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Abstract: Aiming at the problem that the modeling and solving method of combined heat and power
(CHP) unit variable load control process is challenging to meet the demand for efficient analysis
of complex systems, this paper proposes a method based on sequential quadratic programming
and interior point method (SQP-IPM) alternating solution for dynamic optimization of the CHP
unit variable load process. Firstly, by constructing the CHP unit mechanism model, multi-variable
coordination control constraints, and output variable process constraints, the dynamic optimization
proposition of the CHP unit variable load control process is formed. Then, the large-scale nonlinear
programming (NLP) problem formed by using the orthogonal configuration method to discrete
the state and control variables is optimally solved using the IPM-SQP alternating solution method.
Further, from the perspective of balancing the accuracy of the solution and computational efficiency,
the flexible convergence depth control (CDC) strategy is introduced into the alternative solution
method to improve the real-time performance of the algorithm. Finally, the variable load control
process of 300MW extraction CHP unit is simulated to verify that the proposed method reduces the
calculation time for 12 consecutive variable load scenarios by about 70%, effectively improving the
real-time performance of scenario applications.

Keywords: variable load control process; dynamic optimization; orthogonal collocation method;
IPM-SQP alternate solution; convergence depth control

1. Introduction

In order to meet the demand for variable load capability of CHP units participating
in integrated energy system frequency regulation [1], short-term dispatch, and other sce-
narios, optimal control technology modification solutions to improve the fast regulation
capability of units are constantly proposed [2,3]. The dynamic regulation characteristics
of the modified units are complex, showing characteristics such as multivariable, multi-
process coupling, multiparameter superposition, and strong nonlinearity, which often lead
to difficulties in accurate modeling and fast simulation calculation of the variable load
response capability of the units. Differential algebraic equations (DAEs) are often used to
describe the dynamic characteristics of the unit in the operating interval, which makes NLP
with the constraints of the DAEs model of CHP units a dynamic optimization problem.
Therefore, how to efficiently and reliably solve the optimal control problem of the modified
CHP units becomes an urgent problem for integrated energy utilization.

The widely used simultaneous method [4–6] for dynamic process control optimization
is often used for dynamic optimization problem solving, and the method has advantages in
dealing with complex constrained CHP unit variable load control optimization problems.
However, its practice of discretizing both state and control variables often makes the size of
the discretized NLP proposition exponentially larger. The discrete operation will lead to
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more difficult optimization calculations and increased solution time, which often makes it
difficult to meet the computational performance requirements of optimization solutions for
different application scenarios of integrated energy systems. The existing research on NLP
problem solving is mainly in the following areas. Full-space methods and simplex space
methods are often used to deal with problems with equation constraints. For large-scale
optimization problems with a large number of equation constraints and limited degrees of
freedom, the simplex space method can be used to reduce the dimensionality of the SQP
subproblem through a spatial decomposition strategy, thereby reducing the computational
effort of the Hessian matrix and improving the solution efficiency of the algorithm [7–9].
However, the spatial decomposition process adds additional computational cost and its
convergence is not as good as the full-space method based on exact second-order derivative
information. The positive set method and the IPM are commonly used for problems with
inequality constraints. IPM converts inequality constraints into obstacle terms added
to the objective function, and the original problem solution is converted into a series of
equationally constrained obstacle subproblem solutions, thus avoiding the determination
of the positive set by the solution process [10,11]. Nevertheless, algorithms that use linear
search strategies based on evaluation functions and trust strategies [12–14] to ensure global
convergence, although less dependent on the initial point, cannot balance convergence and
convergence speed when solving large-scale complex process optimization problems where
the initial point is far from the optimal point. The algorithm has better local convergence and
can converge quickly only when the initial point is closer to the optimal point; otherwise, it
may fail to converge.

Meanwhile, another reason limiting the convergence of the above algorithm is the
waste of computational resources caused by the convergence criterion. The convergence cri-
terion significantly impacts the computational time, and the computational delay will lead
to a decrease in controller performance. The traditional Himmelblau termination criterion
(H-criterion for short) [15] is commonly used to control all or part of the convergence of
optimization algorithms. The H-criterion is rigid and can only give a simple conclusion of
“convergence” or “non-convergence”. When considering the degree of change of variables
and the degree of reduction (or increase) of the objective function, it often makes the opti-
mization calculation index enter a stage where the computational cost is much greater than
the improvement of the convergence effect (“over convergence”) after reaching a certain
level of convergence. Nonlinear optimization solution algorithms based on traditional
criteria often need to satisfy pre-given tolerance values when solving dynamic optimization
problems. Without significantly improving the numerical solution, over-iterations consume
much computational time, making the control action not act on the controlled system in
time. Moreover, there is no general termination criterion applicable to all optimization
problems and various optimization algorithms in existing studies.

