact of an explanatory variable on the response
variable through the θth quantile regressionQy/x (θ), where 0 < θ < 1. In this quantile regres‑
sion, xt, t = 1, 2, 3, . . . , T represents a queue of k rows of vectors for a given model matrix.
The model estimates the effect of an explanatory variable on the response variable under
a particular conditional component, and represents the minimization of the θth quantile
regression as follows:

min
β

θ∑t=T
t=1 |yt − xtβ|+ (1 − θ) ∑t=T

t=1 |yt − xtβ|

{t : Yt ≥ Xtβ} {t : Yt < Xtβ}
(6)
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The solution to this problem is βθ, which corresponds to the θth conditional quantile,
Qy/x (θ) = xβθ.

2.5. Meditation Analysis of Bitcoin
According to Baron andKenny’s approach, themediating effect is an importantmech‑

anism between the explanatory and response variables. To employ mediation analysis
using our data, we investigated the potential causal pathways linking crude oil volatility
and CO2 emissions via Bitcoin, and the direct correlation between crude oil and CO2 emis‑
sions. Following Baron and Kenny’s causal steps procedure [49], by examining the medi‑
ating variable, we can demonstrate a relationship between the explanatory and response
variables, and construct the following regression equations (Equations (7)–(9)):

CO2 = b0 + b1 BRT + e1 (7)

BTC = c0 + c1 BRT + e2 (8)

CO2 = d0 + d1 BRT + d2 BTC + e3 (9)

Here, BRT refers to Brent crude oil price representing the explanatory variable of
crude oil; BTC refers to Bitcoin price representing the mediating variable of Bitcoin volatil‑
ity; CO2 refers to carbon emission futures price representing the response variable of CO2
emissions; and ei, i = 1,2,3 refers to random error terms.

In addition, according to Baron and Kenny’s proposition [49], the mediating vari‑
able between the explanatory and response variables must satisfy three conditions: there
must be (1) a significant interrelationship between the explanatory variable and the medi‑
ating variable; (2) a significant interrelationship between the mediating variable and the
response variable; and (3) a decrease in strength of the direct relationship between the
explanatory and response variables after adding the mediating variable. Therefore, our
mediation analysis of Bitcoin volatility includes the following steps:

Step 1: The explanatory variable BRT should be correlated with the response variable
CO2 such that b1 is significant in Equation (7). This confirms a significant relationship
between BRT and CO2.

Step 2: The explanatory variable BRT should be correlated with the mediator vari‑
able BTC such that c1 is significant in Equation (8). This represents the first stage in our
establishment of mediation effects.

Step 3: The mediator variable BTC should be correlated with the response variable
CO2 such that d2 is significant in Equation (9). This represents the second stage in our es‑
tablishment of mediation effects. Step 4: After controlling for the mediating variable BTC,
the explanatory variable BRT should no longer be correlated with the response variable
CO2, such that d1 is non‑significant in Equation (9). At this point, when considering the
mediating effect transmitted through BTC, the relationship between BRT and CO2 checked
in step 1 disappears, indicating the complete mediating effect of BTC. Nevertheless, if d1
in Equation (9) is still significant and less than b1 in Equation (7), that is d1 < b1, then BTC
exhibits a partial mediating effect.

2.6. Quantile Meditation Analysis
According to the integrated approach proposed by Hsu [60,61], we blended quantile

regression with mediation analysis by incorporating Equation (6) into Equations (7)–(9)
and obtained Equations (10)–(12), which explain minimizing the sum of weighted errors
in a quantile mediation regression.

min
b

[θ∑ |CO2t − b0 − b1 BRTt|+ (1 − θ)∑ |CO2t − b0 − b1 BRTt|] (10)
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min
c

[θ∑ |BTCt − c0 − c1 BRTt|+ (1 − θ)∑ |BTCt − c0 − c1 BRTt|] (11)

min
d

[θ∑ |CO2t − d0 − d1 BRTt|d2 BTCt|+ (1 − θ)∑ |CO2t − d0 − d1 BRTt − d2 BTCt|] (12)

By enabling the examination of all possible parameters (across all quantiles), which
can differ based on the response variable’s level, this approach complements the stan‑
dard regression estimate, which exclusively takes into account a single b, c, or d value.
This novel approach helps in comprehensively understanding the dynamic relationship
between BRT and CO2, as well as their causal relationship.

