Influence of Inorganic Salt Additives on the Surface Tension of Sodium Dodecylbenzene Sulfonate Solution
Abstract
:1. Introduction
2. Experimental Materials and Schemes
2.1. Experimental Materials
2.2. Experimental Program
3. Experimental Results and Analysis
3.1. Influence of the Types of Inorganic Salts
3.2. Influence of Surfactant Concentration
3.3. Influence of Inorganic Salt Concentration
3.4. Influence of Inorganic Salt on the CMC of the SDBS Solution
4. Conclusions
- (1)
- Different inorganic salts have different effects on the surface tension of an SDBS solution. The inorganic salt additives NaCl, CaCl2 and Na2SO4 show a gain effect in reducing the surface tension of the solution. When the mass fractions of the SDBS are 0.00005%, 0.0005% and 0.005%, respectively, the inorganic salt additives to use to increase the surface tension of the solution are NaHCO3, Na2CO3 and AlCl3, respectively.
- (2)
- With the increasing concentration of the SDBS solution, the influence of inorganic salts on the surface tension of the SDBS solution is smaller. With the increasing concentrations of the inorganic salts NaCl, CaCl2 and Na2SO4, the surface tension of the SDBS solution decreases first and then tends to become stable.
- (3)
- Three inorganic salt additives and their optimum mass fractions were selected: 0.7% NaCl, 0.5% CaCl2 and 0.5% Na2SO4. The additions of 0.7% NaCl, 0.5% CaCl2 and 0.5% Na2SO4 reduced the critical micelle concentration of the SDBS solution. The three inorganic salts showed a trend reducing the critical micelle concentration of 0.7% NaCl > 0.5% CaCl2 > 0.5% Na2SO4.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
wt1 | Inorganic Salt | wt2 (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | ||
0.00005% | NaCl | 56.8 | 55.1 | 53.3 | 51.7 | 49.3 | 47.5 | 45.1 | 44.2 | 44.4 | 44.4 | 45.1 |
CaCl2 | 56.8 | 54.2 | 51.9 | 48.8 | 45.3 | 43.0 | 42.6 | 42.8 | 42.8 | 43.0 | 43.2 | |
AlCl3 | 56.8 | 53.9 | 50.2 | 46.1 | 45.3 | 44.9 | 45.0 | 45.2 | 45.6 | 46.1 | 45.9 | |
Na2SO4 | 56.8 | 56.5 | 55.2 | 53.5 | 51.8 | 49.4 | 49.3 | 49.5 | 49.4 | 49.8 | 49.7 | |
Na2CO3 | 56.8 | 56.5 | 58.2 | 59.0 | 56.2 | 55.2 | 54.7 | 54.6 | 54.2 | 54.5 | 54.6 | |
NaHCO3 | 56.8 | 59.0 | 61.0 | 60.1 | 58.3 | 56.7 | 55.7 | 55.3 | 55.5 | 55.8 | 55.1 | |
0.0005% | NaCl | 45.4 | 44.8 | 43.3 | 42.2 | 39.7 | 38.5 | 37.3 | 35.4 | 35.2 | 35.1 | 35.3 |
CaCl2 | 45.4 | 42.6 | 40.0 | 37.3 | 34.8 | 33.1 | 33.3 | 33.2 | 33.2 | 33.4 | 33.5 | |
AlCl3 | 45.4 | 44 | 42.6 | 40.2 | 34.7 | 35.2 | 35.4 | 35.1 | 35.0 | 35.3 | 35.5 | |
Na2SO4 | 45.4 | 44.4 | 43.0 | 41.9 | 38.7 | 36.3 | 34.9 | 35.2 | 35.4 | 35.4 | 35.5 | |
Na2CO3 | 45.4 | 46.2 | 46.5 | 47.1 | 46.8 | 46.3 | 46.6 | 46.4 | 46.1 | 46.2 | 46.4 | |
NaHCO3 | 45.4 | 45.8 | 46.1 | 46.3 | 45.9 | 45.7 | 45.2 | 45.0 | 45.2 | 45.4 | 45.3 | |
0.005% | NaCl | 28.8 | 28.6 | 28.6 | 28.4 | 28.1 | 28.0 | 27.8 | 27.7 | 27.7 | 27.8 | 27.8 |
CaCl2 | 28.8 | 28.6 | 28.4 | 28.0 | 27.7 | 27.6 | 27.6 | 27.6 | 27.7 | 27.6 | 27.7 | |
AlCl3 | 28.8 | 32.0 | 35.7 | 36.3 | 35.9 | 36.6 | 38.4 | 37.1 | 37.1 | 36.9 | 36.7 | |
Na2SO4 | 28.8 | 28.7 | 28.7 | 28.6 | 28.4 | 28.1 | 28.1 | 28.2 | 28.2 | 28.1 | 28.1 | |
Na2CO3 | 28.8 | 29.0 | 29.4 | 29.2 | 29.0 | 29.1 | 29.2 | 29.3 | 29.2 | 29.4 | 29.2 | |
NaHCO3 | 28.8 | 28.9 | 29.2 | 29.2 | 28.9 | 29.0 | 28.7 | 28.7 | 29.1 | 29.0 | 29.3 |
References
- An, W.B.; Wang, L.G. Mechanical properties and modification of coal under the action of surfactant. J. China Coal Soc. 2020, 45, 4074–4086. [Google Scholar] [CrossRef]