To address the above problems, this paper proposes the dynamic optimization of the
variable load process of the CHP unit based on the IPM-SQP alternating solution method.
The paper is structured as follows: Section 2 constructs the CHP unit mechanism model,
designs the multivariable coordinated control model and the control process output variable
constraints, and forms the CHP unit variable load control process dynamic optimization
proposition. In Section 3, the finite element orthogonal collocation method is used for
discretization to generate large-scale NLP problems. In Section 4, an alternating IPM-
SQP solution strategy based on CDC is designed to solve the NLP problems to improve
the algorithm’s real-time performance. Section 5 describes a case study to prove the
effectiveness of the proposed method. Section 6 presents our conclusions.

2. Proposition Construction for Dynamic Optimization of CHP Unit Variable
Load Process

CHP unit variable load control is the process of regulating the operating unit’s electrical
output and thermal output, mainly in response to changes in the electrical and thermal
energy demand of the energy supply system. As shown in Figure 1, the variable load
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process controls the amount of fuel entering the boiler to produce high-temperature steam
by adjusting the coal feed mass flow rate VB through the controller. The amount of steam
entering the high-pressure cylinder is controlled by adjusting the turbine regulating valve
opening VT. The amount of steam entering the low-pressure cylinder to do work is
controlled by adjusting the opening of the pumping regulating butterfly valve VH to output
electrical power, while the amount of steam in the medium-pressure cylinder is controlled
to supply the heat source. DAEs describe the CHP unit mechanism relationship. The unit
control variables are constrained by the control method to meet the variable load demand.
To ensure safe and stable operation, the unit control process is subject to state and output
constraints. This process control optimization seeks the feasible regulation path of the
unit electric output and thermal output change process from initial to final value under
satisfying the performance requirements. Therefore, the CHP unit variable load problem
can be described as an optimal control problem.
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2.1. Objective Function of the Optimization Proposition

To ensure that the control process of the CHP unit is accurate and fast, and smooth
to achieve variable load regulation, the mathematical form of the combination of control
variables and output variables is chosen as the optimal control performance objective
function [16], which is described as

min
u,y

J =
∫ t f

t0

(
‖ u(t)− u(t− 1) ‖2

R + ‖ y(t)− y∗ ‖ 2
S

)2
dt (1)

where y∗ are the set values of output variables; u(t) is the control variable at the t-th
moment, ‖ u(t)− u(t− 1) ‖2

R minimizes the smooth variation of the control variable; y(t)
is the measured output of the control object at the t−1-th moment as the feedback of the
closed-loop system at the t-th moment; R and S are positive definite weighting matrix to
determine the initial values by normalization.

In the model, u is the control variable, y is the algebraic state variable, and x is the
differential state variable, where:

x =
[
ψd, PH , ψz, Vf

]T

u = [VT , VB, VH ]
T

y = [ψt, PH , mH ]
T

(2)
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2.2. CHP Unit Model Constraints
2.2.1. Mechanism Model

By analyzing the thermal component characteristics of the heating unit and the steam
work process in the turbine [17], a simplified nonlinear mechanism model description of
the CHP unit can be obtained as follows:

Vm(t) = VB(t− tB) (3)

dVf (t)
dt

= −
Vf (t)

Tf
+

VB(t− tB)

Tf
(4)

dψd(t)
dt

= −K3ψt(t)VT(t)
Cd

+
K1Vf (t)

Cd
(5)

ψd(t)− ψt(t) = K2

(
K1Vf (t)

)1.5
(6)

dPH(t)
dt

=
K3K4ψt(t)VT(t)

Tt
+

K5ψz(t)VH(t)
Tt

− PH(t)
Tt

(7)

ψ1(t) = 0.01ψt(t)VT(t) (8)

dψz(t)
dt

= −K6mr(t)(96ψz(t)− εr(t) + 103)
Cz

+
K3(1− K4)ψt(t)VT(t)

Cz
− K5ψz(t)VH(t)

Cz
(9)

mH(t) = K7K6mr(t)(96ψz(t)− εr(t) + 103) (10)

Equations (3) and (4) characterize the dynamic relationship of the coal-fired pulver-
izing system. Equations (5) and (6) characterize the dynamic relationship of the steam
package boiler system. Equations (7)–(9) characterize the dynamic relationship of the
turbine system. Equation (10) characterizes the dynamic relationship of the heating system.
K1, K2, K3, K4, K5, K6, and K7 are static parameters.