2.7. Environmental Kuznets Curve (EKC)
The environmental Kuznets curve (EKC) hypothesizes thatmarket forces will initially

increase and then decrease economic inequalitywith economic development, exhibiting an
inverted U‑shaped curve [14].

As most of the literature illustrates a causal relationship between Bitcoin returns and
global economic policies [62–67], this study adopts a quantile regression model and con‑
structs a non‑linear model based on Equations (13) and (14), as proposed by Grossman
and Krueger [68], which analyzes whether there is an inverted U pattern between CO2
and crude oil or Bitcoin.

min
α

[θ∑ |CO2t − α0 − α1 BRTt − α2 BRTt2|+ (1 − θ)∑|CO2t − α0 − α1 BRTt − α2BRTt2|] (13)

min
β

[θ∑|CO2t − β0 − β1 BTCt − β2 BTCt
2|+ (1 − θ)∑|CO2t − β0 − β1BTCt − β2BTCt

2|] (14)

At specific quantiles of CO2 emissions, Equations (13) and (14) require testing the null
hypothesis thatα1 andβ1 are greater than zero, andα2 andβ2 are less than or equal to zero.
If the p‑value obtained from the t‑value calculation is less than 0.05 for these equations, this
suggests the presence of a significant inverted U‑shaped curve [68].

3. Results
In this study, we relied on the Investing.com database to provide daily market clos‑

ing Brent crude oil spot prices (in USD per barrel), Bitcoin prices (in USD per Bitcoin),
and carbon emission futures prices (in EUR per metric ton) to create a logarithmic model.
The data cover a total of 1826 observations from 1 January 2018 to 31 December 2022. We
used EViews12 software to perform descriptive statistics to summarize and characterize
the data, in order to understand the overall distribution of the data.

Table 1 outlines the descriptive statistics in summary form. Only the kurtosis coef‑
ficient of BRT is greater than 3, exhibiting a leptokurtic phenomenon, and the skewness
coefficient shows a left‑skewed phenomenon. The Jarque–Bera test indicates that all vari‑
ables have non‑normal distribution. Bitcoin has a standard deviation of 0.359, indicating
higher volatility than Brent crude oil and CO2 emissions. Figure 1 displays volatility plot
for these variables, with a clear breakpoint observed for CO2 emissions on 18 March 2020.
Therefore, we used the Chow breakpoint test to confirm the existence of a structural break.
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Table 1. Descriptive statistics summary.

BRT BTC CO2

Mean 1.824 4.159 1.532
Median 1.836 4.038 1.438

Maximum 2.107 4.829 1.991
Minimum 1.286 3.509 0.906
Std. Dev. 0.134 0.359 0.261
Skew −0.808 0.255 0.104
Kurt 4.285 1.854 2.166

JB Stats 324.47 * 119.70 * 56.23 *

Observations 1826 1826 1826
Notes: From 1 January 2018 to 31 December 2022. * 1% significance level.
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The F‑value obtained in the Chow breakpoint test was 1019.141, which rejects the null
hypothesis and indicates that 18 March 2020 was a structural breakpoint during the research
period. In other words, there was a structural change in the impact of crude oil and Bitcoin
on CO2 emissions after that date. This coincidedwith the initial outbreak of COVID‑19, when
countries such as China and Italy began to implement lockdown measures.

As shown in Table 2, the linear regression indicates that before COVID‑19, crude oil
and Bitcoin had a reverse effect on CO2 emissions. However, after COVID‑19, crude oil
had a positive effect and Bitcoin had a reverse effect on CO2 emissions.

Table 2. Regression coefficient table.

after 18 March 2020 before 18 March 2020

Constant 3.389 −0.457
BRT −0.616 1.185
BTC −0.244 −0.003

Note: Response variable is CO2.

To establish the integration order of BRT, BTC, andCO2 prior to estimating Equations (10)–(12),
we utilized theADF unit root test [55].

