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Abstract: The high penetration of distributed generators (DGs) and the large-scale charging loads
deteriorate the operational status of flexible distribution networks (FDNs). A soft open point (SOP)
can deal with operational issues, such as voltage violations and the high electricity purchasing cost of
charging stations. However, the absence of accurate parameters poses challenges to model-based
methods. This paper proposes a data-driven operation method of FDNs with charging loads. First, a
data-driven model-free adaptive predictive control (MFAPC) approach is proposed to fully involve
charging loads in the control of FDN without accurate network parameters. Then, a multi-timescale
coordination control model of an SOP with charging loads is established to satisfy the demand of
charging loads and improve the control performance. The effectiveness of the proposed method is
numerically demonstrated on the modified IEEE 33-node distribution network. The results indicate
that the proposed method can effectively reduce the electricity purchasing cost of charging stations
and improve the operational performance of FDNs.

Keywords: flexible distribution networks (FDNs); soft open point (SOP); data-driven operation;
charging loads; multi-timescale coordination

1. Introduction

The high penetration of distributed generators (DGs) and increasing scale of charging
loads exacerbate the uncertainty of distribution networks, causing power fluctuations
and voltage violations [1,2]. Novel power electronic devices, represented by soft open
points (SOPs), can tackle these issues and promote the development of flexible distribution
networks (FDNs) [3]. An FDN is defined as a closed-loop operation distribution network,
in which multiple feeders are interconnected by power electronic devices with the flexible
control of power flows [4]. Remarkably, the SOP-based flexible interconnection technology
realizes the accurate and fast power flow control of connected feeders, which significantly
changes the operation of FDNs. Therefore, the overall flexibility and controllability of FDNs
are significantly better than those of traditional distribution networks.

Considering the large-scale integration of charging loads, the participating potential
of charging loads in the control of FDNs needs to be exploited. Ref. [5] proposed a mixed
integer linear model of power supply recovery for FDNs based on the optimal operation
strategy of an SOP and electrical vehicles (EVs). As more EVs participate in vehicle-to-grid
service, the interaction between FDNs and EVs is becoming a key issue that affects network
operation and user participation. Ref. [6] proposed a vehicle-pile resource allocation
approach based on a two-stage categorical hierarchical scheduling framework to solve
the vehicle-pile assignment problem in near real time. In [7], a multiyear hybrid planning
method based on cost–benefit analysis was proposed for the implementation of excellent
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EV charging strategies in FDNs. Ref. [8] proposed a coordinated day-ahead and real-time
optimization model for FDNs with SOP and high penetration of EVs, where the day-ahead
and real-time models were linearized. Ref. [9] established a random model to minimize
operational cost, considering the uncertainty of DGs, load demand, plug-in hybrid EV
demand and grid energy price. Considering the coupling of multiple devices, time-series
coordination can be further implemented in the operation model of FDNs.

Furthermore, devices with time-series characteristics such as EVs are suggested to
be scheduled in a longer time interval due to their physical mechanisms and lifetime
issues. However, operation violations may occur within shorter time intervals due to fast
fluctuations in FDNs. To address such unexpected issues, it is necessary to consider the
coordination of various control devices on different timescales in FDNs. Ref. [10] proposed
a two-stage voltage control strategy based on deep reinforcement learning to cope with the
voltage violations caused by the uncertain behaviors of charging loads. Ref. [11] proposed
a data center energy-saving method by optimizing IT equipment to realize large-scale and
diverse uses of DGs. Ref. [12] established a multi-scheme multi-objective collaborative
optimization model to effectively smooth voltage fluctuations. Based on the coordinated EV
charging strategy, ref. [13] proposed a multi-stage optimal scheduling method to generate
the day-ahead scheduling strategy. Ref. [14] dispatched surplus reactive power from
charging loads and DGs for the optimized voltage support based on the average consensus
theory and sensitivity analysis.

However, the traditional control methods depend on the detailed mathematical model
and accurate physical parameters of FDNs. The control performance based on physical pa-
rameter modeling is limited by complex operation states, topology changes, and inaccurate
physical parameters of FDNs. In addition, the increasing complexity and numerous compo-
nents result in a heavy calculation burden, which is difficult to meet real-time requirements.

