Life Cycle Assessment of Fuel Ethanol Production from Food Waste in Consideration of By-Product Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition of LCA of Ethanol Fermentation from Food Waste
2.2. Inventory Analysis of the Process
3. Results and Discussion
3.1. Life Cycle Assessment of Ethanol Fermentation
3.2. The Consideration of By-Product Utilization
4. Conclusions
- (1)
- LCA was used for ethanol fermentation from food waste, and the characterization results show that the sequence was GWP > AP > DUST > EP > ODP > POCP. An energy analysis of ethanol fermentation from food waste demonstrated that the net energy output for the whole process was negative, and the whole process could realize energy self-sufficiency.
- (2)
- The utilization of by-products in the process achieved a better effect. The GWP, AP, and DUST latent values dropped significantly, the EP value showed a slight decline, and ODP and POCP increased. The whole process was proved to be environmentally friendly and could eliminate some bad effects. The rational use of by-products plays an important positive role in environmental protection and resource utilization.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, H.; Lin, Y.; Jin, Y.; Gao, M.; Li, H.; Wang, Q.; Ge, S.; Cai, L.; Huang, Z.; Van Le, Q. Effect of ultrasonic pretreatment on chain elongation of saccharified residue from food waste by anaerobic fermentation. Environ. Pollut. 2021, 268, 115936. [Google Scholar] [CrossRef]
- Ma, X.; Gao, M.; Liu, S.; Li, Y.; Sun, X.; Wang, Q. An innovative approach for reducing the water and alkali consumption in the lactic acid fermentation via the reuse of pretreated liquid. Bioresour. Technol. 2022, 352, 127108. [Google Scholar] [CrossRef]
- Su, W.; Cai, C.; Liu, P.; Lin, W.; Liang, B.; Zhang, H.; Ma, Z.; Ma, H.; Xing, Y.; Liu, W. Supercritical water gasification of food waste: Effect of parameters on hydrogen production. Int. J. Hydrogen Energy 2020, 45, 14744–14755. [Google Scholar] [CrossRef]
- Gao, M.; Li, H.; Ma, H.; Peng, C.; Wu, W.; Yu, Z.; Wang, Q. Electricity Enhancement by MFCs from Food Waste Ethanol Fermentation Recycle Stillage Effect of Dilution Ratio and Addition of Tween 80. ChemistrySelect 2020, 5, 5701–5705. [Google Scholar] [CrossRef]
- Jin, Y.; Lin, Y.; Wang, P.; Jin, R.; Gao, M.; Wang, Q.; Chang, T.-C.; Ma, H. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community. Bioresour. Technol. 2019, 292, 121957. [Google Scholar] [CrossRef]
- Ma, H.; Yue, S.; Li, H.; Wang, Q.; Tu, M. Recovery of lactic acid and other organic acids from food waste ethanol fermentation stillage: Feasibility and effects of substrates. Sep. Purif. Technol. 2019, 209, 223–228. [Google Scholar] [CrossRef]
- Kim, T.; Bhatt, A.; Tao, L.; Benavides, P.T. Life cycle analysis of polylactic acids from different wet waste feedstocks. J. Clean. Prod. 2022, 380, 135110. [Google Scholar] [CrossRef]
- Yadav, P.; Samadder, S. A critical review of the life cycle assessment studies on solid waste management in Asian countries. J. Clean. Prod. 2018, 185, 492–515. [Google Scholar] [CrossRef]
- Chen, T.; Li, H.; Ren, L.; Jin, Y. Environmental impact analysis of two typical restaurant garbage regeneration technologies. Chin. J. Environ. Eng. 2010, 4, 189–194. [Google Scholar]
