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Abstract: Many-objective optimization problems (MaOPs) are challenging optimization problems in
scientific research. Research has tended to focus on algorithms rather than algorithm frameworks. In
this paper, we introduce a projection-based evolutionary algorithm, MOEA/PII. Applying the idea of
dimension reduction and decomposition, it divides the objective space into projection plane and free
dimension(s). The balance between convergence and diversity is maintained using a Bi-Elite queue. The
MOEA/PII is not only an algorithm, but also an algorithm framework. We can choose a decomposition-
based or dominance-based algorithm to be the free dimension algorithm. When it is an algorithm
framework, it exhibits a better performance. We compare the performance of the algorithm and the
algorithm with the MOEA/PII framework. The performance is evaluated by benchmark test instances
DTLZ1-7 and WFG1-9 on 3, 5, 8, 10, and 15 objectives using IGD-metric and HV-metric. In addition,
we investigated its superior performance on the wireless sensor networks deployment problem using
C-metric. Moreover, determining objective domain for the objects of the wireless sensor networks
deployment problem reduces the time and makes the solution set more responsive to user needs.

Keywords: many-objective optimization; decomposition; evolutionary algorithm; projection plane;
free dimension; objective domain

1. Introduction

Multi-objective optimization problems (MOPs) [1] arise frequently in various en-
gineering and scientific applications, where multiple conflicting objectives need to be
optimized simultaneously. In many real-world problems, there can be two or three objec-
tives. However, in many applications, the number of objectives is much higher, leading to
many-objective optimization problems (MaOPs) [2].

The many-objective optimization problem (MaOPs) is a common problem in the fields
of engineering and scientific computing [3]. Efforts focused on optimizing the multi-
objective problem have important practical application value [4].

The difference between solving multi-objective optimization problems and solving
single-objective optimization problems lies in the fact that there is more than one objective
to optimize, and there is a constraint relationship between these objectives. In general,
they are conflicting, that is, the performance improvement of one objective will cause the
degradation of other objectives. It is more difficult to solve many-objective optimization
problems than to solve multi-objective optimization problems.

Moreover, real-world problems, such as those involving wireless sensor network
deployment [5], water distribution system design [6], electric vehicle charging station
problems [7], bulldozer blade in soil cutting [8], structural health monitoring [9], gesture
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recognition problems [10], etc., have been modeled using multi-objectives that demand effi-
cient MOEAs. Designing an efficient algorithm to find a set of finite representative solutions
in the objective space and balance the convergence and diversity is a huge challenge.

1.1. Motivation

Solving MaOPs is a challenging task due to the exponential increase in the number of
Pareto-optimal solutions and the difficulty of balancing convergence and diversity in the objec-
tive space. Solving such problems is a common concern in academic and engineering circles.

There are many difficulties in the field of many-objective optimization. The most promi-
nent problems are as follows: first, with the increasing number of objectives, the number
of Pareto-optimal solutions grows exponentially. However, the selection pressure of the
algorithms is often insufficient, and it is impossible to efficiently screen out the potential
representative solution set from a large number of Pareto-optimal solution sets. Second,
along with the increasing number of objectives, the objective space increases exponentially.
More specifically, it is not straightforward for the customers to identify the most appropriate
solutions from the many-objective optimal solution based on these optimization techniques.

Therefore, there is a need to develop new algorithms that can address these issues and
further improve the quality of solutions.

In this paper, we propose a projection-based multi- and many-objective optimization
evolution algorithm. It applies dimension reduction to divide the objective space into
the projection plane and free dimension(s), and it maintains the diversity by carving the
projection grids uniformly. Individuals evolve on the projection plane in each projection
grid at the same time, using the Bi-Elite strategy. On the free dimension(s), we choose the
state-of-the-art evolutionary algorithms to evolve, which maintains the convergence ability.
In this process, the balance between convergence and diversity is maintained.

1.2. Contributions

This paper focuses on the challenge of efficiently finding a set of solutions in the
objective space for MaOPs.

The main contributions of this paper are summarized as follows:

(1) We propose an efficient many-objective evolutionary algorithm framework, MOEA/PII.
Applying the idea of dimension reduction and decomposition, MOEA/PII divides the
objective space into the projection plane and free dimension(s). Firstly, the objective
dimensions chosen by the user are selected as the projection plane and evolution is carried
out on it. Then, on the free dimensions that consist of the remaining objective dimensions,
free dimension algorithms are applied for further evolution. In this way, the objective space
is effectively divided, and the idea of dimensionality reduction is applied to evolution;

(2) MOEA/PII carves the projection plane into projection grids, and the evolution in each
grid is carried out. In each projection grid, the number of individuals to be selected
decreases, and accordingly, the selection pressure is alleviated;

(3) On the projection plane, the customer can determine the objective domain, i.e., the ob-
jective value within a certain range, which helps them to identify the most appropriate
solutions more efficiently;

(4) In the proposed Bi-Elite strategy, each projection has a ConEliteList, saving individuals
projected in the grid. There is also a ProEliteList for the projection plane, saving
individuals outside the determined domain. They are used for sorting, using the free
dimension algorithm;

(5) On the free dimensions, we can apply any other MOEAs. The convergence of the solutions
in each grid is determined by the free dimension algorithm. The distribution of the projec-
tion grid is uniform, which ensures the overall distribution of the solutions. MOEA/PII
addresses the challenges of MaOPs by balancing the convergence and diversity of solutions;

(6) In solving real-world problem, the study of the wireless sensor network deployment
problem shows that MOEA/PII can efficiently perform optimized deployment. By



Processes 2023, 11, 1564 3 of 22

determining the objective domain, the time is reduced and the solution set becomes
more responsive to user needs.

The remainder of this paper is organized as follows. Section 2 introduces the four types
of many-objective optimization algorithms and describes the projection-based method and
presents some definitions for it. Section 3 presents the proposed MOEA/PII framework.
MOEA/PII is described in detail. In Section 4, computational experiments and a real-world
problem are presented to study the performance of the proposed MOEA/PII framework.
Finally, conclusions are given in Section 5.

2. Preliminaries

In general, evolution many-objective algorithms are grouped into four classes.
The first class is the Pareto-dominance-based algorithm. It refers to a Pareto-optimal

set that represents the trade-off among objectives [11]. Such algorithms are effective in
solving the multi-objective optimization problem. However, they encounter challenges
in solving MaOPs due to the high computational complexity, the low efficiency of the
algorithm, and their difficult in solving practical optimization problems [12].