With the development of digitization, sufficient operational data support the applica-
tion of data-driven control methods [15]. Ref. [16] developed a data-driven open-source
simulation environment, ACN-Sim, which provided a modular and scalable architecture
for EV charging. Ref. [17] established a data-driven distributed EV model with a voltage
control function of microgrids to adjust the voltage and frequency of microgrids. Ref. [18]
proposed a load forecasting model based on the long short-term memory network to opti-
mize the operation of building energy supply systems integrated with EVs. Considering
the uncertainty around the battery state of charge (SOC), ref. [19] proposed a coordinated
scheduling strategy of EVs and thermostatically controlled loads to address the variability
of charging loads in FDNs.

Model-free adaptive predictive control (MFAPC) is a promising data-driven method,
which has shown great potential in the control of FDNs. Ref. [20] applied MFAPC to
suppress the disturbance of variable pitch systems and ensure the stability of wind power
generation. An event-triggered MFAPC method was proposed in [21] to address the
external disturbance of permanent magnet synchronous motor systems. The predictive
accuracy and robustness of MFAPC improve the control effect and overcome the uncertainty
caused by the large-scale integration of DGs and EVs. However, uncoordinated control
methods may be difficult to meet practical operational requirements of FDNs. It is essential
to promote the data-driven multi-timescale coordination control method.

To address inaccurate parameters and diverse operational demands of FDNs, a frame-
work of data-driven operation of FDNs with charging loads is proposed based on MFAPC.
Considering the demand of charging loads and the rapid fluctuations of DGs, a multi-
timescale coordination control model of an SOP with charging loads is proposed. The
target is to reduce the electricity purchasing cost of charging stations while alleviating the
voltage violations caused by DGs and charging loads. The main contributions of this paper
are summarized as follows.

(1) A data-driven control framework of FDNs based on MFAPC is proposed to satisfy
the time-series constraints of charging loads. By fully excavating the multi-source data, the
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proposed framework can effectively cope with the inaccuracy of network parameters and
improve the control effect of FDNs.

(2) Considering the charging behaviors of charging loads and the rapid regulation
ability of an SOP, a multi-timescale coordination control model is established. The potential
of charging loads is exploited to participate in the control of FDNs. The proposed control
model can reduce the electricity purchasing cost of charging stations and alleviate the
voltage violations of FDNs.

The remainder of this paper is organized as follows. Section 2 introduces the frame-
work of the data-driven operation of FDNs with charging loads. Section 3 describes the
data-driven control method based on MFAPC in detail. The case studies and analysis are
presented in Section 4. Finally, the conclusions are drawn in Section 5.

2. Framework of Data-Driven Operation of FDNs with Charging Loads

The conventional model predictive control (MPC) method with a fixed optimization
horizon has trouble coping with the uncertainty caused by the stochastic integration of
charging loads in FDNs. Therefore, the MFAPC method is utilized to meet the operation
demands of FDNs and charging loads.

Figure 1 shows the framework of data-driven operation of FDNs based on MFAPC.
Considering the random arrival and departure of each charging load, the prediction horizon
and control window are defined. In this paper, charging loads mainly refer to EVs. Due
to the charging behaviors of EVs and their expected level of SOC, it is necessary to utilize
the predictive control on the slow timescale. Moreover, to deal with the uncertainties and
rapid fluctuations of DGs and charging loads, the real-time control ability of an SOP is
utilized on the fast timescale. Based on measurement data, historical data, predictive data,
and various equipment parameters, the data-driven multi-timescale coordination control
model can be established and dynamically adjusted.
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By utilizing the multi-timescale coordination control framework, the charging de-
mands of EVs are satisfied, while the electricity purchasing cost of charging stations is
reduced. Simultaneously, the rapid changes of time-varying parameters can be tracked by
the data-driven dynamic linearization in the proposed framework, which can effectively
respond to frequent changes in the operating state of FDNs.

3. Multi-Timescale Data-Driven Operation Based on MFAPC
3.1. Data-Driven Operation Model of FDNs with Charging Loads

Facing the challenge of inaccurate parameters and diverse operational demands of
FDNs under complex operation environments, a data-driven control framework is pro-
posed based on MFAPC to dynamically realize the adaptive predictive control in FDNs
with charging loads. The essence of the data-driven predictive operation of devices with
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time-series characteristics is to establish the relationship between control objectives and
control strategies.

Specifically, considering the deviation from the reference of control objectives and the
fluctuation penalty of control strategies, the objective function of the data-driven model
based on MFAPC can be briefly established as shown in (1).

F (Xt) = ‖Yref − Ŷt+∆T‖2
2 + λ‖Xt −Xt−∆T‖2

2 (1)

where Yref denotes the reference of the control objective. Ŷt+∆T denotes the predictive
control objective at instant t + ∆T. ∆T denotes the slow timescale. Xt and Xt−∆T denote
control strategies at instant t and t−∆T, respectively. λ‖Xt−Xt−∆T‖2

2 is utilized to restrain
the fluctuations of control strategy.

