An Ultra Compact Microstrip Branch Line Coupler with Wide Stopband Using LCL Filter and Meandered Stubs for Microwave Applications
Abstract
:1. Introduction
2. Design Process of the Proposed Branch Line Coupler
2.1. Design Process of the Conventional 900 MHz Branch Line Coupler
2.2. Design Process of the Preliminary 900 MHz Branch Line Coupler
2.3. Analyses of the Proposed LCL Filter Branch
2.4. Design Process of the Proposed 900 MHz Branch Line Coupler
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roshani, S.; Yahya, S.I.; Mezaal, Y.S.; Chaudhary, M.A.; Al-Hilali, A.A.; Ghadi, Y.Y.; Karimi, M.; Roshani, S. A Compact Filtering Coupler with Unwanted Harmonic Rejection Using LC Composite Lines for Communication Systems Applications. Systems 2022, 11, 14. [Google Scholar] [CrossRef]
- Roshani, S.; Yahya, S.I.; Roshani, S.; Farahmand, A.H.; Hemmati, S. Design of a modified compact coupler with unwanted harmonics suppression for L-band applications. Electronics 2022, 11, 1747. [Google Scholar] [CrossRef]
- Roshani, S.; Yahya, S.I.; Roshani, S.; Rostami, M. Design and fabrication of a compact branch-line coupler using resonators with wide harmonics suppression band. Electronics 2022, 11, 793. [Google Scholar] [CrossRef]
- Hosseinkhani, F.; Roshani, S. A compact branch-line coupler design using low-pass resonators and meandered lines open stubs. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 1164–1170. [Google Scholar]
- Kumar, K.P.; Karthikeyan, S. Wideband three section branch line coupler using triple open complementary split ring resonator and open stubs. AEU-Int. J. Electron. Commun. 2015, 69, 1412–1416. [Google Scholar] [CrossRef]
- Shiau, M.S.; Yuan, S.Y.; Liao, S.S.; Sun, P.T.; Liu, D.G. A miniaturized millimeter-wave branch-line coupler using nonsymmetrical T-shape structure with quasi-stepped impedance resonator. Microw. Opt. Technol. Lett. 2007, 49, 2950–2953. [Google Scholar] [CrossRef]
- Roshani, S.; Azizian, J.; Roshani, S.; Jamshidi, M.; Parandin, F. Design of a miniaturized branch line microstrip coupler with a simple structure using artificial neural network. Frequenz 2022, 76, 255–263. [Google Scholar] [CrossRef]
- Liao, S.-S.; Sun, P.-T.; Chin, N.-C.; Peng, J.-T. A novel compact-size branch-line coupler. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 588–590. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.-Z.; Guo, Y.-X.; Ong, L.; Xiao, S. A compact slow-wave microstrip branch-line coupler with high performance. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 501–503. [Google Scholar] [CrossRef]
- Islam, R.; Omi, A.I.; Maktoomi, M.A.; Zakzewski, C.; Sekhar, P. A new coupled-line based dual-band branch-line coupler with port-extensions. Prog. Electromagn. Res. M 2021, 105, 21–30. [Google Scholar] [CrossRef]
- Wu, X.; Shen, L.-P. Compact Ultra-Wideband Microstrip 3dB Branch-Line Coupler Using Coupled-Lines. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 1462–1463. [Google Scholar]
- Barik, R.K.; Koziel, S.; Szczepanski, S. Wideband highly-selective bandpass filtering branch-line coupler. IEEE Access 2022, 10, 20832–20838. [Google Scholar] [CrossRef]
- Sun, K.-O.; Ho, S.-J.; Yen, C.-C.; Van Der Weide, D. A compact branch-line coupler using discontinuous microstrip lines. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 519–520. [Google Scholar] [CrossRef]
- Arriola, W.A.; Lee, J.Y.; Kim, I.S. Wideband 3 dB Branch Line Coupler Based on 𝜆/4 Open Circuited Coupled Lines. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 486–488. [Google Scholar] [CrossRef]