The above problems are solved by a new diversity evaluation mechanism based on
Pareto dominance, which is introduced to enhance the selection pressure of the algorithm
in solving MaOPs. For example, the algorithms with a generalized Pareto optimality crite-
rion [13] can produce more selection pressure within certain ranges. A grid-domination [14]
mechanism is used to balance the convergence and diversity. Some algorithms use fuzzy
logic to improve the probability that a solution dominates others [15], such as fuzzy dom-
ination [16]. The algorithms proposed in [17,18] are based on ε-dominance relationship.
Some algorithms judge the dominance relationship by θ-dominance, such as, θ-DEA [19].

The second class is composed of decomposition-based algorithms, which choose a
scalar method to decompose MaOPs into many scalar optimization sub-problems. In 2007,
Zhang et al. proposed a decomposition-based multi-objective evolutionary algorithm
(MOEA/D) [20], which has become a popular algorithm framework in recent years. In
MOEA/D, the distance relationship between weight vectors is defined as the neighbor
relationship between sub-problems. According to the characteristics of MaOPs, experts pro-
posed many improvement methods. The algorithms in [21,22] exhibit high performance in
many-objective optimization problems with irregular Pareto fronts. Asafuddoula, M. et al.
proposed a decomposition-based evolutionary algorithm, I-DBEA [23].

The next class is composed of indicator-based many-objective evolutionary algorithms,
which guide the search direction, sort the individuals in the evolutionary population, and select
the new population in the evolution process using indicators. For example, Sun, Y.A. et al. [24]
proposed the IGD (inverted generational distance) indicator-based evolutionary algorithm
for solving MaOPs. According to the ability to reflect convergence and diversity at the same
time, the IGD indicator is employed as the selector with the proposed proximity distance
assignments. Liu, Chao et al. proposed a new hyper-volume-based differential evolution
algorithm (MODEhv) [25] for MaOPs in 2017. The HV (hypervolume) indicator, as the
solution selector, is efficient in solving MaOPs [26]. The R2 indicator is a performance
indicator with a high correlation with HV. The two-stage R2 indicator-based evolutionary
algorithm (TS-R2EA) [27] for many-objective optimization was proposed by Li Fei et al. The
algorithm achieved good results to balance the characteristics of convergence and diversity.

The last group is composed of a hybrid method. They make full use of the advantages
of the two algorithms. For example, refs. [28–30] combine the evolution strategies of different
methods. To handle MaOPs, Xiang Y et al. hybridize the decomposition-based algorithm and the
artificial bee colony (ABC) algorithm [31]. Zhao H T et al. proposed an algorithm to accelerate
the convergence speed by hybridizing the decomposition-based many-objective algorithm and
the ant colony optimization (ACO) algorithm [32]. FDEA-I (fraction dominance evolutionary
algorithms I) and FDEA-II (fraction dominance evolutionary algorithms II) [33] use the fractional
dominance relationship to select the best solution, and use the sub-space selection mechanism of
the improved objective space decomposition strategy to maintain diversity at a later stage.
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Each algorithm’s classification and approach is shown in Table 1.

Table 1. Each algorithm’s classification and approach.

Classify Algorithm Year Approaches

Dominance-based
algorithm

Generalized Pareto
optimality criterion [13]. 2016

Generalizes Pareto optimality both symmetrically and
asymmetrically by expanding the dominance area of solutions
to enhance the scalability of existing Pareto-based algorithms.

Grid domination [14]. 2013
Grid dominance and grid difference; uses three grid-based
criteria, grid ranking, grid crowding distance, and grid
coordinate point distance, to determine the fitness.

Fuzzy domination [16]. 2014 The concept of fuzzy logic is adopted to define a fuzzy Pareto
domination relation.

Based on ε-dominance
relationship [17]. 2019

Using ε-dominance, the objective space is divided into boxes,
diversity is ensured by them, and a single solution is
established in each box.

ε-domination-based
Two_Arch2 algorithm [18]. 2022

It uses the diversity archive (DA) and convergence archive
(CA); ε-domination is sorted in the DA; the boundary
protection strategy is based on indicator sorting in the CA.

θ-DEA [19]. 2016

Based on using the θ-dominance relation to sort in the
environmental selection phase, solutions are allocated into
different clusters represented by well-distributed
reference points.

Decomposition-based
algorithms

MOEA/D [20]. 2008
Decomposes a multi-objective optimization problem into a
number of scalar optimization sub-problems, which optimize
by only using information from neighbor sub-problems.

The algorithm [21]. 2022

Based on decomposition and hierarchical clustering selection,
uniformly distributed reference vectors and adaptive
reference vectors are used to divide the population and rank
the dominant individuals, respectively.

OD-RVEA [22]. 2018 An adaptive reference vector adjustment strategy to solve
irregular PF problems.

I-DBEA [23]. 2015 A means of reference point generation, which uses associated
solutions to reference directions.

Indicator-based
algorithm

IGD indicator-based [24]. 2019 The IGD indicator is employed in each generation to select the
solutions with favorable convergence and diversity.

MODEhv [25]. 2017 The hyper-volume indicator is incorporated for the selection
of solutions to be varied and kept in an archive.

TS-R2EA [27]. 2018
R2 indicator-based achievement scalarizing function for the
primary selection; the reference vector guides the objective
space partition approach and the secondary selection strategy.

Hybrid method

KnRVEA [30]. 2019 Based on knee points (convergence) and reference vector
adaptation strategies; a knee adaptation strategy (diversity).

Decomposition-based
artificial bee colony

algorithm [31].
2019

Decomposes a number of sub-problems (maintains diversity),
which are simultaneously optimized by a modified ABC
algorithm (rapid convergence).

Decomposition-based ant
colony [32]. 2020 Decomposition-based many-objective ant colony

optimization; an adaptive reference point mechanism.

FDEA-II [33]. 2021

Fractional dominance relation (strong convergence); the
objective space decomposition approach is improved with a
sub-space selection mechanism (to maintain the population
diversity), a fractional dominance relation, and an improved
objective space decomposition strategy.
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In this paper, we introduced a new projection-plane-based evolutionary algorithm for
many-objective optimization. It is different from the four types of algorithms mentioned
above. It achieves dimensionality reduction by dividing all the objective dimensions
into a projection plane [34] and free dimension, and determines the objective domain of
a certain (some) objective dimension(s) according to user requirements to improve the
solution speed. The projection plane is carved into projection grids; parallel evolution
among each projection grid in the objective domain is carried out at the same time, so
as to alleviate the selection pressure, maintain the diversity, and improve efficiency. The
state-of-the-art evolutionary algorithms used on free dimensions maintain the convergence
of the evolution. Compared to MOEA/P [34], MOEA/P is an algorithm that solves multi-
objective problems by evolving on each ordering projection grid one by one. It sorts the
solutions by calculating the value of the projection box, while MOEA/PII sorts solutions by
using a free dimension algorithm.