The predictive control objective is the sum of its initial value and variation.

Ŷt+∆T = Y0
t + ∆Yt+∆T (2)

where Y0
t denotes the initial value of control objective at instant t, which can be obtained

from historical data. ∆Yt+∆T denotes the variation of control objective at instant t + ∆T.
Considering the regulation effect of multiple devices on the control objective, the varia-

tion of control objective can be divided into two parts corresponding to different timescales.

∆Yt+∆T = ∆Y slow
t+∆T + ∆Y fast

t+∆t (3)

where ∆Y slow
t+∆T denotes the predictive variation of the control objective regulated on the

slow timescale at instant t+∆T. ∆t denotes the fast timescale. ∆Y fast
t+∆t denotes the extended

variation of the control objective regulated on the fast timescale at instant t + ∆t. Actually,
∆Y slow

t+∆T is regulated by devices with time-series characteristics such as distributed storage
energy systems and EVs. ∆Y fast

t+∆t is regulated by controllable power electronic devices
such as SOP and DG converters.

On the slow timescale, the dynamic estimation of the control objective is shown as follows.

∆Y slow
t+∆T = Θt∆X̂slow

t (4)

∆Y slow
t+∆T =

[
∆Yslow

t+∆T
T, ∆Yslow

t+2∆T
T, . . . , ∆Yslow

t+N∆T
T
]T

(5)

Θt = diag
(

St, St+∆T , . . . , St+(N−1)∆T

)
(6)

∆X̂slow
t =

[
∆Xslow

t
T, ∆Xslow

t+∆T
T, . . . , ∆Xslow

t+(N−1)∆T
T
]T

(7)

∆Xslow
t = Xslow

t −Xslow
t−∆T (8)

where ∆Yslow
t+∆T , ∆Yslow

t+2∆T and ∆Yslow
t+N∆T denote control objectives regulated on the slow

timescale at instant t + ∆T, t + 2∆T, and t + N∆T, respectively. N denotes the number
of remainder slow timescale from instant t to the end of the total control horizon. Θt
denotes the predictive sensitivity block diagonal matrix on the slow timescale at instant
t. St, St+∆T and St+(N−1)∆T denote the slow-timescale sensitivity matrices at instances
t, t + ∆T, and t + (N − 1)∆T, respectively, which can be obtained from historical data.
∆X̂slow

t denotes the predictive variation of control strategy on the slow timescale at instant
t. ∆Xslow

t , ∆Xslow
t+∆T , and ∆Xslow

t+(N−1)∆T denote the variations of control strategy on the slow
timescale at instances t, t + ∆T and t + (N − 1)∆T, respectively.

The time-series constraint can be briefly expressed as (9).

C t,x ≤
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where 𝛿ଵ and 𝛿ଶ denote the weight factors. 
  

(
Xslow

t , Xslow
t+∆T , · · · , ∆Xslow

t+(N−1)∆T

)
≤ C t,x (9)
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where
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denotes the undefined expression. C t,x and C t,x denote the lower and the upper
bounds of the time-series constraint at instant t.

On the fast timescale, controllable power electronic devices without time-series con-
straints rapidly respond to the DG fluctuations so that there is no need to predict their
strategy. The detailed extension of the variations of the control objective is expressed
as follows.

∆Y fast
t+∆t =

[
∆Yfast

t+∆t
T, 0, 0, . . . , 0

]T
(10)

where ∆Yfast
t+∆t denotes the variation of the control objective regulated on the fast timescale

at instant t + ∆t. Zero vectors in ∆Y fast
t+∆t raise it to the same dimension as ∆Y slow

t+∆T .

∆Yfast
t+∆t = Φ̂t∆Xfast

t (11)

∆Xfast
t = Xfast

t −Xfast
t−∆t (12)

where Φ̂t denotes the estimation of the fast-timescale sensitivity matrix at instant t. ∆Xfast
t

denotes the variation of control strategy on the fast timescale at instant t. Xfast
t denotes the

control strategy on the fast timescale at instant t.
The control strategy on the fast timescale can be directly solved by the gradient descent,

considering the simple constraints of the controllable power electronic devices.