2.2.2. Multivariate Coordinated Control Model

The CHP unit controller cooperatively regulates the direction and magnitude of VB(t),
VT(t), and VH(t) through the designed control algorithm, which makes the output variables
ψt(t), mH(t), and PH(t) change. For the above mechanism model, a coordinated thermal-
electric control algorithm is designed to achieve the three critical functions of accurate
electric power tracking, fast thermal power recovery, and system pressure safety [2,3]. Its
mathematical model is as follows:

VT(t) = KPTET(t) + KIT
∫ t

0 ET(t)dt + KDT
dET(t)

dt
VB(t) = KPBEB(t) + KIB

∫ t
0 EB(t)dt + KDB

dEB(t)
dt

VH(t) = KPHEH(t) + KIH
∫ t

0 EH(t)dt + KDH
dEH(t)

dt
ET(t) = SPψ − ψt(t)

EB(t) = SPP −
(

mH(t)− Ke
− t

Tc
Tc

PH(t)
)

EH(t) = SPm −mH(t)

(11)

where KPT, KIT, KDT, KPB, KIB, KDB, KPH, KIH, KDH, K, and Tc are the control system
regulation parameters.
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2.2.3. Output Variable Constraints for Control Processes

Considering the safety and stability of CHP unit operation, the fluctuation range of the
process value of the output variable and the error range of the steady-state value during
the control process should not exceed the allowed limits, and the constraints should be
satisfied as follows: 

−∆ψ ≤ SPψ − ψt(t) ≤ ∆ψ

−∆P ≤ SPP − PH(t) ≤ ∆P
−∆m ≤ SPm −mH(t) ≤ ∆m

(12)


−δψ ≤ ψt

(
t f

)
− SPψ ≤ δψ

−δP ≤ PH

(
t f

)
− SPP ≤ δP

−δm ≤ mH

(
t f

)
− SPm ≤ δm

(13)

2.3. Boundary Constraints

The CHP unit completes variable load regulation in the time period
[
t0, t f

]
, and the

initial and termination states of each control variable and output variable are shown below:

ψt(t0) = ψ0
t

VT(t0) = V0
T

PH(t0) = P0
H

VB(t0) = V0
B

mH(t0) = m0
H

VH(t0) = V0
H

(14)



ψt

(
t f

)
= ψ

f
t

VT

(
t f

)
= V f

T

PH

(
t f

)
= P f

H

VB

(
t f

)
= V f

B

mH

(
t f

)
= m f

H

VH

(
t f

)
= V f

H

(15)

where
(
ψ0

t , P0
H , m0

H
)

and
(

ψ
f
t , P f

H , m f
H

)
are the output values at the start and end times,

respectively.
(
V0

T , V0
B , V0

H
)

and
(

V f
T , V f

B , V f
H

)
are the control values at the start and end

times, respectively.

2.4. Path Constraints

Due to the limits of the CHP unit’s own component properties, VT, VB, and VH need
to meet the following constraints during variable load regulation.

Vmin
T ≤ VT(t) ≤ Vmax

T
Vmin

B ≤ VB(t) ≤ Vmax
B

Vmin
H ≤ VH(t) ≤ Vmax

H

(16)

where Vmin
T and Vmax

T are the minimum and maximum values of the variation of the turbine
regulator opening, respectively; VB and VH are the same.
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3. Discretization of Dynamic Optimization Problems

Without loss of generality, the unit variable load optimal control problem obtained
in Chapter 1 can be expressed as a dynamic optimization problem in the form of DAEs
as follows:

min J
(

x
(

t f

))

s.t.



.
x(t) = F(x(t), y(t), u(t)),
gE(x(t), y(t), u(t)) = 0,

hE

(
x
(

t f

)
, y
(

t f

)
, u
(

t f

))
= 0,

gIE(x(t), y(t), u(t)) < 0,
hIE

(
x
(

t f

)
, y
(

t f

)
, u
(

t f

))
< 0,

uL ≤ u(t) ≤ uU ,
x(t0) = x0, x

(
t f

)
= x f ,

t ∈
[
t0, t f

]

(17)

where F is the dynamic model of the CHP unit DAEs, corresponding to Equations (3)–(10);
gE and gIE are the equal and unequal path constraints, corresponding to Equations (11),
(12) and (16); hE and hIE are the final value constraints at moment t f , corresponding to
Equation (13); the initial and termination boundary values of the state variable x are
calculated by Equations (14) and (15).

The whole time domain [t0, t f ] is divided into N-segment finite elements, and on
each finite element [ti−1, ti](i = 1, 2, . . . , N), the Lagrange interpolation function based on
Radau orthogonal configuration points approximates the state variables, control variables
and algebraic output variables of the original functions. The interpolation equation is
as follows: 

x(t) =
K
∑

j=0
lj(τ)xij

u(t) =
K
∑

j=1

−
l j(τ)uij

y(t) =
K
∑

j=1

−
l j(τ)yij

(18)

where lj(τ) = ∏K
k=0, 6=j

[
(τ − τk)/

(
τj − τk

)]
and

−
l j(τ) = ∏K

k=1, 6=j
[
(τ − τk)/

(
τj − τk

)]
are

the Lagrangian interpolation polynomials of the corresponding variables, respectively. K is
the interpolation order.