- Zaidi, A.M.; Imam, S.A.; Kanaujia, B.K.; Rambabu, K.; Kishor, J. Multisection branch line couplers as dual-band crossovers using coupled lines for wideband applications. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21523. [Google Scholar] [CrossRef]
- Dwari, S.; Sanyal, S. Size reduction and harmonic suppression of microstrip branch-line coupler using defected ground structure. Microw. Opt. Technol. Lett. 2006, 48, 1966–1969. [Google Scholar] [CrossRef]
- Ramesh, M.; Packiaraj, D.; Kalghatgi, A. A compact branch line coupler using defected ground structure. J. Electromagn. Waves Appl. 2008, 22, 267–276. [Google Scholar] [CrossRef]
- Huang, W.; Guo, X.; Li, J.; Ruan, W. Compact microwave components based on artificial transmission lines with H-type defected ground structure. Electromagnetics 2021, 41, 10–25. [Google Scholar] [CrossRef]
- Tang, C.-W.; Chen, M.-G.; Lin, Y.-S.; Wu, J.-W. Broadband microstrip branch-line coupler with defected ground structure. Electron. Lett. 2006, 42, 1458–1460. [Google Scholar] [CrossRef]
- Kuo, J.-T.; Wu, J.-S.; Chiou, Y.-C. Miniaturized rat race coupler with suppression of spurious passband. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 46–48. [Google Scholar] [CrossRef]
- Lee, H.-S.; Choi, K.; Hwang, H.-Y. A harmonic and size reduced ring hybrid using coupled lines. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 259–261. [Google Scholar] [CrossRef]
- Lin, C.-M.; Su, H.-H.; Chiu, J.-C.; Wang, Y.-H. Wilkinson power divider using microstrip EBG cells for the suppression of harmonics. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 700–702. [Google Scholar] [CrossRef]
- Sung, Y.; Ahn, C.; Kim, Y.-S. Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure. IEEE Microw. Wirel. Compon. Lett. 2004, 14, 7–9. [Google Scholar] [CrossRef]
- Assimonis, S.D.; Yioultsis, T.V.; Antonopoulos, C.S. Computational investigation and design of planar EBG structures for coupling reduction in antenna applications. IEEE Trans. Magn. 2012, 48, 771–774. [Google Scholar] [CrossRef]
- Mu’Ath, J.; Denidni, T.A.; Sebak, A.R. Millimeter-wave compact EBG structure for mutual coupling reduction applications. IEEE Trans. Antennas Propag. 2014, 63, 823–828. [Google Scholar]
- Elhiwairis, M.Y.O.; Abd Rahim, S.K.B.; Okonkwo, U.A.K.; Jizat, N.B.M.; Jamlos, M.F.B. Miniaturized size branch line coupler using open stubs with high-low impedances. Prog. Electromagn. Res. Lett. 2011, 23, 65–74. [Google Scholar] [CrossRef]
- Abdulbari, A.A.; Rahim, S.K.A.; Abd Aziz, M.Z.A.; Tan, K.G.; Noordin, N.; Nor, M. New design of wideband microstrip branch line coupler using T-shape and open stub for 5G application. Int. J. Electr. Comput. Eng. 2021, 11, 1346. [Google Scholar] [CrossRef]
- Chang, H.; Lim, T.; Dimitrov, K.C.; Lee, Y. Dual-band branch-line coupler based on crossed lines for arbitrary power-split ratios. Sensors 2022, 22, 5527. [Google Scholar] [CrossRef]
- Nie, W.; Xu, K.-D.; Zhou, M.; Xie, L.-B.; Yang, X.-L. Compact narrow/wide band branch-line couplers with improved upper-stopband. AEU-Int. J. Electron. Commun. 2019, 98, 45–50. [Google Scholar] [CrossRef]
- Parandin, F.; Olyaee, S.; Kamarian, R.; Jomour, M. Design and simulation of linear all-optical comparator based on square-lattice photonic crystals. Photonics 2022, 9, 459. [Google Scholar] [CrossRef]
- Karkhanehchi, M.M.; Parandin, F.; Zahedi, A. Design of an all optical half-adder based on 2D photonic crystals. Photonic Netw. Commun. 2017, 33, 159–165. [Google Scholar] [CrossRef]