Xfast
t = Xfast

t−∆t +
ρΦ̂T

t

(
Yref − Yfast

t

)
λ + ‖Φ̂T

t ‖
2
F

(13)

On the slow timescale, the control strategy of devices with time-series characteristics
maintains a constant value while the control strategy is updated per fast timescale. Xslow

t
maintains a constant value while Xfast

t is updated per ∆t.
The fast-timescale sensitivity matrix can be estimated by the following parameter

estimation function.

minF(Φt) = ‖∆Yt −Φt∆Xt‖2
2 + µ‖Φt − Φ̂t−∆t‖2

F (14)

where µ‖Φt − Φ̂t−∆t‖2
F can reduce the fluctuations of parameter estimation.

Equations (13) and (14) can be solved by the gradient descent to obtain the estimation
of the fast-timescale sensitivity matrix, which is shown in (15).

Φ̂t = Φ̂t−∆t +
η∆Xfast

t−∆t

(
∆Yfast

t − Φ̂t−∆t∆Xfast
t−∆t

)
µ + ‖∆Xfast

t−∆t‖
2
2

(15)

The data-driven multi-timescale coordination operation model of FDN can be
summarized as:

min F(Xt) = ‖Yref − Ŷt+∆T‖2
2 + δ1‖∆X̂slow

t ‖2
2 + δ2‖∆Xfast

t ‖
2
2

s.t. (2)–(4), (6)–(13), (15);
(16)

where δ1 and δ2 denote the weight factors.

3.2. Multi-Timescale Coordination Control Model

In this paper, the device with time-series characteristics refers to EVs, and the control-
lable power electronic device refers to an SOP. Considering the physical coupling of EVs
and SOPs, the charging station is connected to the DC side of an SOP, which is shown in
Figure 2.
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In the operation of FDNs with EVs, both the voltage quality on the network side and
the electricity purchasing cost on the user side should be considered as control objectives.
Therefore, to alleviate the voltage deviations of FDNs and reduce the electricity purchasing
cost of the charging station, the optimization objective includes the electricity purchasing
cost J1 of the charging station and the voltage deviation cost J2. Measurements of nodal
voltage and EV charging power are needed in the solution of the data-driven model. In
addition, the penalty cost J3 of control strategy is also considered to reduce the severe
fluctuations of control devices.

min J = J1 + J2 + J3 (17)

The electricity purchasing cost is shown as follows.

J1 = ωCp
t PEV,sum

t (18)

where ω denotes the weight factor. Cp
t denotes the price at instant t. PEV,sum

t denotes the
sum of EV charging power at instant t.

The voltage deviation cost at instant t is shown as follows.

J2 = CU
t (U

ref − Ût+∆T)
T(

Uref − Ût+∆T

)
(19)

where CU
t denotes the penalty factor of voltage deviation at instant t. Uref denotes the

voltage reference. Ût+∆T denotes the predictive voltage at instant t + ∆T.
The penalty cost of the control strategy can alleviate severe actions of the SOP and the

charging station, which can be expressed as:

J3 = λ1∆P̂EV,sumT

t ∆P̂EV,sum
t + λ2∆XSOP

t
T

∆XSOP
t (20)

where ∆P̂EV,sum
t denotes the predictive variation of the sum of the EV charging power at

instant t. ∆XSOP
t denotes the variation of the control strategy of the SOP at instant t. λ1 and

λ2 denote the weight factors.
Considering the controllable ability of SOPs and EVs, the voltage is regulated by the

above devices. Thus, the predictive voltage variation should be divided into two parts,
which are corresponding to the two kinds of devices. As for the details of voltage regulation,
Ût+∆T in objective function J2 is shown as follows.

Ût+∆T = U0
t + ∆Ut+∆T (21)

∆Ut+∆T = ∆UEV
t+∆T + ∆USOP

t+∆t (22)
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where U0
t denotes the predictive initial voltage at instant t, which can be obtained from

historical data. ∆Ut+∆T denotes the predictive voltage variation at instant t + ∆T. ∆UEV
t+∆T

denotes the predictive variation of voltage regulated by EVs at instant t + ∆T. ∆USOP
t+∆t

denotes the extended variation of voltage regulated by the SOP at instant t + ∆t.
On the slow timescale, ∆UEV

t+∆T is constant while ∆USOP
t+∆t continuously updates per

∆t. The predictive voltage regulated by EVs is shown as follows.