The initial and final value conditions of the state variables are:

x1,0 = x0, x f = xN,K (19)

Since the state variables are derivable, the values of the state variables at the nodes of
adjacent finite element connections should be continuous, so there is a continuity condition as:

xi+1,0 =
K

∑
j=0

lj(1)xij, i = 1, 2, · · · , N − 1 (20)

The advantage of the Lagrange interpolation polynomial is that the value of the
variable at each configuration point is exactly equal to its coefficient.

tij = ti−1 + (ti − ti−1)τj (21)

x
(
tij
)
= xij, u

(
tij
)
= uij, y

(
tij
)
= yij (22)



Processes 2023, 11, 1660 7 of 17

Substituting Equations (18), (21), and (22) into the set of differential equations of
proposition (17), we obtain the configuration equation:

Ri
(
τj
)
=

K

∑
k=0

.
lk
(
τj
)

xik − hi f
(
xij, uij

)
= 0, i = 1, 2, · · · , N, j = 1, 2, · · · , K. (23)

t = ti−1 + hiτ, hi = ti − ti−1 (24)

So far, the NLP proposition form of the original optimal proposition (17) after dis-
cretization is obtained:

min J
(

x
(

t f

))
s.t.



K
∑

k=0

.
lk
(
τj
)
xik − hiF

(
xij, yij, uij

)
= 0,

gE
(
xij, yij, uij

)
= 0,

hE
(

xij, yij, uij
)
= 0,

gIE
(
xij, yij, uij

)
< 0,

hIE
(
xij, yij, uij

)
< 0,

uL ≤ uij ≤ uU ,
i = 1, 2, · · · , N; j = 1, 2, · · · , K;

x(0) = x0, x
(

t f

)
= x f

xi+1,0 =
K
∑

j=0
lj(1)xij, i = 1, 2, · · · , N − 1.

(25)

For the above NLP problems containing many inequality constraints after discretiza-
tion, SQP and IPM [18] are often used for optimization solutions. However, they still do not
provide a good balance of convergence and convergence speed when solving large-scale
complex process optimization problems. The SQP algorithm with good local convergence
often converges quickly only when the initial point is close to the optimal point; otherwise,
it may fail to converge. The IPM algorithm with good global convergence does not depend
strongly on the initial point, but the local convergence and convergence speed are difficult
to guarantee. Currently, the solution of dynamic optimization problems faces the challenge
that the convergence rate of the optimization search and the solution accuracy are difficult
to be balanced at the same time. In the CHP unit nonlinear optimal control of variable
load problems, the real-time requirement is very high, and the solution time is vital. The
computational delay prevents the control action from being applied to the controlled object
promptly, resulting in a degradation of the system control performance.

4. IPM-SQP Alternate Solution Based on Convergence Depth Control

In this paper, we design an alternate solution method using the advantages of each
IPM and SQP algorithm. The two nonlinear planning algorithms are regarded as the
elemental algorithms of the alternate solution method, and the CDC is used to realize the
alternate solution of the two elemental algorithms in collaboration with each other. This
method can improve the algorithm’s overall robustness and computational efficiency to
complete the solution of large-scale complex problems.

4.1. Convergence Depth Control

Due to the requirements of the CHP unit variable load process on the real-time
performance of the solution algorithm, the design of the dynamic optimization convergence
criterion should take into account the computational accuracy and operational efficiency,
and a balance should be achieved between them. The traditional convergence criterion
has only convergence success and failure states when terminating the algorithm, which
is too strict in practical applications [19] and is not conducive to real-time optimization
calculation. In order to better control the termination condition of the algorithm, this
paper introduces the convergence depth and progress degree to describe the convergence
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state at the current iteration point quantitatively. Furthermore, the Sigmoid function is
used to soften the traditional rigid convergence criterion, to control the termination of
the algorithm.

The nonlinear programming problem shown in the original proposition (25) can be
abbreviated as:

min
x∈Rn

f (x)

s.t.
{

c(x) = 0
x ≥ 0

(26)

where f is a scalar objective function, x ∈ Rn is an n-dimensional real vector, and c ∈ Rm is
an m-dimensional equation. The solution to the problem (26) must satisfy the following
first-order optimality condition:

∇ f (x) +∇c(x)λ− v = 0
c(x) = 0

Xv = 0, v ≥ 0
(27)

where ∇ f (x) is the gradient vector of the objective function; ∇c(x) is the Jacobi matrix
of the constraint equation; λ is the Lagrangian multiplier corresponding to the constraint
equation; ν is the pairwise variable corresponding to x, and X = diag(x).