As shown in Table 3, the unit root hypothesis was rejected for all three variables, with
the significance level set at 1%. This indicates that all variables have a unit root unless
they are differenced once, and the hypothesis of a unit root is not supported by the data,
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with the significance level set at 1%. Therefore, we further conducted a cointegration test,
which indicates that if a cointegrating relationship is present, the variables fluctuate dif‑
ferently in the short term but tend to balance in the long term, and do not need to be
first‑differenced [57–59].

Table 3. Augmented Dickey–Fuller (ADF) test results for unit root.

Level p‑Value First Difference p‑Value

BRT 0.138 0.726 −41.086 0.000 **
BTC 0.033 0.693 −45.840 0.000 **
CO2 1.813 0.983 −43.737 0.000 **

** p < 0.01.

Table 4 lists the outcomes of best lag length after the cointegration test. While the
SC and HQ criteria lag behind by 1 and 2 periods, respectively, the other two criteria lag
behind by 8 periods. Since the sample size is 1826, which is considered a large sample from
the time series perspective, and based on the principle that smaller lag length is better, the
SC criterion with a lag length of 1 is suitable.

Table 4. Optimal number of lag periods for Johansen cointegration test.

FPE AIC SC HQ

Lag 8 8 1 2
FPE, final prediction error; AIC, Akaike information criterion; SC, Schwarz information criterion; HQ, Hannan–
Quinn information criterion.

Table 5 shows that there is one cointegrating relationship, and the findings suggest
that crude oil, Bitcoin, and CO2 emissions are interconnected, with a common long‑term
trend, and tend to return to an equilibrium state, even after experiencing significant short‑
term deviations. Therefore, the variables do not need to be first differenced [57–59].

Table 5. Johansen cointegration test of critical values and test statistics.

Null Hypothesis Eigenvalue Trace Statistic 5%

r = 0 λ1 = 0.012 35.284 * 35.192
r ≤ 1 λ2 = 0.005 12.998 20.261
r ≤ 2 λ3 = 0.001 2.444 9.164

Notes: At a 5% significance level, trace test suggests the existence of one cointegrating equation. Lag = 5.
* p < 0.05.

Table6 lists theoutcomesof causality tests forBRT,BTC,andCO2. ForEquations (10) and (11),
we find the following results. Traditional OLS and quantile regression across different CO2
emission distributions provides evidence of a causal relationship between BRT and CO2.
Through quantile regression, a direct correlation is found between BRT andCO2 emissions,
except at the 10th percentile of CO2 emission distribution. The results indicate that the
influence of BRT on CO2 emissions differs across the quantiles of distribution, with a more
significant effect at the upper quantiles (see Table 6 and Figure 2).

Additionally, using traditional OLS and quantile regression (Table 6) reveals a causal
relationship between BRT and BTC across different quantiles distribution. The results in‑
dicate a significant positive impact of BRT on BTC across the entire range (see Table 6 and
Figure 3). These results set up the first stage of the mediating effect of BTC.
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Table 6. Quantile process estimates for BRT to CO2 and BRT to BTC across various quantiles.

Quantile BRT ̸=> CO2 BRT ̸=> BTC
Percentile b1 p‑Value c1 p‑Value

10th −0.032 0.460 1.302 0.003 **
20th 0.192 0.000 ** 0.124 0.025 *
30th 0.356 0.000 ** 0.306 0.006 **
40th 0.520 0.000 ** 0.763 0.000 **
50th 1.164 0.000 ** 0.905 0.000 **
60th 1.197 0.000 ** 0.922 0.000 **
70th 1.195 0.000 ** 1.208 0.000 **
80th 1.205 0.000 ** 1.349 0.000 **
90th 1.246 0.000 ** 1.456 0.000 **

OLS 1.071 0.000 ** 1.020 0.000 **
* p < 0.05; ** p < 0.01.
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The x‑axis indicates CO2 quantiles and y‑axis indicates BRT coefficient values. The
orange line indicates estimated 95% confidence interval for quantiles.

The x‑axis indicates BTC quantiles and the y‑axis indicates BRT coefficient values. The
orange line indicates estimated 95% confidence interval for quantiles.

Table 7 and Figure 4 show that in Equation (12), d2 is significant when both the OLS
method and quantile mediation regression analysis are used. The results demonstrate a
significant correlation between BTC as the mediating variable and CO2 as the response
variable, setting up the second stage of the mediating effect of BTC.