∆UEV
t+∆T = ΘEV

t ∆P̂EV,sum
t (23)

ΘEV
t = diag(SEV

t , SEV
t+∆T , . . . , SEV

t+(N−1)∆T) (24)

∆P̂EV,sum
t =

[
∆PEV,sum

t , ∆PEV,sum
t+∆T , . . . , ∆PEV,sum

t+(N−1)∆T

]T
(25)

∆PEV,sum
t = PEV,sum

t − PEV,sum
t−∆T (26)

where ΘEV
t denotes the predictive sensitivity block diagonal matrix at instant t. SEV

t , SEV
t+∆T

and SEV
t+(N−1)∆T denote the sensitivity matrices at instant t, t + ∆T and t + (N − 1)∆T,

which can be obtained from historical data.
The sensitivity in (24) denotes the power-to-voltage sensitivity, where the voltage is

regulated by EVs. The calculation of SEV
t can be shown as follows.

SEV
t =

∑β∈B
∂UEV,β

t

∂PEV,β
t

NB
(27)

where UEV,β
t denotes the voltage regulated by EVs in typical scheme β at instant t. PEV,β

t
denotes the EV charging power in typical scheme β at instant t. B denotes the set of typical
schemes. NB denotes the number of schemes in B.

In this paper, EVs are divided into two types according to the controllability of charge
status. The charging power of type I EVs is constant. This type of EV can be charged
as soon as it arrives at the charging station until the SOC reaches the expectation. The
charging power of type II EVs is controllable, which can participate in the regulation of
FDNs and respond to price guidance.

PEV,sum
t = ∑n∈ΩI

PI,C
t,n + ∑m∈ΩII

PII,C
t,m (28)

where ∆PEV,sum
t , ∆PEV,sum

t+∆T and ∆PEV,sum
t+(N−1)∆T denote variations of the sum of EV charging

power at instant t, t + ∆T and t + (N − 1)∆T, respectively. PEV,sum
t and PEV,sum

t−∆T denote
summaries of the EV charging power at instant t and t + ∆T, respectively. ΩI and ΩII

denote sets of EVs of type I and II, respectively. PI,C
t,n denotes the charging power of the

n-th EV of type I at instant t. PII,C
t,m denotes the charging power of the m-th EV of type II at

instant t.
The charging behaviors should be considered in the process of scheduling charging

loads. EV behaviors can be approximated by the following probability density function
(Zhu et al., 2018 [13]).

f (τarr) =


1√

2πσarr
exp

(
− (τarr−(µarr−24))2

2(σa)
2

)
, 0 < τarr < µarr − 12

1√
2πσarr

exp
(
− (τarr−µarr)

2

2(σarr)
2

)
, µarr − 12 < τarr < 24

(29)
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f
(

τdep

)
=


1√

2πσdep
exp

(
− (τdep−µdep)

2

2(σdep)
2

)
, 0 < τdep < µdep + 12

1√
2πσdep

exp
(
− (τdep−(µdep+24))

2

2(σdep)
2

)
, µdep + 12 < τdep < 24

(30)

where τarr and τdep denote the time when EVs arrive at and depart from the charging
station. µarr and µdep are the mean values. σarr and σdep are the standard deviations.

The initial SOC when EVs arrive at the charging station can be modeled using a normal
probability function.

f (sarr) =
1√

2πσSOC
exp

(
− (sarr − µSOC)

2

2(σSOC)
2

)
(31)

where sarr denotes the initial SOC when EVs arrive at the charging station. µSOC denotes
the mean values. σSOC denotes the standard deviations.

The following relevant parameters of EVs obey the above distributions. The charging
constraints of EVs of type I are shown as follows.

τI,end
n =

(
sI,E

n − sI,arr
n

)
EI,C

n /PI,C
t,n + τI,arr

n (32)

 PI,C
t,n = PEV, τI,arr

n ≤ t < τI,end
n

PI,C
t,n = 0, τI,end

n ≤ t
(33)

sI
t,n =


sI,arr

n , t = τI,arr
n

sI
t−∆T,n + PI,C

t,n ∆T/EI,C
n , τI,arr

n < t < τ
I,dep
n

sI,E
n , t = τ

I,dep
n

(34)

where τI,end
n denotes the time when the n-th EV of type I finishes charging. τI,arr

n denotes the
time when the n-th EV of type I arrives at the charging station. sI

t,n and sI
t−∆T,n denote the

SOC of the n-th EV of type I at instant t and t− ∆T, respectively. sI,E
n denotes the expected

SOC of the n-th EV of type I. sI,arr
n denotes the initial SOC when the n-th EV of type I arrives

at the charging station. EI,C
n denotes the capacity of the n-th EV of type I. PEV denotes the

upper bound of the charging power. τ
I,dep
n denotes the time when the n-th EV of type I

departs from the charging station.
The charging constraints of EVs of type II are shown as follows.{

0 ≤ PII,C
t,m ≤ PEV, τII,arr

m ≤ t < τ
II,dep
m

PII,C
t,m = 0, τ

II,dep
m ≤ t

(35)

sII
t,m =

{
sII,arr

m , t = τII,arr
m

sII
t−∆T,m + PII,C

t,m ∆T/EII,C
m , τII,arr

m < t < τ
II,dep
m

(36)

where τII,arr
m denotes the time when the m-th EV of type II arrives at the charging station.