Assuming that the sequence of iterations generated by the optimization algorithm is
{xk}, define the feasibility error δk

feasErr at the current iteration point xk, and the amount of

improvement predicted by the objective function δk
objErr [20]:

δk
f easErr = max

{
‖ c
(

xk
)
‖; max

{
−xk

(i)

}}
(28)

δk
objErr =

∣∣∣∇ f T
(

xk
)

dk
∣∣∣, dk = xk − xk−1 (29)

where xk
(i) is the i-th component of the vector.

S is introduced as a deformed Sigmoid function for softening the traditional rigid
convergence criterion defined as:

S
(

δk, ε0

)
=
[
tanh

(
ξ∗
(

log δk/ log ε0

))]
/[tanh(ξ)] (30)

where the function S
(

δk, ε0

)
smoothly connects the interval [ε0, 1/ε0]; ξ measures the

degree of smoothness of the function S in this interval, and ξ takes 1.5.
Then the depth of convergence θk

convg is:

θk
convg = S

(
max

{
δk

feasErr, δk
objErr

}
, ε0

)
(31)

The softening of the Sigmoid function to the rigid convergence criterion is shown in
Figure 2. Given different tolerances ε0 (1× 10−10 for curve 1, 1× 10−5 for curve 2, 1 × 10−3

for curve 3, and rigid criterion for curve 4). The degree of deformation of curve 2 is more
appropriate, while curve 1 is too flat and curve 3 is too steep.

The depth of convergence based on the flexible criterion is more intuitive than the first-
order optimality condition (Equation (27)). The criterion uniformly characterizes the quality
(feasibility and optimality) of each iteration point generated by the optimization algorithm
and can quantitatively describe the distance between it and the optimal point [19,21]. When
the depth of convergence reaches 1.0, the feasibility error and the amount of improvement
in the objective function prediction also reach ε0, at which point the iteration point is
already a good approximation of the optimal point.
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4.2. IPM-SQP Alternate Solution Algorithm

The CDC-based IPM-SQP alternate solution method uses the globally convergent
IPM algorithm to advance the initial point to the optimal point and uses the depth of
convergence to measure the distance between the current iteration point and the optimal
point. By controlling the degree of advancement, and then switching to the SQP algorithm
with better local convergence to make the iteration point converge to the optimal point
quickly. This paper introduces the progress degree index for switching between IPM-SQP
alternate solution methods.

The amount of feasible change δk
feasChg and the amount of change in the objective

function δk
objChg are:

δk
feasChg =

∣∣∣δk
feasErr − δk−1

feasErr

∣∣∣ (32)

δk
objChg =

∣∣∣ f(xk
)
− f

(
xk−1

)∣∣∣ (33)

From the above equation, the degree of progress θk
prog can be defined as [22]:

θk
prog = S

(
max

{
δk

feasChg , δk
objChg

}
, ε0

)
(34)

When the degree of progress reaches 1.0, the algorithm has reached ε0 in terms of the
amount of feasibility change and the amount of improvement in the objective function,
which means that the algorithm has almost no more progress in terms of the objective
function and feasibility improvement.

The CDC-IPM-SQP alternate solution method framework is designed based on the
depth of convergence and the degree of progress introduced above. The framework
for solving the dynamic optimization problem in the form of Equation (25) using the
simultaneous method is shown in Figure 3. First, the finite element Orthogonal collocation
method is used for discretization, and then the IPM-SQP optimization algorithm is used
for optimization.

(1) Establishing dynamic optimization problems

Design input for dynamic optimization problems based on the dynamic process
scenario of CHP unit variable load optimization control, which includes: the CHP unit
mechanism model, multiple control variable coordination control model, control process
output variable constraints, boundary constraints, and path constraints.

(2) Discrete processing of original problems

The variables of the original optimization problem are fully discretized by the finite
element Orthogonal collocation method. Lagrange interpolation function based on Radau
Orthogonal collocation points approximates the original functions of state variables and
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control variables. The original dynamic optimization problem after discretization becomes
an NLP problem.

(3) Real-time planning NLP model

Follow the process of inputting “initial information→ generating initial values→
optimizing the solver→ obtaining the optimal solution” for real-time planning. During
the optimization process, input NLP model information and calculated residuals into the
solver. The variable values obtained from each optimization iteration are fed back to the
NLP model. When using the SQP-IPM optimization algorithm for calculation and solution,
it is necessary to select configuration points, calculate derivatives, approximate Jacobian
matrices for the NLP model, and input the sparse Jacobian matrix into the optimization al-
gorithm.