2.1. Problem Definition

Definition 1. Many-objective optimization problems (MaOPs): taking the minimization problem
as an example, a many-objective optimization problem can be defined as follows in (1):

Minimize (f 1(X), f2(X), f3(X) · · · · · · fM(X), X ∈ Ω)
gj(X) ≥ 0, j = 1, · · · · · · , J

hk(X)= 0, k = 1, · · · · · · , K
X ∈ Ω

(1)

where f1(X), f 2(X), f 3(X) · · · · · · fM(X) are the M objective functions; Ω is the decision space; gj(X),
hk(X) are constraint functions; J is the number of inequalities, and K is the number of equalities.

2.2. Definitions on MOEA/P Framework

Definition 2. Projection Plane: According to the objective decision requirements, some major
objective dimensions are selected to form the projection plane, and the objective dimensions on the
projection plane are called projection dimensions. The projection plane P is a pure subset of the
multi-objective function set F, namely P ⊂ F.

Definition 3. Free Dimension: The other dimensions of the objective space, except for the projection
plane, are called free dimensions. The set composed of all free dimensions is called the free dimension
set D, D = F − P.

Definition 4. Projection Grid: The projection plane is carved into a set of projection grids by
segments on each projection dimension. The barycenter point of the projection grid is used as
the projection grid vector, denoted Vg. In this paper, the projection grid vectors are simply called
projection grid. Vg consists of the values of the dimensions that make up the projection plane.

Definition 5. Non-Pareto-Projection-Dominated Solution: Non-Pareto projection-dominated solu-
tion xp is a solution that is not Pareto-projection-dominated by any other solutions; correspondingly,
solution set NDP is the set of all non-Pareto-projection-dominated solutions.

Definition 6. Pareto Projection Front: The objective set corresponding to non-Pareto-projection-
dominated solution set NDP is called the Pareto projection front, PPF.

Definition 7. Objective Distance ε: In the process of finding a solution, the purpose of setting
the objective distance is to ensure that the distribution of the space will not be uneven due to the
local proximity between the objective individuals. It means that the value of at least one objective
dimension between any two objective individuals is not less than ε. Otherwise, it will be regarded as
the same objective individual.
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Definition 8. Free Dimension Algorithm: The algorithm used on the free dimension is a free
dimension algorithm. For example, the multi-objective optimization evolutionary algorithms, such
as MOEA/DD, NSGAIII, and so on.

2.3. Definitions on New MOEA/PII Framework

Definition 9. Objective Domain: The objective domain is a scope of user-determined objective
value, on a certain (some) objective dimension(s).

The objective dimension(s), which defined the objective domain, is always used as the
projection plane. Alternatively, a certain (some) objective dimension(s) is selected to define
the objective domain on the determined projection plane.

Definition 10. Projection Elite: If the projection point of the individual on the projection plane
is outside the objective domain, we calculate the Tchebysheff distance between the boundary of the
objective domain and the projection points. We choose the nearest top N individuals as projection
elites and put them into the projection elites queue ProEliteList.

Definition 11. Convergence Elite: If the projection point of the individual on the projection plane
is in the objective domain, we choose the top N individuals of each neighbor grid, which are sorted
by the free dimension algorithm. They are regarded as the convergence elites of each neighbor grid
and are placed into the convergence elites queue ConEliteList.

Definition 12. Bi-Elite Queue: In the Bi-Elite queue, there are convergence elites, followed by
projection elites.

3. MOEA/PII Framework

The MOEA/PII framework is a multi-objective and many-objective evolutionary
algorithm framework based on projection plane.

3.1. MOEA/PII Framework

Many-objective problems are divided into two parts. Some dimensions are regarded
as a projection plane. The other dimensions are regarded as free dimensions. The pro-
jection plane is carved into projection grids, on which the population evolves. On the
free dimensions, we can choose the traditional MOEAs and their state-of-the-art counter-
parts, such as MOEA/D, NSGAII (non-dominated sorting genetic algorithm-II), NSGAIII
(non-dominated sorting genetic algorithm-III), and MOEA/DD, which are applied as free
dimension algorithms.

The projection plane is uniformly divided into projection grids, according to the
number of segments, customized by the users. If the objective domain is defined, the
segments are divided on the objective domain. In the evolution process of a projection
grid, the distribution of solutions is adjusted by the objective distance ε, which guarantees
diversity in the grid. Meanwhile, the uniformity of projection grid distribution ensures the
diversity in the whole projection plane space.

The determined objective domain on the projection plane is shown in Figure 1. The
working process of MOEA/PII is illustrated in Figure 2. In the evolution process, the
offspring reproduced by crossover and mutation operations and each individual p in the
offspring are located in a projection grid Gi or out of the objective domain. If p is in Gi,
it will be stored in ConEliteList(i) by the free dimension algorithm. If p falls outside the
objective domain, it will be stored in ProEliteList and sorted according to its distance
from the domain. The next generation population, which is composed of the solutions in
ConEliteLists and the solutions in ProEliteList, is added when the population quantity is
not sufficient.
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Assuming a 4-objective problem, where f1, f2, f3, and f4 are the objectives, users
have selected f1 and f2 as the projection plane, and determined the objective domain
according to their requirements, i.e., the values of f1 and f2 are both within the range of
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[0, 2]. Each projection dimension is divided into two segments, resulting in four projection
cells, as shown in Figure 1. The free dimension algorithm employs MOEA/DD. The
population N is initialized in each projection grid, with individuals saved in the SourceList.
After performing crossover and mutation operations, the generated offspring are saved in
the GenList.

Assuming S1 and S2 are two individuals in the GenList, after calculating the objective
values for each dimension, we obtain S1 (0.8, 0.8, 3,4), S2 (2.5, 0.5, 2,6). s1′ (0.8, 0.8) and
s2′ (2.5, 0.5) are the projection points of S1 and S2 on the projection plane, respectively.
s1′ (0.8, 0.8) falls into the projection grid G0 and is saved in the ConEliteList(0); s2′ (2.5, 0.5)
falls outside the determined objective domain and is saved in the ProEliteList. When the
individuals are saved into the corresponding elite list, the free dimension algorithm is used
to perform dominance sorting.