- Parandin, F.; Sheykhian, A. Design and simulation of a 2 × 1 All-Optical multiplexer based on photonic crystals. Opt. Laser Technol. 2022, 151, 108021. [Google Scholar] [CrossRef]
- Parandin, F.; Heidari, F.; Aslinezhad, M.; Parandin, M.M.; Roshani, S.; Roshani, S. Design of 2D photonic crystal biosensor to detect blood components. Opt. Quantum Electron. 2022, 54, 618. [Google Scholar] [CrossRef]
- Askarian, A.; Parandin, F. A novel proposal for all optical 1-bit comparator based on 2D linear photonic crystal. J. Comput. Electron. 2023, 22, 288–295. [Google Scholar] [CrossRef]
- Parandin, F.; Mahtabi, N. Design of an ultra-compact and high-contrast ratio all-optical NOR gate. Opt. Quantum Electron. 2021, 53, 666. [Google Scholar] [CrossRef]
- Parandin, F.; Sheykhian, A.; Bagheri, N. A novel design for an ultracompact optical majority gate based on a ring resonator on photonic crystal substrate. J. Comput. Electron. 2023, 22, 716–722. [Google Scholar] [CrossRef]
- Nazemi, E.; Feghhi, S.; Roshani, G.; Peyvandi, R.G.; Setayeshi, S. Precise void fraction measurement in two-phase flows independent of the flow regime using gamma-ray attenuation. Nucl. Eng. Technol. 2016, 48, 64–71. [Google Scholar] [CrossRef]
- Roshani, G.H.; Roshani, S.; Nazemi, E.; Roshani, S. Online measuring density of oil products in annular regime of gas-liquid two phase flows. Measurement 2018, 129, 296–301. [Google Scholar] [CrossRef]
- Nazemi, E.; Roshani, G.; Feghhi, S.; Setayeshi, S.; Zadeh, E.E.; Fatehi, A. Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrogen Energy 2016, 41, 7438–7444. [Google Scholar] [CrossRef]
- Alanazi, A.K.; Alizadeh, S.M.; Nurgalieva, K.S.; Nesic, S.; Grimaldo Guerrero, J.W.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Nazemi, E.; Narozhnyy, I.M. Application of neural network and time-domain feature extraction techniques for determining volumetric percentages and the type of two phase flow regimes independent of scale layer thickness. Appl. Sci. 2022, 12, 1336. [Google Scholar] [CrossRef]
- Roshani, G.; Nazemi, E.; Roshani, M. Intelligent recognition of gas-oil-water three-phase flow regime and determination of volume fraction using radial basis function. Flow Meas. Instrum. 2017, 54, 39–45. [Google Scholar] [CrossRef]
- Hosseini, S.; Taylan, O.; Abusurrah, M.; Akilan, T.; Nazemi, E.; Eftekhari-Zadeh, E.; Bano, F.; Roshani, G.H. Application of wavelet feature extraction and artificial neural networks for improving the performance of gas–liquid two-phase flow meters used in oil and petrochemical industries. Polymers 2021, 13, 3647. [Google Scholar] [CrossRef] [PubMed]
- Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and modeling of a compact power divider with squared resonators using artificial intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [Google Scholar] [CrossRef]
- Al Shamaileh, K.; Dib, N.; Qaroot, A.; Sheta, A. Design of miniaturized unequal split wilkinson power divider with harmonics suppression using non-uniform transmission lines. Appl. Comput. Electromagn. Soc. J. (ACES) 2011, 26, 530–538. [Google Scholar]
- Al Shamaileh, K.A.; Qaroot, A.M.; Dib, N.I. Non-uniform transmission line transformers and their application in the design of compact multi-band Bagley power dividers with harmonics suppression. Prog. Electromagn. Res. 2011, 113, 269–284. [Google Scholar] [CrossRef]