In the optimization algorithm solving section, IPM is first selected to solve the NLP
problem, and the depth of convergence at each step is calculated using Equation (31)
during the iteration. When the convergence depth satisfies the specified threshold θc, the
information of the iteration points is saved; Terminate the current algorithm and switch to
SQP, and the last saved iteration point is used as the initial point to continue the iteration.
Since different algorithms have different local convergence radii, this paper first gives the
threshold θc an initial value of θ0

c ∈ (0, 1). If the SQP convergence is unsuccessful, the
iteration point obtained from IPM enters the local convergence radius; the convergence
depth threshold is increased by dθ ∈ (0, 1), and returns to IPM for iteration. The specific
steps of the alternate solution method are as follows:

(1) Let k = 0, given the initial point x0; specify the convergence depth threshold θc,
the progress degree threshold θp, the convergence depth advance step dθ , and the
maximum convergence depth value θmax; and set the flag bit IPM to 0.

(2) Select the IPM and set its flag bit to 1 for solving the optimization problem.
(3) Iterate one step, k = k + 1, if the termination criterion of IPM is satisfied, the solution is

successful, and the whole algorithm is terminated; otherwise, go to step 4).
(4) Calculate the depth of convergence, check whether θk

convg ≥ θc is satisfied; if it is
satisfied, assign the current iteration point xk to x0 and clear the flag bit of SQP, go to
step 6); otherwise, go to step 5).

(5) If the termination criterion (solution failure) of IPM is not satisfied, turn to step 3);
otherwise, the solution fails, and the whole algorithm terminates.

(6) Select SQP, set its flag bit to 1, and solve the optimization problem with x0 as the
initial point.

(7) Iterate one step, k = k + 1; if the termination criterion of SQP is satisfied, the solution
succeeds, and the whole algorithm terminates; otherwise, go to step 8).

(8) Calculate the degree of progress; if both θk
convg ≥ θp and the termination criterion of

SQP are not satisfied, turn to step 7); otherwise, go to step 9).
(9) Assign the current iteration point xk to x0 and go to step 10).
(10) Let θc = θc + dθ ; if θc ≥ θmax, the solution fails, and the whole algorithm terminates;

otherwise, the flag bit of IPM is cleared to 0; turn to step 2).

The simultaneous method framework and the specific implementation flow of the
CDC-based IPM-SQP alternate solution to dynamic optimization problems in this paper
are shown in Figure 3.
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Figure 3. Simultaneous method framework for alternating SQP-IPM solutions based on CDC.

5. Simulation Case and Analysis

The numerical experiments in this paper are conducted on a computer-based Intel(R)
Core(TM) i7-8550U processor with 32 GB RAM. The NLP solvers used are IPM-based
IPOPT and SQP-based SNOPT. The initial value of the convergence depth threshold θ0

c
is set to 0.6; the convergence depth advancement step dθ is 0.1; the degree of progress
threshold θp is set to 1.0 (the optimization algorithm has made no progress in the objective
function and feasibility improvement); the maximum convergence depth θmax is 1.0 (the
iteration point is already a good approximation of the optimal point). The configuration
points are of order 3 (k = 3), the finite elements are 200 (N = 200), and the discrete points are
600 in total.

5.1. Simulation Scenario of CHP Unit Variable Load Control

In this paper, simulation analysis is performed using the parameters of the extracted
CHP unit in the literature [17], and the control system parameters of the CHP unit are
shown in Table 1. The data of three cases of common variable load requirements for CHP
units in integrated energy system applications are shown in Tables 2 and 3. The adjustment
time of the control process from the initial value to the terminal value is 300 s. Three
different optimization solution algorithms are set for the simulation calculation. Method 1
is IPM; Method 2 is CDC-based IPM; Method 3 is CDC-based IPM-SQP.

Table 1. CHP unit control system parameters.

VT Control
Parameters

VB Control
Parameters

VH Control
Parameters

Coordination
Parameters

KPT = −0.9 KPB = 0.1 KPH = 0.01 K = 0.5
KIT = −1 KIB = 0.01 KIH = 10 TC = 15
KDT = 0 KDB = 0 KDH = 0
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Table 2. Variable load requirements for CHP units under different operating conditions.

Case Initial Value (P0
H,ψ0

t ,m0
H) Terminal Value (Pf

H,ψf
t,m

f
H)

Case 1 (Heating condition) (220, 16.67, 380) (260, 16.67, 390)
Case 2 (Pure condensing

condition) (260, 16.67, 0) (235, 16.67, 0)

Table 3. Continuous variable load demand for CHP units under heating conditions (Case 3).