After completing the evolution of all individuals in the GenList, the ConEliteList(i)
(where i is from 0 to 3) and ProEliteList are formed. The ConEliteList(i) is sequentially put
into a temporary solution set according to the dominance results. If it is not sufficient to
reach the population size, individuals from the ProEliteList are supplemented until the
population size is reached. The individuals in this temporary solution set are saved in the
OSS and are used as the initial population for the next iteration evolution. The solution set
generated in each iteration is stored in the OSS according to the dominance relationship.

The convergence of MOEA/PII is determined by the free dimension algorithm. The
distribution is guaranteed by the uniform partition of the projection grid. By determining
the objective domain, individuals that do not meet user requirements cannot participate in
evolution, making evolution more effective. Applications in the real world, such as WSN
deployment problems, are detailed in Section 4.

The MOEA/PII framework working process is expressed in the algorithm. The
meanings of the notations used in the algorithm are shown in Table 2.

Table 2. The meanings of notations in algorithms.

Notations Meanings

DS objective decision space
NumOfGrids the number of projection grids

E evolution generation
N initial population size
p individual
Gi the ith projection grid

SourceList all the individuals of the grids
GenList offspring by mutation and crossover operation

ProEliteList individual that fall outside the objective domain will be stored in ProEliteList
ConEliteList(i) if individual is in Gi, it will be stored in ConEliteList(i) by the free dimension algorithm

OSS objective solution set

The Algorithms 1 and 2 works as follows:

Algorithm 1: MOEA/PII

Input:
(1) Many-Objective Problem (MaOP);
(2) End condition;
(3) DS: Objective decision space;
(4) NumOfGrids: the number of projection grid;
(5) E: Evolution generation;
(6) N: Initial Population Size;
(7) Free Dimension Algorithm;
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Algorithm 1: Cont.

Output: Objective Solution Set (OSS);
Algorithm:

Step 1: Set one (more) objective dimension(s) as the projection plane according to DS; According
to the NumofGrids to be carved, divide each normalized objective dimension into segments.
Step 2: Initialize the population

Initialize population, the population size is N; Construct the chromosome and the initialize
individual gene sequence ensuring that all individuals meet the MOP constraints; for each
individual, perform the initial calculation to obtain the corresponding objective function value;

Put all individuals into SourceList;

Step 3: Population evolutio
For e = 1 to E:
{

Step 3.1: Set Bi-Elite queues for the ith projection grid Gi, ConEliteList(i) and
ProEliteList;
Step 3.2: All individuals in SourceList are crossed and mutated with their neighbor
each other. The new generation offspring is put into GenList;
Step 3.3: According to the objective value of each individual in GenList, update the
the Bi-Elite queues for each projection grid; (Algorithm 2)
Step 3.4: Put the Bi-Elite queue back into SourceList, with the sequence of
convergence elites first and then projection elites. At the same time, filter and sort
them by the fitness value and objective distance ε.

}

Step 4: The solutions in SourceList are the optimal solution set(OSS).

Algorithm 2: Bi-Elite

Input:
(1) GenList
(2) NumOfNeighbor: the number of Neighbor;
(3) NeighborPool: the neighbor vector;
(4) Free Dimension Algorithm;

Output:
Bi-Elite Queue of each projection grid: ConEliteList(i) and ProEliteList;

Algorithm:
For each p in GenList
{

Step 1: Calucate the position of p so as to obtain an index of a projection grid Gi, where p falls
in the projection grid, or is its distance from the domain if it falls outside of the
objective domain.
Step 2: Fill the Bi-Elite Queue

Step 2.1: If p is on Gi, store it in ConEliteList(i) using the free dimension algorithm.
Step 2.2: If p falls outside of the objective domain, it will be stored in ProEliteList and
sorted according to its distance from the domain.

}

3.2. The Advantage of Bi-Elite Strategy

N: population size
M: the number of objectives
Sorting //(N×M) times
Apply the MOEA/PII algorithm framework with Bi-Elite strategy
P: the number of the projection plane dimensions
F: the number of free dimensions
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M = P + F
If ConEliteList(S)← In(ProjectionGrid, N)
ProEliteList(R)← Out(ObjectiveDomain, N)
And N = S + R
Then For each S in ConEliteList on F free dimensions
Sorting //(S× F) times
For each R in ProEliteList on P projection plane
Sorting //(R× P)times

We can see that N×M = (S + R)×M = S×M + R×M � S× F + R× P, so the
Bi-Elite strategy compressed the evolutionary magnitude.

3.3. Computational Complexity Analysis

1. The complexity of the crossover and mutation operation.

For each generation, with the crossover probability of 1.0 and the mutation probability
of 1.0 (1/n), we can obtain four individuals for each individual in the population. The size
of the initial population is N, and the offspring population is 4N. Each individual should
be compared with the others in the population. The sorting complexity is O(4N).

2. The complexity of the Bi-Elite sorting.

We choose the binary search as the sorting approach to the Bi-Elite queues. The number
of solutions in ConEliteList is S, and the number of free dimension is F. The complexity of
sorting in the ConEliteList is O(N · logS · F). The number of solutions in the ProEliteList
is R, and the number of projection plane dimension is P. The complexity of sorting in the
ProEliteList is O(N · log R · P). The total complexity of sorting with the Bi-Elite strategy
is O(N · logS · F + N · logR · P), where M = F + P and N = S + R. Correspondingly, the
complexity of binary search without a Bi-Elite strategy is O(N · logN · M).

We can see that the Bi-Elite strategy compressed the evolutionary magnitude,
O(N · logS · F + N · logR · P)� O(N · logN ·M).

4. Experimental Studies and Discussions
4.1. Benchmark Test Instances

In our experiments, each algorithm was ran independently 30 times for each test
instance. We introduce the general parameter settings for the experiments. The benchmark
test instances of DTLZ1-7. It is widely used in the comparison of multi-objective evolu-
tionary algorithms. DTLZ [35] was designed by Deb, K., Thiele, L., Laumanns, M., and
Zitzler in 2002. The DTLZ test instances have different characteristics, and this creates many
difficulties for the algorithm to converge to the Pareto front. DTLZ1 and DTLZ3 include
many difficulties for the algorithm to converge to the Pareto front. DTLZ2 and DTLZ4 are
used to test the ability of the algorithm to deal with different shape problems. DTLZ3 is
a highly multimodal problem. DTLZ4 is a test problem whose density of the points on
the true PF is strongly biased. This test problem is designed to verify whether an MOEA
is able to maintain a proper distribution of the candidate solutions. DTLZ5 and DTLZ6
are the degenerated test problems, whose PFs are irregular. The DTLZ7 test problem has
disconnected and degenerate PFs.