- Kim, M.-H.; Kim, J.-W. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. Sci. Total Environ. 2010, 408, 3998–4006. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.H.; Lim, T.Z.; Tan, R.B. Food waste conversion options in Singapore: Environmental impacts based on an LCA perspective. Sci. Total Environ. 2010, 408, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Renouf, M.A.; Wegener, M.K.; Nielsen, L.K. An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenergy 2008, 32, 1144–1155. [Google Scholar] [CrossRef]
- Michaga, M.F.R.; Michailos, S.; Akram, M.; Cardozo, E.; Hughes, K.J.; Ingham, D.; Pourkashanian, M. Bioenergy with carbon capture and storage (BECCS) potential in jet fuel production from forestry residues: A combined Techno-Economic and Life Cycle Assessment approach. Energy Convers. Manag. 2022, 255, 115346. [Google Scholar] [CrossRef]
- Catalán, E.; Komilis, D.; Sánchez, A. Environmental impact of cellulase production from coffee husks by solid-state fermentation: A life-cycle assessment. J. Clean. Prod. 2019, 233, 954–962. [Google Scholar] [CrossRef]
- Lu, Y.; Mu, D.; Xue, Z.; Xu, P.; Li, Y.; Xiang, W.; Burnett, J.; Bryant, K.; Zhou, W. Life cycle assessment of industrial production of microalgal oil from heterotrophic fermentation. Algal Res. 2021, 58, 102404. [Google Scholar] [CrossRef]
- Singh, G.; Samuchiwal, S.; Hariprasad, P.; Sharma, S. Melioration of Paddy Straw to produce cellulase-free xylanase and bioactives under Solid State Fermentation and deciphering its impact by Life Cycle Assessment. Bioresour. Technol. 2022, 360, 127493. [Google Scholar] [CrossRef]
- Zheng, J.-L.; Zhu, Y.-H.; Su, H.-Y.; Sun, G.-T.; Kang, F.-R.; Zhu, M.-Q. Life cycle assessment and techno-economic analysis of fuel ethanol production via bio-oil fermentation based on a centralized-distribution model. Renew. Sustain. Energy Rev. 2022, 167, 112714. [Google Scholar] [CrossRef]
- Lundie, S.; Peters, G.M. Life cycle assessment of food waste management options. J. Clean. Prod. 2005, 13, 275–286. [Google Scholar] [CrossRef]
- Ebner, J.; Babbitt, C.; Winer, M.; Hilton, B.; Williamson, A. Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products. Appl. Energy 2014, 130, 86–93. [Google Scholar] [CrossRef]
- Yeo, J.; Chopra, S.S.; Zhang, L.; An, A.K. Life cycle assessment (LCA) of food waste treatment in Hong Kong: On-site fermentation methodology. J. Environ. Manag. 2019, 240, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.-C.; Lin, L.-D.; Ko, C.-H.; Hsieh, H.-C.; Yang, B.-Y.; Chen, W.-H.; Hwang, W.-S. Life cycle assessment of bioethanol production from three feedstocks and two fermentation waste reutilization schemes. J. Clean. Prod. 2017, 143, 973–979. [Google Scholar] [CrossRef]
- Sun, C.; Xia, A.; Liao, Q.; Fu, Q.; Huang, Y.; Zhu, X. Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste. Renew. Sustain. Energy Rev. 2019, 112, 395–410. [Google Scholar] [CrossRef]
- Meng, F.; Ibbett, R.; de Vrije, T.; Metcalf, P.; Tucker, G.; McKechnie, J. Process simulation and life cycle assessment of converting autoclaved municipal solid waste into butanol and ethanol as transport fuels. Waste Manag. 2019, 89, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Brancoli, P.; Bolton, K.; Eriksson, M. Environmental impacts of waste management and valorisation pathways for surplus bread in Sweden. Waste Manag. 2020, 117, 136–145. [Google Scholar] [CrossRef] [PubMed]
Emission | N2O | SO2 | CO | Nox | CO2 | HC | Dust | COD | SS |
---|---|---|---|---|---|---|---|---|---|
Quantity kg/kwh | 1.00 × 10−4 | 1.16 × 10−2 | 1.30 × 10−4 | 5.14 × 10−3 | 1.25 × 100 | 1.10 × 10−4 | 6.14 × 10−3 | 3.10 × 10−4 | 3.20 × 10−4 |