Time Period (P0
H,ψ0

t ,m0
H) (Pf

H,ψf
t,m

f
H)

300–600 s (250, 16.67, 390) (220, 16.67, 380)
600–900 s (220, 16.67, 380) (200, 16.67, 390)

900–1200 s (200, 16.67, 390) (230, 16.67, 395)
1200–1500 s (230, 16.67, 395) (210, 16.67, 385)
1500–1800 s (210, 16.67, 385) (240, 16.67, 395)
1800–2100 s (240, 16.67, 395) (250, 16.67, 385)
2100–2400 s (250, 16.67, 385) (220, 16.67, 380)
2400–2700 s (220, 16.67, 380) (200, 16.67, 390)
2700–3000 s (200, 16.67, 390) (230, 16.67, 395)
3000–3300 s (230, 16.67, 395) (210, 16.67, 385)
3300–3600 s (210, 16.67, 385) (240, 16.67, 395)
3600–3900 s (240, 16.67, 395) (260, 16.67, 385)

5.2. Simulation Results Analysis
5.2.1. Comparative Analysis of the Effect of Variable Load Simulation

Simulation calculations were carried out by three methods for Case 1 and Case 2, and
the results are shown in Figure 4. Different methods are used to solve the CHP unit variable
load process under heating and pure condensing conditions. It can be seen that the output
variables (ψt, PH,mH) curves are consistent, and the dynamic process’s control variables
(VT, VB, VH) have the same trajectory. All of them achieve the optimal control effect.

The mechanistic model-related parameters of Equations (3)–(10) are taken at different
values for CHP units under different operating conditions, resulting in the variation of
DAEs of the unit model in the dynamic optimization problem. The simultaneous solution
framework and algorithm improvement method proposed in this paper can converge and
achieve the demanded effect when solving the unit variable load problem under different
operating conditions. The simulation results prove that the unified description framework
established and the optimization performance objectives designed in this paper for the
dynamic optimization problems of CHP units with different operating conditions and
different variable load demand scenarios have the generality to be applied to the integrated
energy system calculation scenarios.

For the demand of continuously changing load in the application scenario of an
integrated energy system, the control process of continuously changing electric and thermal
loads for 12 time periods (300 s each) under the heating condition of the CHP unit is selected
for simulation. The method proposed in this paper is used for the continuous dynamic
optimization solution, and the output quantity curve and control quantity trajectory in
this process are shown in Figure 5. The results show that the terminal values of electric
power PH and thermal power (related variable mH) of the CHP unit can accurately realize
the variable load demand. The unit’s main steam pressure ψt and heating steam flow
mH curves continuously portray the pressure and heat fluctuation changes caused by the
variable load process, which is conducive to the analysis of the integrated energy system
calculation scenario for safe and stable operation.
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Figure 5b shows that the control variables (VT, VB, VH) trajectories enable coherent
planning for optimal control of the variable load dynamic process in CHP units. These
trajectories provide precise quantitative indicators for repeated adjustment of flow rate
and valve opening during unit operation and guide actual CHP units’ continuous variable
load regulation.

5.2.2. Method Performance Comparison Analysis

Different solution methods are used to calculate the optimal control problem of the
CHP unit for each of the three case scenarios, and a set of optimal indicators are solved to
obtain variable load control process paths. Their computational performance indexes are
shown in Table 4. It can be seen that the optimal control terminal values of the three methods
do not differ much under different working conditions and variable load demands, and the
feasibility error also meets the actual requirements. However, the number of iterations and
the solution time of the discrete model have significant differences.
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Table 4. Comparison of computational performance of different methods.

Case Performance Indicators CDC-IPM-SQP
(IPOTP-SNOPT) CDC-IPM (IPOTP) IPM (IPOTP)

Case 1

Solution time 1.34 s 2.27 s 3.35 s
Iteration number 33 47 61
Feasibility error 2.03 × 10−5 1.13 × 10−5 5.13 × 10−8

Convergence Successful Successful Successful
Terminal value (259.9, 16.67, 390) (259.9, 16.67, 390) (260, 16.67, 390)

Case 2

Solution time 1.11 s 2.32 s 3.07 s
Iteration number 23 41 61
Feasibility error 2.71 × 10−5 1.25 × 10−5 5.93 × 10−8

Convergence Successful Successful Successful
Terminal value (234.9, 16.67, 0) (234.9, 16.67, 0) (235, 16.67, 0)

Case 3
Solution time 10.17 s 19.92 s 38.68 s
Convergence Successful in all periods Successful in all periods Successful in all periods

Terminal value All periods are satisfied All periods are satisfied All periods are satisfied