In addition, the benchmark test instances of WFG1-9 [36] are widely used in the
comparison of multi-objective evolutionary algorithms. WFG was proposed by Walking
Fish Group. WFG1 is designed with a flat bias and a mixed structure of the PF. WFG2 is
a test problem that has a disconnected PF. WFG3 is a difficult problem where the PF is
degenerate and the decision variables are non-separable. WFG4 to WFG9 are designed
with different difficulties in the decision space. WFG4 is a multi-modal problem, WFG5 is
a landscape deception problem and WFG6, WFG7, WFG8, and WFG9 are non-separable;
their true PFs are the same convex structure. All of them can be extended to any number of
objectives and decision vectors.
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4.2. Performance Indicator

1. IGD-metric.

Inverted generational distance (IGD) [37] was used as the performance metric in our
experimental analysis. IGD measures the average distance from a set of solutions P∗ in the
true PF to the approximation solution set S.

It can be formulated as follows in (2):

IGD(S, P∗) = ∑x∈P∗ dist(x, S)
|P∗| (2)

where P∗ is a solution set uniformly sampled in the true PF. dist(x, S) is the Euclidean
distance between the solution S and its nearest point x ∈ P∗, and |P∗| is the cardinality of
P∗. The smaller the value of IGD, the better its convergence and diversity, and the closer it
is to the true PF. It indicates that S is the sub-set of P∗ when IGD(S, P∗) = 0. IGD(S, P∗)
can measure both the diversity and convergence of S in a sense.

2. HV-metric.

Hyper-volume (HV) [38] is the volume of the objective space dominated by the approximate
solution set S with the bounded of r∗·r∗ =

(
r∗1 , r∗2 , · · · , r∗m

)
is dominated by all the solutions in

the approximation solution set S, where r∗ is the reference point in the objective space.
It can be formulated as follows in (3):

HV(S) = VOL
(
∪

x∈S
b f1(x), r∗1c × · · · b fm(x), r∗mc

)
(3)

where f1(x), · · · fm(x) is the objective function value of x. The larger the value of HV, the
closer it is to the true PF. HV is affected by the number of objectives and the selection of
reference points.

3. C-metric.

C-metric [39] is an indicator to evaluate the convergence performance of the algo-
rithm using two PF approximate solution sets, and its calculation is based on the Pareto-
dominance relationship. Suppose A and B comprise the approximate solution set, then
the C-metric represents the proportion shown in (4), in which the individuals in B are
dominated by at least one individual in A.

C(A, B) =
|{u ∈ B|v ∈ A : v ≺ u}|

|B| (4)

C-metric (A,B) = 1 means that all individuals in B are dominated by individuals in A,
that is, the convergence of A is better.

4.3. Experiments on Pareto Front

In order to investigate the performance of algorithms with MOEA/PII framework, the
experiments were carried out on the benchmark test cases. Throughout this paper, we use
an abbreviation of N3P2 to denote the algorithm NSGAIII with the MOEA/PII framework,
and DDP2 to denote the algorithm MOEA/DD with the MOEA/PII framework.

In addition, all of the algorithms compared in this study have several parameters. The
parameters of the crossover operator and mutation operator are shown in Table 3.

Table 3. Parameter settings.

Parameters Settings

SegmentsCrossOver Pc = 1.0
Random Mutation Pm = 1/n
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In an effort to compare the performance of algorithms, we set the population size
and generations for the original algorithms (1000, 1000). When applying the MOEA/PII
framework, the population initializes in each projection grid, so the number of initial
population size will increase by a certain multiple. The population size is calculated by the
number of projection grids (G), 1000⁄G. Accordingly, the generation size for the algorithms
with MOEA/PII is calculated by the number of projection dimensions (D), 1000/(D + 1).
For example, if the number of the projection dimension is 3 and there are 2 segments on
each dimension, the generation size is 250 and population size is 125. The parameters of
generations and population size are shown in Table 4.

Table 4. General parameter settings. Number of generations for different algorithms (generations
and population size).

ALGORITM M = 3 M = 5 M = 8 M = 10 M = 15

MOEA/DD
NSGAIII (1000, 1000) (1000, 1000) (1000, 1000) (1000, 1000) (1000, 1000)

DDP2
N3P2 (500, 500) (500, 500) (300, 250) (200, 250) (200, 150)

DTLZ1 includes many difficulties, so it is a challenge for the algorithm to converge
to the Pareto front. DTLZ4 has different shape problems, so that the density of the points
on the true PF is strongly biased. DTLZ5 is a degenerated test problem whose PFs are
irregular. WFG1, WFG2, and WFG3 are a mixed structure, disconnected, and degenerate,
respectively. They have a certain degree of representativeness.

It is worth noting that for the benchmark problem DTLZ and WFG, DDP2 and N3P2 tend
to obtain more diverse Pareto approximate solutions in the PF with 3-objective, as illustrated
in Figures 3 and 4.

In order to observe the performance of DDP2 and N3P2 on MaOPs visually, the parallel
coordinates of the non-dominated front obtained by the MOEA/DD and DDP2 algorithms
on DTLZ1-4 DTLZ1, DTLZ4, and DTLZ5 with 15-objective, and those obtained by the
NSGAIII and N3P2 algorithms on WFG1-4 with 10-objective are depicted in Figures 5 and 6,
respectively. As can be seen, DDP2 and N3P2 were able to obtain a solution set with a
better diversity.
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4.4. Perfomance Analysisc

The results of the IGD-metric values obtained by the MOEA/DD and DDP2 algo-
rithms on the DTLZ test instances are summarized in Table 5, in which the best results
are highlighted. The results of the IGD-metric values obtained by the NSGAIII and N3P2
algorithms on the WFG test instances are summarized in Table 6, in which the best results
are highlighted. The results of the HV-metric values obtained by the NSGAIII and N3P2
algorithms on the DTLZ test instances are summarized in Table 7, in which the best results
are highlighted.

Table 5. The mean and deviation value of the IGD-metric of MOEA/DD and DDP2 from 30 independent
runs for each DTLZ test instance. Best performance is highlighted in bold face in gray background.