- Chen, J.; Hu, X.Y.; Fang, Y. Amphiphilic Contribution of Polypropylene Oxide Chains to Extended Surfactants. Fine Chem. 2019, 36, 1560–1564. [Google Scholar] [CrossRef]
- Cao, Y.P.; Yang, W.G.; Jiang, Y.J.; Wang, Y.K.; Ju, H.B.; Geng, T. Synthesis and properties of a zwitterionic Gemini surfactant. Fine Chem. 2021, 38, 335–340. [Google Scholar] [CrossRef]
- Wang, P.F.; Jiang, Y.D.; Liu, R.H.; Liu, L.M.; He, Y.C. Experimental study on the improvement of wetting performance of OP-10 solution by inorganic salt additives. Atmos. Pollut. Res. 2020, 11, 153–161. [Google Scholar] [CrossRef]
- Zhao, W.W.; Wang, Y.L. Development of Surfactant Application in Wastewater Treatment. Acta Chim. Sin. 2019, 77, 717–728. [Google Scholar] [CrossRef]
- Han, W.M.; Tan, J.; Peng, L.Q.; Liu, L.; Zhou, X.; Zhang, W.H.; Shi, B. Ecotoxicity and Micellization Behavior of Anionic Surfactant Sodium Dodecylbenzene Sulfonate (SDBS) and its Mixtures with Nonionic Surfactant Fatty Alcohol-polyoxyethylene Ether (AEO). Aquat. Toxicol. 2019, 216, 105313. [Google Scholar] [CrossRef]
- Wu, Z.W.; Shi, Z.H.; Zhao, H.; Zhou, W.; Cai, X.S.; Liu, H.F. Effect of surface tension variations on breakup of liquid jet with inner bubbles. CIESC J. 2021, 72, 1283–1294. [Google Scholar] [CrossRef]
- Luciano, P. The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil. Environ. Sci. Pollut. Res. Int. 2021, 28, 26975–26989. [Google Scholar] [CrossRef]
- Alam, M.S.; Siddiq, A.M.; Natarajan, D.; Kiran, M.S.; Baskar, G. Physicochemical properties and bioactivity studies of synthesized counterion coupled (COCO) gemini surfactant, 1,6-bis(N, N-hexadecyldimethylammonium) adipate. J. Mol. Liq. 2018, 273, 16–26. [Google Scholar] [CrossRef]
- Tong, J.X.; Wang, J.; Huang, H.X. Surfactant-Assisted Synthesis of LiNi0.8Co0.1Mn0.1O2 Cathode Material. Chin. J. Inorg. Chem. 2021, 37, 835–843. [Google Scholar]
- Rorke Daneal, C.S.; Prabashni, L.; Kana Gueguim, E.B.; Sithole, B.B. Surfactant-assisted green liquor dregs pretreatment to enhance the digestibility of paper mill sludge. Int. J. Hydrogen Energy 2021, 46, 21359–21371. [Google Scholar] [CrossRef]
- Yekeen, N.; Manan, M.A.; Kamal Idris, A.; Samin, A.M. Influence of surfactant and electrolyte concentrations on surfactant Adsorption and foaming characteristics. J. Pet. Sci. Eng. 2017, 149, 612–622. [Google Scholar] [CrossRef]
- Meng, J.Q.; Xia, J.K.; Niu, J.X.; Meng, H.X.; Kan, L.H. Study of the wetting mechanism of SDBS solution on Zhaozhuang coal surface. J. China Univ. Min. Technol. 2021, 50, 381–388. [Google Scholar] [CrossRef]
- Jiang, J.H.; Wang, P.F.; Pei, Y.; Liu, R.H.; Liu, L.M.; He, Y.C. Preparation and performance analysis of a coking coal dust suppressant spray. Int. J. Coal Sci. Technol. 2021, 8, 1003–1014. [Google Scholar] [CrossRef]
- Zhou, Q.; Qin, B.T.; Ma, D.; Jiang, N. Novel technology for synergetic dust suppression using surfactant-magnetized water in underground coal mines. Process. Saf. Environ. Prot. 2017, 109, 631–638. [Google Scholar] [CrossRef]
- Xu, G.; Chen, Y.P.; Eksteen, J.; Xu, J.L. Surfactant-aided coal dust suppression: A review of evaluation methods and influencing factors. Sci. Total. Environ. 2018, 639, 1060–1076. [Google Scholar] [CrossRef]
- Xu, C.H.; Wang, D.M.; Wang, H.T.; Ma, L.Y.; Zhu, X.L.; Zhu, Y.F.; Zhang, Y.; Liu, F.M. Experimental investigation of coal dust wetting ability of anionic surfactants with different structures. Process. Saf. Environ. Prot. 2019, 121, 69–73. [Google Scholar] [CrossRef]