- Hawatmeh, D.; Al Shamaileh, K.; Dib, N. Design and analysis of compact unequal-split Wilkinson power divider using non-uniform transmission lines. In Proceedings of the 2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Amman, Jordan, 6–8 December 2011; pp. 1–6. [Google Scholar]
- Hawatmeh, D.; Dib, N.; Al Shamaileh, K. Design and analysis of multi-frequency unequal-split Wilkinson power divider using non-uniform transmission lines. Appl. Comput. Electromagn. Soc. J. (ACES) 2012, 27, 248–255. [Google Scholar]
- Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.M.; Alibakhshikenari, M.; Koziel, S. Design of a compact planar transmission line for miniaturized rat-race coupler with harmonics suppression. IEEE Access 2021, 9, 129207–129217. [Google Scholar] [CrossRef]
- Kurgan, P.; Kitliński, M. Novel doubly perforated broadband microstrip branch-line couplers. Microw. Opt. Technol. Lett. 2009, 51, 2149–2152. [Google Scholar] [CrossRef]
- Jung, Y.B. Wideband branchline coupler using symmetrical four-strip interdigitated coupler. Electron. Lett. 2014, 50, 452–454. [Google Scholar] [CrossRef]
- Chun, Y.-H.; Hong, J.-S. Compact wide-band branch-line hybrids. IEEE Trans. Microw. Theory Technol. 2006, 54, 704–709. [Google Scholar] [CrossRef]
- Alshamaileh, K.A.; Devabhaktuni, V.K.; Dib, N.I. Impedance-varying broadband 90° branch-line coupler with arbitrary coupling levels and higher order harmonic suppression. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 1507–1515. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kong, K.-B. Compact branch-line coupler for harmonic suppression. Prog. Electromagn. Res. C 2010, 16, 233–239. [Google Scholar] [CrossRef]
- Roshani, S.; Roshani, S. A compact coupler design using meandered line compact microstrip resonant cell (MLCMRC) and bended lines. Wirel. Netw. 2021, 27, 677–684. [Google Scholar] [CrossRef]
L1 | C1 | Z1 | θ1 | L2 | C2 | Z2 | θ2 |
---|---|---|---|---|---|---|---|
4.7 nH | 4.7 pF | 70 Ω (0.9 mm) | 5.5° (3.8 mm) | 6.8 nH | 3.3 pF | 118 Ω (0.3 mm) | 6° (4.1 mm) |
Ref | Device Type | Size Reduction | Harmonic Suppression | Applied Technique |
---|---|---|---|---|
[48] | RRC | 74% | 2nd–7th | Open Stubs |
[49] | BLC | 39% | - | PBG and DGS |
[50] | BLC | 40% | - | interdigital |
[51] | BLC | 46% | - | divided lines |
[52] | BLC | - | 2nd–4th | Non-uniform lines |
[53] | BLC | 63% | 2nd, 3rd | Open stubs |
[54] | BLC | 64% | 3rd, 5th | Resonators |
This Work | BLC | 97% | 2nd–9th | LCL filter and meandered stubs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, M.A.; Roshani, S.; Roshani, S. An Ultra Compact Microstrip Branch Line Coupler with Wide Stopband Using LCL Filter and Meandered Stubs for Microwave Applications. Processes 2023, 11, 1582. https://doi.org/10.3390/pr11051582
Chaudhary MA, Roshani S, Roshani S. An Ultra Compact Microstrip Branch Line Coupler with Wide Stopband Using LCL Filter and Meandered Stubs for Microwave Applications. Processes. 2023; 11(5):1582. https://doi.org/10.3390/pr11051582
Chicago/Turabian StyleChaudhary, Muhammad Akmal, Saeed Roshani, and Sobhan Roshani. 2023. "An Ultra Compact Microstrip Branch Line Coupler with Wide Stopband Using LCL Filter and Meandered Stubs for Microwave Applications" Processes 11, no. 5: 1582. https://doi.org/10.3390/pr11051582
APA StyleChaudhary, M. A., Roshani, S., & Roshani, S. (2023). An Ultra Compact Microstrip Branch Line Coupler with Wide Stopband Using LCL Filter and Meandered Stubs for Microwave Applications. Processes, 11(5), 1582. https://doi.org/10.3390/pr11051582