τ
II,dep
m denotes the time when the m-th EV of type II departs from the charging station. EII,C

m
denotes the capacity of the m-th EV of type II. sII

t,m and sII
t−∆T,m denote the SOC of the n-th

EV of type II at instant t and t− ∆T, respectively.
The SOC of EVs should reach the expectation when EVs depart from the charging

station. In the solution of the control strategy at instant t, the charging power of EVs from
t + ∆T to t + (N − 1)∆T should be predicted. The sum of charging power from t + ∆T to
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t + (N − 1)∆T should ensure that the SOC of EVs reaches the expectation. The time-series
constraint of EVs is shown as follows:

sII,E
m ≤ sII

t,m +
∆T

EII,C
m

∑t+(N−1)∆T
τ=t+∆T PII,C

τ,m < sII
m (37)

where sII,E
m denotes the expected SOC of the m-th EV of type II. sII,arr

m denotes the initial SOC
when the m-th EV of type II arrives at the charging station. sII

m denotes the upper bound of
SOC of the m-th EV of type II.

On the fast timescale, there is no need to predict the strategy of the SOP and the
voltage regulated by the SOP so that zero vectors are utilized to expand the dimension of
∆USOP

t+∆t according to (10).

∆USOP
t+∆t =

[
∆USOP

t+∆t
T, 0, 0, . . . , 0

]T
(38)

∆USOP
t+∆t = Φ̂SOP

t ∆XSOP
t (39)

∆XSOP
t = XSOP

t −XSOP
t−∆t (40)

XSOP
t =

[
PSOP

t,a , PSOP
t,b , QSOP

t,a , QSOP
t,b

]T
(41)

where ∆USOP
t+∆t denotes the voltage variation regulated by the SOP at instant t + ∆t. 0

denotes a zero vector. Φ̂SOP
t denotes the sensitivity matrix of the SOP at instant t. XSOP

t and
XSOP

t−∆t denotes control strategies of the SOP at instant t and t− ∆t, respectively. a and b
denote the two terminals of the SOP. PSOP

t,a and PSOP
t,b denote the active power transmission of

two terminals of SOP at instant t. QSOP
t,a and QSOP

t,b denote the reactive power compensation
of two terminals of the SOP at instant t.

The iterations of XSOP
t and Φ̂SOP

t are shown as follows according to (13) and (15).

XSOP
t = XSOP

t−∆t +
ρΦ̂SOPT

t

(
Uref

t+∆t −USOP
t

)
λ + ‖Φ̂SOPT

t ‖2
F

(42)

Φ̂SOP
t = Φ̂SOP

t−∆t +
η∆XSOP

t−∆t
(
∆USOP

t − Φ̂SOP
t−∆t∆XSOP

t−∆t
)

µ + ‖∆XSOP
t−∆t‖

2
2

(43)

In this paper, the charging station is connected to the DC side of an SOP. Thus, the
following active/reactive power constraints should be satisfied.

PSOP ≤ PSOP
t,a ≤ PSOP (44)

PSOP ≤ PSOP
t,b ≤ PSOP (45)

QSOP ≤ QSOP
t,a ≤ QSOP (46)

QSOP ≤ QSOP
t,b ≤ QSOP (47)

(
PSOP

t,a

)2
+
(

QSOP
t,a

)2
≤
(

CSOP
)2

(48)

(
PSOP

t,b

)2
+
(

QSOP
t,b

)2
≤
(

CSOP
)2

(49)
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PSOP
t,a = PEV,sum

t + PSOP
t,b (50)

where PSOP and PSOP denote the upper and lower bounds of active power transmission
through the SOP. QSOP and QSOP denote the upper and lower bounds of the reactive power
output of the SOP. CSOP denotes the capacity of the SOP.

The data-driven multi-timescale coordination control model based on MFAPC can be
summarized as:

minJ = J1 + J2 + J3

s.t. (21)–(28), (32)–(50);
(51)

Thus, based on the real-time measurement, the data-driven model can improve the
control effect of FDNs without accurate physical parameters and reduce the electricity
purchasing cost of charging stations.