Test
Instances Algorithm M = 3 M = 5 M = 8 M = 10 M = 15

DTLZ1
MOEA/DD 0.010 (0.001) 0.110 (0.002) 0.179 (0.001) 0.180 (0.002) 0.181 (0.002)
DDP2 0.010 (0.001) 0.075 (0.002) 0.173 (0.001) 0.173 (0.001) 0.176 (0.001)

DTLZ2
MOEA/DD 0.026 (0.000) 0.198 (0.001) 0.454 (0.001) 0.524 (0.001) 0.542 (0.001)
DDP2 0.028 (0.000) 0.169 (0.002) 0.415 (0.001) 0.507 (0.002) 0.542 (0.001)

DTLZ3
MOEA/DD 0.030 (0.000) 0.260 (0.002) 0.435 (0.001) 0.522 (0.001) 0.553 (0.001)
DDP2 0.029 (0.000) 0.196 (0.001) 0.371 (0.001) 0.417 (0.003) 0.543 (0.001)

DTLZ4
MOEA/DD 0.034 (0.001) 0.229 (0.001) 0.451 (0.001) 0.448 (0.001) 0.456 (0.002)
DDP2 0.031 (0.001) 0.197 (0.001) 0.363 (0.001) 0.401 (0.001) 0.449 (0.002)

DTLZ5
MOEA/DD 0.053 (0.000) 0.113 (0.000) 0.394 (0.001) 0.472 (0.001) 0.501 (0.001)
DDP2 0.009 (0.001) 0.069 (0.001) 0.307 (0.001) 0.421 (0.001) 0.479 (0.001)

DTLZ6
MOEA/DD 0.078 (0.001) 0.156 (0.001) 0.377 (0.001) 0.468 (0.001) 0.558 (0.001)
DDP2 0.016 (0.001) 0.079 (0.001) 0.316 (0.001) 0.468 (0.001) 0.534 (0.001)

DTLZ7
MOEA/DD 0.065 (0.001) 0.192 (0.001) 0.435 (0.001) 0.477 (0.001) 0.565 (0.001)
DDP2 0.062 (0.001) 0.167 (0.001) 0.402 (0.001) 0.461 (0.001) 0.526 (0.001)

Table 6. The mean and deviation value of the IGD-metric of NSGAIII and N3P2 from 30 independent
runs for each WFG test instance. Best performance is highlighted in bold face in gray background.

Test Instances Algorithm M = 3 M = 5 M = 8 M = 10 M = 15

WFG 1
NSGAIII 0.098 (0.001) 0.591 (0.001) 4.406 (0.000) 7.081 (0.000) 11.896 (0.001)
N3P2 0.106 (0.000) 0.575 (0.000) 1.504 (0.001) 1.861 (0.001) 4.789 (0.001)

WFG 2
NSGAIII 0.124 (0.001) 0.559 (0.000) 7.169 (0.001) 10.920 (0.000) 18.124 (0.001)
N3P2 0.133 (0.001) 0.533 (0.001) 2.583 (0.000) 3.498 (0.000) 10.534 (0.000)

WFG 3
NSGAIII 0.073 (0.000) 0.350 (0.000) 1.301 (0.000) 1.785 (0.000) 2.635 (0.001)
N3P2 0.020 (0.001) 0.111 (0.000) 0.686 (0.001) 1.250 (0.000) 2.348 (0.001)

WFG 4
NSGAIII 0.133 (0.000) 0.690 (0.000) 2.441 (0.000) 4.572 (0.000) 6.337 (0.001)
N3P2 0.093 (0.001) 0.532 (0.000) 1.901 (0.001) 3.442 (0.001) 5.106 (0.001)

WFG 5
NSGAIII 0.151 (0.000) 0.752 (0.000) 2.971 (0.000) 6.833 (0.000) 8.926 (0.001)
N3P2 0.112 (0.001) 0.526 (0.000) 2.088 (0.001) 3.549 (0.000) 6.479 (0.001)

WFG 6
NSGAIII 0.230 (0.000) 1.256 (0.000) 3.257 (0.000) 6.164 (0.000) 8.764 (0.001)
N3P2 0.097 (0.000) 0.558 (0.001) 2.068 (0.001) 3.882 (0.001) 4.586 (0.001)

WFG 7
NSGAIII 0.381 (0.000) 1.081 (0.000) 3.261 (0.000) 5.129 (0.000) 7.873 (0.001)
N3P2 0.790 (0.001) 0.531 (0.000) 2.012 (0.001) 3.609 (0.001) 5.985 (0.001)

WFG 8
NSGAIII 0.162 (0.000) 1.026 (0.000) 3.419 (0.000) 5.656 (0.000) 8.164 (0.001)
N3P2 0.094 (0.000) 0.526 (0.001) 2.103 (0.001) 3.864 (0.001) 6.325 (0.001)

WFG 9
NSGAIII 0.187 (0.000) 0.812 (0.000) 3.248 (0.000) 5.506 (0.000) 8.487 (0.001)
N3P2 0.102 (0.001) 0.546 (0.001) 2.071 (0.001) 3.624 (0.000) 6.109 (0.001)
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Table 7. The mean and deviation value of the HV-metric of NSGAIII and N3P2 from 30 independent
runs for each DTLZ test instance. Best performance is highlighted in bold face in gray background.

Test Instances Algorithm M = 3 M = 5 M = 8 M = 10 M = 15

DTLZ1
NSGAIII 0.265 (0.016) 0.249 (0.023) 0.232 (0.021) 0.227 (0.021) 0.220 (0.026)
N3P2 0.271 (0.021) 0.261 (0.013) 0.238 (0.021) 0.235 (0.019) 0.225 (0.025)

DTLZ2
NSGAIII 0.226 (0.032) 0.183 (0.016) 0.112 (0.023) 0.283 (0.023) 0.118 (0.033)
N3P2 0.226 (0.022) 0.205 (0.023) 0.152 (0.012) 0.247 (0.027) 0.180 (0.026)

DTLZ3
NSGAIII 0.229 (0.031) 0.224 (0.023) 0.180 (0.011) 0.162 (0.022) 0.133 (0.016)
N3P2 0.241 (0.024) 0.232 (0.018) 0.189 (0.014) 0.181 (0.031) 0.174 (0.033)

DTLZ4
NSGAIII 0.278 (0.023) 0.318 (0.023) 0.243 (0.033) 0.203 (0.031) 0.164 (0.021)
N3P2 0.316 (0.024) 0.332 (0.022) 0.266 (0.025) 0.253 (0.034) 0.190 (0.032)

DTLZ5
NSGAIII 0.202 (0.023) 0.213 (0.018) 0.287 (0.023) 0.183 (0.026) 0.161 (0.023)
N3P2 0.216 (0.022) 0.223 (0.017) 0.299 (0.012) 0.195 (0.022) 0.179 (0.019)