Table 7. Quantile process estimates for BRT and BTC to CO2 across various quantiles.

Quantile BRT ̸=> CO2 BTC ̸=> CO2

Percentile d1 p‑Value d2 p‑Value

10th −0.161 0.003 ** 0.503 0.000 **
20th 0.189 0.000 ** 0.385 0.000 **
30th 0.401 0.000 ** 0.389 0.000 **
40th 0.510 0.000 ** 0.418 0.000 **
50th 0.604 0.000 ** 0.403 0.000 **
60th 0.670 0.000 ** 0.376 0.000 **
70th 0.729 0.000 ** 0.398 0.000 **
80th 0.810 0.000 ** 0.379 0.000 **
90th 0.826 0.000 ** 0.344 0.000 **

OLS 0.621 0.000 ** 0.441 0.000 **
** p < 0.01.
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After controlling for the mediator variable BTC, using OLS, the explanatory variable
BRT is found to be related to the response variable CO2. Equation (12) reveals that d1
is statistically significant, yet smaller than b1 in Equation (10). Since the three steps in
Equations (10)–(12) are satisfied, this result indicates the presence of partial mediation.

Using quantile regression mediation analysis (Table 7) under any CO2 emission dis‑
tribution, the response variable CO2 is significantly influenced by the explanatory variable
BRT. Furthermore, the intermediate variable BTC is also significantly related to CO2. This
satisfies all four steps in Equations (10)–(12) and demonstrates the partial mediating ef‑
fect of BTC. In other words, the outcome indicates that crude oil is a great contributor to
CO2 emissions, with a positive effect observed in all quantiles. Our analysis suggests that
through the mediating effect of Bitcoin, crude oil has a negative impact on CO2 emissions
at the 10th percentile, but a more significant positive impact on CO2 emissions at the up‑
per percentiles compared to the lower percentiles. In addition, our outcome indicates that
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the connection between crude oil and CO2 emissions is partly moderated by Bitcoin. Com‑
pared to the OLS results, our analysis using quantile regression and mediation techniques
provides more exhaustive and encouraging information about the effect of crude oil on
CO2 emissions, and the coefficients obtained are robust evidence.

The x‑axis indicates CO2 quantiles and the y‑axis indicates BRT and BTC coefficient
values. The orange line indicates estimated 95% confidence interval for quantiles.

It is suggested in most of the literature that there is a link between shifts in interna‑
tional economic policy and variations in the returns on Bitcoin investment [62–67]. This
study uses the EKC concept in nonlinear analysis to observe the relationship among crude
oil, Bitcoin, and CO2 emissions. To the best of our knowledge, this topic has not been
explored before.

Table 8 indicates that BRT and BRT2 are significant predictors of CO2 emissions at
most quantiles, except the 40th percentile, where there is no significant effect. It is notewor‑
thy that according to the definition of Equation (13), α1 > 0 and α2 < 0 (BRT2 coefficients
are negative) below the 30th percentile range, indicating a nonlinear inverted U‑shaped
relationship between crude oil and CO2 emissions. On the other hand, above the 40th
percentile range, α1 > 0 and α2 > 0 (BRT2 coefficients are positive), indicating a nonlin‑
ear U‑shaped relationship between crude oil and CO2 emissions. This suggests that CO2
emissions from crude oil first increase and then decrease at lower percentiles of the CO2
emission distribution, but decrease and then increase at higher percentiles. This result is
consistentwithUchiyama’s argument [69] that because carbondioxide is a global pollutant,
its effectiveness has not yet been demonstratedwithin the framework of the Kuznets curve.

Table 8. Quantile process estimates for impact of BRT and BRT2 on CO2 across quantiles.

Quantile BRT ̸=> CO2 BRT2 ̸=> CO2

Percentile α1 p‑Value α2 p‑Value

10th 1.535 0.000 ** −0.467 0.000 **
20th 1.394 0.000 ** −0.353 0.000 **
30th 1.230 0.000 ** −0.248 0.000 **
40th 0.393 0.219 0.232 0.197
50th 0.569 0.000 ** 0.175 0.000 **
60th 0.581 0.000 ** 0.176 0.000 **
70th 0.596 0.000 ** 0.174 0.000 **
80th 0.596 0.000 ** 0.182 0.000 **
90th 0.590 0.000 ** 0.200 0.000 **

Note: ** p < 0.01.