3.3. Solution Methodology

The solution of the proposed method is shown in Figure 3. The detailed steps are
shown as follows.
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Step (1): Input the historical data and topology information of FDNs. Set control
horizon T and multi-timescale parameters ∆T and ∆t. Set t = 0.

Step (2): Utilize multi-source data to establish the multi-timescale coordination control
model of FDNs. Solve and implement the strategy of EVs. Set d = 0.

Step (3): Solve and implement the strategy of the SOP. Set t = t + ∆t, d = d + 1.
Step (4): If ∆t ∗ d < ∆T, repeat Step (3). If d∆t = ∆T, t = t + ∆T.
Step (5): If t ≤ T, repeat Step (2) to Step (4). Continuously update the model until

t = T.

4. Case Studies and Analysis

The proposed data-driven operation control of FDN with charging loads is verified on
the modified IEEE 33-node distribution network, whose topology and nodal number are
the same as the standard IEEE 33-node distribution network. Its modification denotes the
integration of DGs, SOPs, a charging station and EVs. The proposed method is implemented
in MATLAB R2019a. The numerical experiments are carried out on a computer with Intel(R)
Core(TM) i7-11700 @ 2.50 GHz and 16 GB of RAM.

4.1. Parameters

The topology of the modified IEEE 33-node distribution network is shown in Figure 4.
The digital (1–33) in Figure 4 denotes the nodal number of the network, which is the
same as the standard IEEE 33-node distribution network. The modified IEEE 33-node
distribution network includes a substation and 32 branches, of which the rated voltage
level is 12.66 kV. The total active power and reactive power demands are 3715.0 kW and
2300.0 kVAr, respectively. Considering the high penetration of DGs, three photovoltaics
(PVs) are installed at Nodes 7, 13, and 27, whose capacities are 500 kWp, 300 kWp, and
400 kWp, respectively. Five wind turbines (WTs) are installed at Nodes 10, 16, 17, 30, and
33, whose capacities are 300 kVA, 200 kVA, 200 kVA, 200 kVA, and 300 kVA, respectively.
An SOP with the capacity of 1400 kVA is installed between Nodes 18 and 33. Figure 5
shows the curves of DGs and loads.
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Figure 4. Structure of the modified IEEE 33-node distribution network.

The slow timescale ∆T is set as 1 h. The fast timescale ∆t is set as 5 min. There are
100 EVs arriving at the charging station in the total control horizon. The factors µ, ρ, η and
λ are set as 1. The factor ω is set as 100. CU

t is set as 1.0 CNY/V2. λ1 and λ2 are set as
1.0 CNY/(kW)2 and 1 CNY/(kVA)2, respectively. The number of EVs of type I is 25 and
the number of EVs of type II is 75. The capacity of each EV is 100 kWh and the maximum
charging power is 16 kW. The expected SOC is 0.95. Table 1 shows the random behavior
parameters of EVs [22]. The desired voltage range is set from 0.95 to 1.05 p.u. [4]. Figure 6
shows the initial SOC of the EVs. Figure 7 shows the distribution of EV arrival time and
departure time. The price is shown in Figure 8.
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4.2. Numerical Results

To demonstrate the effectiveness of the proposed method in this paper, three scenarios
are adopted as follows.

Scenario I: The initial operational state of FDNs is obtained without strategies of EVs
and SOPs.

Scenario II: The proposed data-driven multi-timescale coordination control model
is adopted.

Scenario III: The centralized optimization method based on accurate physical parame-
ters is adopted.