DTLZ6
NSGAIII 0.158 (0.018) 0.144 (0.012) 0.176 (0.034) 0.148 (0.021) 0.131 (0.023)
N3P2 0.166 (0.022) 0.166 (0.016) 0.190 (0.025) 0.153 (0.022) 0.147 (0.012)

DTLZ7
NSGAIII 0.109 (0.019) 0.084 (0.019) 0.123 (0.020) 0.141 (0.023) 0.097 (0.022)
N3P2 0.137 (0.022) 0.096 (0.013) 0.136 (0.011) 0.146 (0.022) 0.105 (0.022)

In order to provide a visual representation, Figure 7a–c show the statistical trend in
the data from Tables 5–7 respectively. Two groups of data from each table were chosen for
a clear and intuitive illustration.
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Figure 7. (a) The mean IGD-metric value of MOEA/DD and DDP2 on DTLZ from Table 5; (b) The
mean IGD-metric value of NSGAIII and N3P2 on WFG from Table 6; (c) The mean HV-metric value
of NSGAIII and N3P2 on DTLZ from Table 7.

It can be seen that the algorithms (MOEA/DD and NSGAIII) with MOEA/PII frame-
work exhibited the best performance on the benchmark test instances DTLZ1-7 and WFG1-9,
with 3-, 5-, 8- 10-, and 15-objective.

4.5. Experiments on Projection Grids

This experiment was focused on projection grids with the MOEA/PII framework.
After choosing the projection dimensions, we set the segments on them to carve the
projection plane. Each projection dimension was segmented, and all segments of each
dimension were combined to form the projection grids of the projection plane.

We ran the algorithms on the 5-objective DTLZ1 test instance and recorded the results
of the IGD-metric values in Tables 8 and 9.
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Table 8. The mean and deviation value of the IGD-metric of MOEA/DD and NSGAIII for 30 inde-
pendent runs on 5-objective DTLZ1 test instance.

Algorithm IGD

DTLZ1
MOEA/DD 0.110 (0.002)

NSGAIII 0.031 (0.000)

Table 9. The mean and deviation value of the IGD-metric of DDP2 and N3P2 for 30 independent
runs on 5-objective DTLZ1 test instance with different numbers of projection grids.

Projection Grids DDP2 N3P2

DTLZ1

2D_2S/D_4G 0.075 (0.001) 0.025 (0.001)
3D_2S/D_8G 0.073 (0.001) 0.027 (0.000)
2D_3S/D_9G 0.067 (0.001) 0.023 (0.001)
2D_4S/D_16G 0.063 (0.000) 0.02 (0.001)
4D_2S/D_16G 0.081 (0.001) 0.03 (0.001)
3D_3S/D_27G 0.062 (0.000) 0.017 (0.001)
3D_4S/D_64G 0.053 (0.000) 0.014 (0.000)
4D_3S/D_81G 0.053 (0.000) 0.014 (0.000)
4D_4S/D_256G 0.053 (0.000) 0.014 (0.000)

The column of projection grids in Table 9 and the X-axis coordinate scale in Figure 8 are
annotated by the number of projection dimensions, segments per dimension, and projection
grids. For example, a projection plane is two dimensional (2D), and each dimension is
divided into two segments (2S/D). The number of combination is four, which is the number
of projection grids (4G). It is recorded as 2D_2S/D_4G.
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Figure 8. The mean value of the IGD-metric obtained by MOEA/DD, NSGAIII, DDP2, and N3P2 on
the 5-objective DTLZ1 benchmark test instance with different numbers of projection grids.

Figure 8 shows the mean value of the IGD-metric obtained by MOEA/DD, NSGAIII,
DDP2, and N3P2 on the 5-objective DTLZ1 benchmark test instance with different numbers
of projection grids. We can see that for the same number of projection dimensions, the more
segments there are, the more the projection grids, and the better the IGD-metric value.

There was also another scenario of 2D_4S/D_16G and 4D_2S/D_16G, which was
different. We know that the IGD-metric value expresses the convergence and diversity of the
algorithm at the same time. Because 4D_2S/D_16G has two segments for each dimension,
the diversity is worse than for four segments for each dimension (2D_4S/D_16G). Therefore,
the IGD-metric value of 2D_4S/D_16G was better than that of 4D_2S/D_16G. In addition,
for the same number of projection grids, we should choose the fewest projection dimensions
and more segments.
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4.6. Experiments on Wireless Sensor Networks (WSNs) Deployment Problem

Since the performance of the proposed algorithm was competitive on unconstrained
test problems, we investigated its performance on wireless sensor networks deployment
problem [40]. When we deploy sensor nodes, we need to consider a series of problems, such
as the coverage of the detection space, the connectivity among sensor nodes, the cost, the
network life cycle, and so on. However, there are mutual constraints and imbalanced goals
among these problems, so we usually regard them as multi-objective optimization problems.

Suppose that a 100-square-meter plane with a width of 10 m and a length of 10 m is
evenly divided into grids, each denoted Cij. This is the detection area detected by the WSN
composed of a set of sensor nodes.

The WSN is composed of a set of sensors S = s1, s2 · · · sn and a set of sink nodes
SK = sk1, sk2 · · · skm. The cost of the wireless sensor network includes two parts: the sensor
node cost and sink node cost. The cost can be calculated using (5).

f1 = Cs∗ ‖ S ‖ +Csk∗ ‖ SK ‖ (5)

where Cs and Csk represent the purchase costs of the sensor node and sink node, respectively.
S and SK are the quantity of sets S and SK, respectively.

Each sensor node has a sensing area and can sense a target within its sensing radius R.
The Euclidean distance between Cij and the sensor node Si is denoted d(Cij, Si). The case in
which the target Cij is covered is represented by (6).

cov
(
Cij, Si

)
=

{
1 d

(
Cij, Si

)
≤ R

0 otherwise
(6)

The coverage fraction can be calculated by (7).

f2 =
∑i ∑j cov

(
Cij, Si

)
100

× 100% (7)

Information transmission in WSNs should ensure security, efficiency, and reliability,
and connectivity can be evaluated based on the received signal strength calculated at the
receiving node. In the process of radio propagation, assuming the signal transmission point
is bij, the signal strength at this point is PTX, and the receiving point is nij. The received
signal strength at this point is RSSI(i, j). The relationship between the transmitted signal
strength and the received signal strength is expressed in (8).