Emissions Pathways | Pollutants | Emissions (kg/t) |
---|---|---|
Atmosphere | N2O | 6.58 × 10−2 |
SO2 | 7.63 × 100 | |
CO | 8.55 × 10−2 | |
NOx | 3.38 × 100 | |
CH4 | 2.78 × 100 | |
CO2 | 8.67 × 102 | |
HC | 7.23 × 10−2 | |
Dust | 4.04 × 100 | |
Water body | COD | 2.04 × 10−1 |
SS | 2.10 × 10−1 | |
Soil | Solid waste | 1.20 × 102 |
Environmental Impact Categories | Contamination Factor | Characterized Equivalent | Standardized Reference Value kg.eq./Capita.yr | Weighting Factor |
---|---|---|---|---|
GWP | CO2 | 1.00 × 100 | 3.59 × 103 | 0.74 |
CH4 | 2.10 × 101 | |||
HC | 1.70 × 103 | |||
N2O | 2.96 × 102 | |||
ODP | HC | 3.40 × 10−2 | 1.03 × 10−1 | 3.74 |
AP | SO2 | 1.00 × 100 | 4.19 × 101 | 1.32 |
NOx | 7.00 × 10−1 | |||
EP | COD | 2.20 × 10−1 | 8.35 × 100 | 1.28 |
NOx | 1.35 × 10−1 | |||
POCP | CO | 2.70 × 10−2 | 6.05 × 100 | 1.18 |
CH4 | 6.00 × 10−3 | |||
DUST | Solid contaminants | Actual emissions | 2.90 × 101 | 1.77 |
LCA Result | GWP | ODP | AP | EP | POCP | DUST |
---|---|---|---|---|---|---|
Characterization results | 1.07 × 103 | 2.46 × 10−3 | 9.99 × 100 | 5.01 × 10−1 | 1.90 × 10−2 | 4.04 × 100 |
Standardization results | 2.98 × 10−1 | 2.39 × 10−2 | 2.38 × 10−1 | 6.00 × 10−2 | 3.14 × 10−3 | 1.39 × 10−1 |
Empowering results | 2.20 × 10−1 | 8.93 × 10−2 | 3.15 × 10−1 | 7.68 × 10−2 | 3.71 × 10−3 | 2.46 × 10−1 |
Production Process (kg) | CO2 | SO2 | NOx | Dust | HC | CO | Energy (Tce) |
---|---|---|---|---|---|---|---|
Biodiesel Preparation | 2.61 × 10−2 | 4.31 × 10−4 | 2.16 × 10−5 | 2.16 × 10−4 | 0 | 0 | 1.34 × 100 |
Use Emissions | 2.597 | 0 | 5.62 × 10−2 | 0 | 4.20 × 10−3 | 7.48 × 10−3 | 0 |
Type | Gsd | GSO2 | GCO | GNOX | GCO2 | Ash |
---|---|---|---|---|---|---|
Quantity (kg) | 6.17 × 100 | 9.92 × 100 | 4.85 × 101 | 1.38 × 101 | 1.84 × 103 | 2.12 × 102 |
Emission | Pollutants | Quantity (kg/t) |
---|---|---|
Air | N2O | −1.25 × 10−1 |
SO2 | −1.12 × 101 | |
CO | 1.64 × 101 | |
NOx | 2.34 × 100 | |
CH4 | −5.29 × 100 | |
CO2 | −6.83 × 102 | |
HC | 1.77 × 10−1 | |
Dust | −5.63 × 100 | |
Water | COD | −3.88 × 10−1 |
SS | −4.00 × 10−1 | |
Soil | Solid-Waste | −1.58 × 102 |
LCA Result | GWP | ODP | AP | EP | POCP | DUST |
---|---|---|---|---|---|---|
Characterization | −5.30 × 102 | 6.03 × 10−3 | −9.57 × 100 | 2.31 × 10−1 | 4.11 × 10−1 | −5.63 × 100 |
Standardized | −1.48 × 10−1 | 5.86 × 10−2 | −2.28 × 10−1 | 2.76 × 10−2 | 6.80 × 10−2 | −1.94 × 10−1 |
Weighted result | −1.09 × 10−1 | 2.19 × 10−1 | −3.01 × 10−1 | 3.53 × 10−2 | 8.02 × 10−2 | −3.44 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Ma, H.; Lv, P.; Su, W.; Wang, Q.; Gao, M.; Qin, H. Life Cycle Assessment of Fuel Ethanol Production from Food Waste in Consideration of By-Product Utilization. Processes 2023, 11, 1672. https://doi.org/10.3390/pr11061672
Zhou J, Ma H, Lv P, Su W, Wang Q, Gao M, Qin H. Life Cycle Assessment of Fuel Ethanol Production from Food Waste in Consideration of By-Product Utilization. Processes. 2023; 11(6):1672. https://doi.org/10.3390/pr11061672
Chicago/Turabian StyleZhou, Jun, Hongzhi Ma, Pin Lv, Wei Su, Qunhui Wang, Ming Gao, and Heyang Qin. 2023. "Life Cycle Assessment of Fuel Ethanol Production from Food Waste in Consideration of By-Product Utilization" Processes 11, no. 6: 1672. https://doi.org/10.3390/pr11061672
APA StyleZhou, J., Ma, H., Lv, P., Su, W., Wang, Q., Gao, M., & Qin, H. (2023). Life Cycle Assessment of Fuel Ethanol Production from Food Waste in Consideration of By-Product Utilization. Processes, 11(6), 1672. https://doi.org/10.3390/pr11061672