Table 9 shows that BTC2 has a favorable and significant impact on CO2 emissions
across the entire range. According to the definition of Equation (14), β1 > 0 and β2 > 0
(BTC2 coefficients are positive), indicating a nonlinear U‑shaped relationship between Bit‑
coin and CO2 emissions, but no inverted U‑shaped curve exists. This suggests that CO2
emissions from Bitcoin first decrease and then increase at any CO2 emission distribution.
These results suggest that the energy sources used for Bitcoin mining initially reduce and
then increase CO2 emissions.

Table 9. Quantile process estimates for impact of BTC and BTC2 on CO2 across quantiles.

Quantile BTC ̸=> CO2 BTC2 ̸=> CO2

Percentile β1 p‑Value β2 p‑Value

10th 0.149 0.000 ** 0.040 0.000 **
20th 0.249 0.000 ** 0.020 0.000 **
30th 0.238 0.000 ** 0.027 0.000 **
40th 0.245 0.000 ** 0.027 0.000 **
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Table 9. Cont.

Quantile BTC ̸=> CO2 BTC2 ̸=> CO2

Percentile β1 p‑Value β2 p‑Value

50th 0.239 0.000 ** 0.030 0.000 **
60th 0.241 0.000 ** 0.031 0.000 **
70th 0.206 0.000 ** 0.042 0.000 **
80th 0.240 0.000 ** 0.039 0.000 **
90th 0.229 0.000 ** 0.046 0.000 **

** p < 0.01.

4. Discussion
In this study, an innovative approach using quantile‑mediated analysiswas employed

to examine the full range of the impact of crude oil onCO2 emissions through themediating
effect of Bitcoin.

Figure 1 shows a clear breakpoint in CO2 emissions on 18 March 2020 (i.e., the begin‑
ning of the COVID‑19 outbreak). The results of the Chow test indicate a structural break
in the data for the studied time period, implying a change in the slope trend between the
periods before and after that time. With the OLS method, the correct results can only be
obtained using data after 18March 2020. However, the advantage of using quantile regres‑
sion is that it is not limited by structural changes and can detect the full range of data.

Figure 2 and Table 6 show the results of quantile regression analysis, indicating that,
except for the 10th percentile, crude oil has a negative effect on CO2 emissions (with a
coefficient of −0.032) in the distribution of CO2 emissions, while it has a positive effect
in other distributions. In addition, the positive effect of crude oil on CO2 emissions sud‑
denly increases after the 40th percentile (with the coefficient rising from 0.52 to 1.164), but
it decreases after the 50th percentile (with the coefficient increasing from 1.164 to 1.246).
The results indicate that the positive effect of crude oil on CO2 emissions remains almost
constant at the middle and high percentiles, and does not continue to increase.

Figure 3 and Table 6 show further results of quantile regression analysis, indicating
that in the low price range of Bitcoin at the 10th percentile, crude oil has a significant pos‑
itive effect on Bitcoin (with a coefficient of 1.302), which then decreases suddenly (with
the coefficient decreasing from 1.302 to 0.124). As the Bitcoin price distribution moves to
the middle and high percentiles, crude oil continues to have a positive impact on Bitcoin
prices. At this point, the first stage of the Bitcoin intermediary effect is established.

Figure 4 and Table 7 show the results of quantile regression analysis after establishing
the second stage of the Bitcoin mediation effect. The results indicate that for any CO2
emission distribution, crude oil has a negative impact on CO2 emissions except at the 10th
percentile (with a coefficient of−0.161), and as the distribution range increases, the positive
impact of crude oil on CO2 emissions continues to increase (with the coefficient increasing
from 0.189 to 0.826). However, the impact of Bitcoin on CO2 emissions shows a gradually
decreasing positive influence in a wave‑like pattern (with the coefficient fluctuating from
0.503 to 0.344). This shows that, through the partial mediation effect of Bitcoin, the higher
the distribution of CO2 emissions, the higher the positive impact of crude oil.