RSSI(i, j) = PTX − PL
(
bij, nij

)
(8)

The connection is calculated by the RSSI(i, j), which is greater than the minimum
signal strength Ptsh required for communication or not. This is shown in (9).

con(i, j) =
{

1 RSSI(i, j) ≥ Ptsh
0 otherwise

(9)

The connectivity fraction can be calculated using (10).

f3 =
∑i ∑j con(i, j)

100
× 100% (10)

The deployment cost is relative to the number of sensor nodes; the coverage fraction
satisfies the maximum coverage of the detection area and the connectivity. f1, f2, and f3 are
the objectives to be optimized. We want to obtain the highest coverage and connectivity
for the lowest cost (with the fewest sensor nodes). These objectives are in conflict, which
makes finding the optimal solution difficult, creating a multi-objective problem.
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4.6.1. Compare the C-Metric between Algorithms and with the MOEA/PII Framework

We compare the coverage performance of the MOEA/DD algorithm and DDP2 al-
gorithm, and NSGAIII algorithm and N3P2 algorithm using the C-metric indicator. The
results are shown in Tables 10 and 11, with a generation iteration of 500. We can see
in Table 10 that 23.2% of the solutions in the solution set obtained by MOEA/DD were
dominated by those obtained by DDP2. Instead, only 1.5% of the solutions in the solution
set obtained by DDP2 were dominated by MOEA/DD. This means that the solutions in
the solution set obtained by DDP2 were better than those obtained by the MOEA/DD
algorithm. In addition, in Table 11, we can see that 18.8% of the solutions in the solution
set obtained by NSGAIII were dominated by those obtained by N3P2. Instead, only 10.6%
of the solutions in the solution set obtained by N3P2 were dominated by NSGAIII. This
indicates that the solutions in the solution set obtained by N3P2 were better than those
obtained by the NSGAIII algorithm.

Table 10. The comparison of C-Metric between MOEA/DD and DDP2.

Algorithm 1 MOEA/DD 2 DDP2

1 MOEA/DD — C(1, 2) = 0.015 (0.002)
2 DDP2 C(2, 1) = 0.232 (0.004) —

Table 11. The comparison of C-Metric between NSGAIII and N3P2.

Algorithm 1 NSGAIII 2 N3P2

1 NSGAIII — C(1, 2) = 0.106 (0.003)
2 N3P2 C(2, 1) = 0.188 (0.002) —

4.6.2. Experiments on Determining the Objective Domain

The optimal WSN deployment solution uses the fewest sensor nodes to obtain the
highest connectivity and coverage fraction. This is a multi-objective optimization prob-
lem. Multi-objective optimization evolutionary algorithms can solve these. However, the
algorithms obtain a set of non-dominated solutions, and some of them are not suitable for
customers. This makes it difficult for the customer to choose a suitable solution. If they
prefer a high coverage fraction, they further filter the solutions.

We chose the N3P2 algorithm, set the population size to 60 and the generation iter-
ation to 100, and ran the experiment 30 times independently to obtain the average value
for comparison.

In the same deployment scenario, we set the cost and connectivity ( f1 and f3) as the
free dimensions, and the coverage fraction ( f2) as the projection plane. In one experiment,
there was no determination on any dimensions. In the other experiment, the objective
domain on the projection plane of the coverage fraction ( f2) was determined, and the
objective domain was from 50% to 100%.

We can see in Table 12 that when no dimensions were determined, the algorithm ran
for a long time but obtained less satisfactory solutions than what was required by the
customer. Determining the objective domain of the objects of the wireless sensor networks
deployment problem made the solution set run faster and made it more responsive to
user needs.

Table 12. The comparison of the average time and number of solutions that meet user requirements
by determining the objective domain or not with N3P2 algorithm.

Determined the Objective Domain Average Time
(s) Average Number of Solutions that Meet User Requirements

No determined. 12.397 13.1
Coverage fraction scope [50–100%] 9.779 22.5
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5. Conclusions

This paper proposes a MOEA/PII algorithm framework to solve many-objective
optimization problems. MOEA/PII is an algorithm framework based on projection plane.
Different from the other MOEAs for MaOPs, the MOEA/PII is a framework that can be
combined with the original algorithms. Some objective dimensions are chosen to be the
projection plane, which evolve via the projection grids. The left objective dimensions are
the free dimensions that evolve via the originally selected algorithm. In addition, the
non-dominated solutions are sorted and temporarily stored in the convergence elite and
projection elite lists. The population of the next generation is composed of the solutions in
ConEliteLists, and the solutions in ProEliteList are added when the population quantity is
not sufficient.

In an attempt to alleviate the problem of selection pressure, the MOEA/PII carves the
projection plane into projection grids, and the evolution process is carried out in each grid.
In each projection grid, the number of individuals to be selected decreases, and accordingly,
the selection pressure is alleviated.

The mechanism of Bi-Elite ensures that there are solutions in each grid. In the
MOEA/PII framework, the distribution of the projection grid is uniform, which ensures
the overall distribution of the solutions. The convergence of the solutions in each grid is
determined by the free dimension algorithm.

In addition, we assessed the performance of the MOEA/PII framework from five
aspects. First, the solutions set produced by MOEA/PII on 3-objective test instances
was closer to Pareto fronts and was well-distributed on the PFs. For 15-objective test
instances, the solutions were shown in the parallel coordinate. Secondly, we compared the
IGD-metric and HV-metric values of the original algorithms and the original algorithms
with the MOEA/PII framework running on benchmark test instances, i.e., DTLZ1-7 and
WFG1-9, with 3, 5, 8, 10, and 15 objectives. The findings of this study support the idea
that the MOEA/PII framework is efficient. Thirdly, the experiments demonstrated ways
in which a projection grid could be chosen. The evidence from this study suggests that
more segments lead to more projection grids, which improves the IGD-metric value. There
was one exception: when we chose the fewest projection dimensions with more segments
at the same number of grids. Fourthly, we investigated our framework’s performance
on the wireless sensor networks deployment problem. The solutions in the solution set
obtained by the algorithms with MOEA/PII were better than those obtained by the original
algorithms. Finally, when the user determined the objective domain, the solution set was
more responsive to user needs, and the time was reduced.

The experiments were carried on two state-of-the-art MOEAs (MOEA/DD and NS-
GAIII) on DTLZ1-7, WFG1-9 benchmark test instances, and a wireless sensor networks
deployment problem, which demonstrated superior performance with MOEA/PII. In sum-
mary, these findings highlight a role for the MOEA/PII framework. Our study provides a
novel framework for solving MaOPs.
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