When the CDC-based improved method is used to solve the problem, the time interval
between two calculations can be shorter, and the deviation between the initial value and the
optimal solution becomes smaller, thus reducing the number of iterations in the calculation
process. This feature can effectively improve the computational efficiency of the algorithm
and greatly reduce the computing time. In case 1, compared with the IPM solution alone,
the CDC criterion used in the CDC-IPM solution makes the constraint violation slightly
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larger than the result of the traditional H criterion. In addition, the objective function
value is slightly smaller than the optimal value. However, the computation time of the
CDC-IPM solution is reduced by about 30%, and the number of iterations is reduced by
about 20%. Under the traditional H-criterion, the termination position of the optimization
process (objective function and maximum constraint violation) is the 61st iteration, while
the CDC criterion terminates at the 47th iteration. The simulation results show that the
CDC criterion can effectively determine the degree of convergence of the solution process,
the degree of the constraint violation, and the degree of improvement by continuing the
iteration and can terminate the iteration in time to avoid over-convergence.

When the CDC-IPM-SQP method is used to solve the optimization problem of case 1,
IPM reaches a convergence depth of 0.67 after 19 iterations, which exceeds the convergence
depth threshold (0.6); the algorithm considers that the current iteration point is close to the
optimal point and switches to the SQP algorithm; after continuing to iterate for six steps,
SQP finds the optimal solution, and the algorithm terminates; the maximum value of the
progress degree of SQP during the iteration process is 0.26, which is far from the threshold
(1.0), so no switching is performed. Compared with the CDC-IPM solution, its computation
time is shortened by about 40%, and the number of iterations is reduced by about 30%.

The improved IPM-SQP alternating solution method based on the CDC criterion can
reduce the calculation time of variable load for the 12 time periods in case 3 by about 70%,
which effectively improves the real-time performance of the scenario application.

6. Conclusions

In this paper, a method based on alternating SQP-IPM to solve the optimization of the
variable-load dynamic process of CHP units is proposed. The computational performance
of the CHP unit variable-load dynamic optimization under the three different solution
methods is compared through numerical simulations of different arithmetic cases and the
following conclusions are drawn:

(1) Compared with the IPM solution alone, the CDC-IPM solution method uses the
CDC criterion so that the constraint violation is slightly larger than the result of the
conventional H criterion, while the objective function value is slightly smaller than
the optimal value. However, the computation time of CDC-IPM is reduced by about
30%, and the number of iterations is reduced by about 20%.

(2) Compared with the CDC-IPM solution, the computation time is reduced by about
40%, and the number of iterations is reduced by about 30% using the CDC-IPM-SQP.

(3) The use of CDC criterion improvement and IPM-SQP alternate solution reduces the
calculation time of variable load for 12 consecutive periods by about 70%, which
effectively improves the real-time performance of energy system optimization sce-
nario applications.

In summary, the dynamic optimization model and solution method for a variable load
of CHP units proposed in this paper can improve the calculation speed while guaranteeing
the solution accuracy and provide the possibility of incorporating the finely modeled
CHP units into the energy scenario optimization application. This paper compares three
solution methods for variable-load process optimization problems on specific CHP units,
and further validation is needed for other types of units. It does not consider the technical
difficulty of unit optimization and control modification, maintenance cost, and time scale of
scenario application. Further discussion and research are needed in practical applications.
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Nomenclature

Variables
VB(t) unit coal feed mass flow rate
Vm(t) actual coal feed mass flow rate of the pulverizing system
Vf(t) boiler combustion rate
VT(t) turbine regulating gate opening
ψd(t) steam package pressure
ψt(t) main steam pressure
VH(t) extraction regulating butterfly valve opening
PH(t) unit power generation
ψz(t) medium pressure cylinder discharge pressure
ψ1(t) turbine first-stage pressure
mr(t) circulating water mass flow rate
εr(t) circulating water return temperature
mH(t) unit heating extraction flow
SPψ main steam pressure settings
SPP electric power settings
SPm heat supply extraction flow settings
∆ψ fluctuation ranges of the main steam pressure
∆P fluctuation ranges of the electric power
∆m fluctuation ranges of the heat supply extraction flow
δψ error ranges of the main steam pressure
δP error ranges of the electric power,
δm error ranges of the heat supply extraction flow
t0 starting moments of the optimal control process
tf final moments of the optimal control process
Parameters
tB delay time constant of the pulverizing process
Tf pulverizing inertia time constant
Cd boiler heat storage coefficient
Tt turbine inertia time constant
Cz heat storage coefficient of the heat network heater
Abbreviations
CHP combined heat and power
IPM interior point method
SQP sequential quadratic programming
NLP nonlinear programming
DAEs differential algebraic equations
CDC convergence depth control
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