Figure 9 illustrates the charging strategies of EVs in three scenarios. Figure 7 shows that
EVs mainly arrive at the charging station from 16:00 to 21:00 and depart from the charging
station from 5:00 to 10:00. During these periods, EVs in Scenario I are with uncoordinated
charging at the charging station. EVs charge at maximum charging power once plugged
into the charging station until the SOC reaches expectation. The EVs in Scenario II adopt
the charging strategy that is generated by the comprehensive guidance of price and voltage
deviation penalty cost. The voltage control effect is shown in Figures 10–13. The charging
strategy of EVs in Scenario II is close to that of Scenario III.
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Figure 10 shows the voltage profiles of Nodes 18 and 33 in three scenarios. Figure 11
shows the voltage profiles of all nodes at 16:00. The maximum and minimum voltages of the
whole network at each instant in three scenarios are shown in Figure 12. The uncoordinated
charging of EVs and the high penetration of DGs affect the power flow and voltage of
FDNs. From 14:00 to 20:00, the uncoordinated charging results in severe voltage deviations.
In Scenario II, EVs of type II increase charging power during periods of low price and
decrease charging power during periods of high price. The comparison of voltage in
Scenarios II and III shows that the voltage control effect of centralized optimization based
on accurate physical parameters is slightly better than that of the proposed data-driven
method. Moreover, the charging strategy also takes voltage deviations into account. By
carrying out the SOP strategy on the fast timescale, the voltage is further maintained within
the desired range.
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Figure 12. Comparison of maximum and minimum voltages in three scenarios. (a) Maximum and
minimum voltages in Scenarios I and II; (b) Maximum and minimum voltages in Scenarios II and III.
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Figure 13. Operation strategy of SOP in Scenario II. (a) Active power transmission of SOP;
(b) Reactive power compensation of SOP.
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Figure 13 shows the operation strategy of the SOP in Scenario II. It is assumed that
extracting power from the grid to the SOP is the positive position. During 18:00–24:00 and
0:00–2:00, the SOP transmits less active power from Node 18 to the charging station due to
the low demands of EVs. During 2:00–5:00, the SOP increasingly transmits the active power
from Node 18 to the charging station due to the high demands of EVs. During 7:00–9:00
and 14:00–16:00, the active power is transmitted from Node 18 to Node 33 via the SOP,
where the power demand of the network is satisfied. Meanwhile, the SOP also regulates
the voltage by adjusting the reactive power compensation.

Figure 14 is the comparison of voltage profiles affected by different values of ρ, which
shows the parameter sensitivity of the proposed data-driven method. The voltage profiles
are essentially similar to each other with ρ ∈ [0.8, 1.2]. The voltage profiles with ρ /∈ [0.8, 1.2]
may be severely worse than that of Scenario I. The result illustrates that the proposed data-
driven method is insensitive to parameters within a predefined range. However, its control
performance may be deteriorated when parameters are outside the predefined range.
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ρ = 0.5, 0.8 and 1; (b) Voltage profiles of Node 18 with ρ = 1, 1.2 and 2.

To quantify the regulation effect of voltage deviations in the above scenarios, the
voltage fluctuation index (VFI) is introduced as follows.

VFI = ∑i∈Ωi
∑t∈T

∣∣∣Uref −Ui,t

∣∣∣/(NtNi) (52)

where i denotes the node index. Ωi denotes the node set of the distribution network. Uref

denotes the voltage reference. Ui,t denotes the voltage of Node i at instant t. Nt denotes the
number of control instants in the total control horizon. Ni denotes the number of nodes in
distribution networks.

In Table 2, comparing with Scenario I, both the voltage deviation and the electricity
purchasing cost in Scenario II are significantly reduced, where the voltage deviation and the
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charging cost are reduced by 62.44% and 22%, respectively. The comparison with Scenario
III illustrates that the control effect of the proposed method is close to that of centralized
optimization based on accurate physical parameters.

Table 2. Comparison of three scenarios.

Scenarios Umax
(p.u.)

Umin
(p.u.)

VFI
(p.u.)

Electricity Purchasing
Cost (CNY)

I 1.0189 0.9024 0.0205 4078.6
II 1.0136 0.9429 0.0077 3180.1
III 1.0103 0.9770 0.0086 2873.9

In summary, the proposed control model can satisfy the charging demands of EVs.
The electricity purchasing cost of charging stations is effectively reduced and the voltage
violations of FDNs are alleviated through exploiting the potential of SOP and EVs.

5. Conclusions

This paper proposes a data-driven control framework for FDNs based on the MFAPC
without relying on accurate physical parameters. Considering the demands of charging
loads and excavating the regulating ability of SOP and EVs, a data-driven multi-timescale
coordination control model is established by multi-source data. The proposed model
achieves an efficient and flexible operation of FDNs by adjusting the strategy of the SOP
and EVs. Moreover, it can also reduce the electricity purchasing cost of charging stations,
alleviate voltage deviations, and quickly track the fluctuations of DGs. The case studies and
analysis verify the effectiveness and feasibility of the proposed data-driven multi-timescale
coordination control method. The proposed framework further provides a promising
direction for the control of distribution networks with high penetration of DGs and the
large-scale integration of charging loads.

However, data-driven methods heavily rely on data quality, which may have a sig-
nificant impact on the control effect. Thus, the performance of the proposed method can
be further improved through reducing measurement error. Moreover, the interpretability
of the proposed data-driven method is necessary to be improved through the integration
of model-based methods. Simultaneously, various control devices such as DG converters
and on-load tap changers are worthy of consideration. A data-physical hybrid-driven
model with multi-device coordination can be further developed to improve the operational
performance of FDNs.
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