In addition, we used EKC theory to examine the relationship between crude oil and
CO2 emissions at various percentile ranges of CO2 emission distribution. The results show
that crude oil has an inverted U‑shaped relationship with CO2 emissions below the 30th
percentile range and a U‑shaped relationship above the 40th percentile range. This is sim‑
ilar to the empirical findings of Rahman and Ahmad [16] for Pakistan and Alshehry and
Belloumi [13] for Saudi Arabia, both crude oil exporting countries. In addition, the re‑
sults indicate a nonlinear U‑shaped relationship between Bitcoin and CO2 emissions at
any percentile of CO2 emissions distribution. This is similar to the empirical findings of
Truby et al. [48] regarding the impact of China’smining ban on themigration of equipment
to neighboring countries.
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5. Conclusions
In this study, we present a novel approach for analyzing the relationship between

crude oil and CO2 emissions and investigate whether Bitcoin volatility plays a mediating
role in this relationship. In order to obtain more information efficiently as well as more ro‑
bust results and to estimate the complete range anddistribution of the explanatory variable,
we utilized the innovative method of quantile mediation regression. With this method, we
explored the direct and indirect impacts of crude oil on CO2 emissions and obtained the
following conclusions.

First, crude oil has a direct and an indirect influence on CO2 emissions. This indicates
that in the short term, when the price of crude oil increases, CO2 emissions also increase.
Our study also reveals a partial mediating impact of Bitcoin volatility in the long term,
which results in an indirect positive association between crude oil and CO2 emissions.

Second, crude oil indirectly affects CO2 emissions through the partial mediation effect
of Bitcoin; our findings do not support the presence of an invertedU‑shaped curve between
Bitcoin and CO2 emissions, indicating a different interrelationship between the variables.
This result indicates that the electricity used for Bitcoin mining initially reduces but then
increases CO2 emissions; however, the positive influence is gradually reduced. This is
because the governments ofmany countries have takenmeasures in recent years to address
the environmental damage caused by Bitcoin mining, including China, Iceland, Canada,
and the United States [48,70–72].

Third, the positive impact of crude oil is greater on CO2 emissions at high quantiles
than at low quantiles. The outcome of our study implies that the degree of dependence
on crude oil has a direct impact on CO2 emissions, with higher dependence resulting in a
greater effect; it also shows that under the promotion of renewable energy policies in vari‑
ous countries, crude oil usage and CO2 emissions have not decreased [11]. Our nonlinear
analysis indicates that crude oil exhibits an inverted U‑shaped curve for CO2 emissions be‑
low 30% and aU‑shaped curve for CO2 emissions above 30%. This result is consistent with
Uchiyama’s argument [70] that because carbon dioxide is a global pollutant, its effective‑
ness has not yet been demonstratedwithin the framework of the Kuznets curve. Our study
suggests that a long‑term partial adjustment of Bitcoin would have no effect on reducing
the effect of crude oil on CO2 emissions.

Although Bitcoin’s positive impact on CO2 emissions is gradually decreasing, its in‑
termediary effect has not reduced the impact of crude oil on CO2 emissions. This indicates
that people’s reliance on crude oil has not diminished. In order to achieve the goal of re‑
ducing reliance on crude oil to reduce CO2 emissions, the EU formulated a comprehensive
plan for clean energy in 2019, including gradually phasing out gas‑powered cars and pro‑
moting the use of electric vehicles [73]. Ilyushin and Fetisov [74] proposed improving the
automatic recovery system for crude oil in order to lower production costs. This study
suggests that the government should encourage the use of environmentally friendly and
natural materials in themanufacture of everyday products to reduce the demand for crude
oil extraction as well as its carbon footprint. Policies should be put in place to support the
utilization of more renewable energy sources and the development of infrastructure. Tax
reductions or investment incentives should be provided for renewable energymanufactur‑
ers to reduce the reliance on crude oil and consequently lower carbon emissions.

This study proposes an innovative method of quantile mediation analysis that inte‑
grates the Chow test and EKC. As the applicability of EKC is limited, in future research,
we can use this new method in combination with other tests to further investigate the im‑
pact of other variables that contribute to climate change and environmental damage and
provide references for governments to formulate policies.
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