- Wang, P.F.; Han, H.; Tian, C.; Li, R.H.; Jiang, Y.D. Experimental study on dust reduction via spraying using surfactant solution. Atmos. Pollut. Res. 2020, 11, 32–42. [Google Scholar] [CrossRef]
- Wang, P.F.; Tan, X.H.; Zhang, L.Y.; Li, Y.J.; Liu, R.H. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying. Process Saf. Environ. Prot. 2019, 132, 189–199. [Google Scholar] [CrossRef]
- Zhang, J.G.; Li, H.M.; Liu, Y.T.; Li, X.Y.; Xie, J.; Dai, X.Z.; Ye, S.Q.; Li, L.M.; Zhou, W.Q.; Zhao, Y.; et al. Micro-wetting characteristics of coal dust and preliminary study on the development of dust suppressant in Pingdingshan mining area. J. China Coal Soc. 2021, 46, 812–825. [Google Scholar] [CrossRef]
- Hu, X.Y.; Han, L.L.; Fang, Y.; Xia, Y.M. Admicelles and Adsolubilization of Extended Surfactants on Alumina. Chem. J. Chin. Univ. 2021, 42, 843–849. [Google Scholar]
- Liang, Y.C.; Liu, X.M.; Fang, K.J.; An, F.F.; Liu, H.; Li, C. Effect of sodium dodecylsulfate on inkjet printing performance of linen fabrics. Fine Chem. 2021, 38, 960–966. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Xiao, J.X.; Ma, J.M. Effect of Salt with High Concentration on Surface Activities of Equimolar Mixtures of Cationic-Anionic Surfactants. Acta Chim. Sin. 2004, 62, 1491–1494. [Google Scholar]
- Babu, K.; Pal, N.; Bera, A.; Saxena, V.K.; Mandal, A. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery. Appl. Surf. Sci. 2015, 353, 1126–1136. [Google Scholar] [CrossRef]
- Kumar, S.; Mandal, A. Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery. Appl. Surf. Sci. 2016, 372, 42–51. [Google Scholar] [CrossRef]
- Qin, A.G.; Zhang, X.M.; Feng, R.S.; Lv, X. Effect of Inorganic Salt on the Surface Activity of Sulfonate Gemini Surfactant Solution. Fine Chem. 2012, 29, 122–125. [Google Scholar] [CrossRef]
- Su, C.F.; Yu, Z.D.; Zhang, S.B.; Wang, W.; Hiromichi, T.; Kusuhiro, M. Mechanism study on the effect of inorganic salt cationson the effect of sodium dodecyl sulfate surfactant onreducing the surface tension of water. Appl. Chem. Ind. 2022, 51, 1893–1900. [Google Scholar] [CrossRef]
- Zhang, D.D.; Zhao, W.M.; Xiao, D.M.; Tian, X.X.; Liu, J.Y.; Zhang, M.L. Study on Surface Tension of Sodium Dodecyl Benzene Sulfonate. Liaoning Chem. Ind. 2012, 41, 678–679, 682. [Google Scholar]
- Chen, Z.Y.; Sun, L.J.; Liu, C.Y.; Wang, C.; Xu, B.C. The Ion Specific Effect on the Aggregation Behaviors of Surfactants. China Clean. Ind. 2022, 257, 60–69. [Google Scholar] [CrossRef]
- Amani, P.; Firouzi, M. Effect of Divalent and Monovalent Salts on Interfacial Dilational Rheology of Sodium Dodecylbenzene Sulfonate Solutions. Colloids Interfaces 2022, 6, 41. [Google Scholar] [CrossRef]
- Cao, X.W.; Xia, W.Z.; Zhang, P.; Cao, H.G.; Li, X.; Zhang, X.Y. Microscopic mechanisms of MgCl2 affecting anionic surfactant adsorption kinetics on the air [sbnd] water interface. Colloids Surf. A 2022, 653, 129925. [Google Scholar] [CrossRef]
- Zhao, Y.J. The update on global surfactant material and product development Status Quo. China Clean. Ind. 2018, 12, 74–82. [Google Scholar] [CrossRef]
- Yuan, Z.; Yuan, Y.J.; Herold, K.E. Surface tension of pure water and aqueous lithium bromide with 2-ethyl-hexanol. Appl. Therm. Eng. 2001, 21, 881–897. [Google Scholar] [CrossRef]
- Cai, W.H.; Kong, W.W.; Zhu, M.S.; Wang, X.L. Surface tension of lithium bromide aqueous solution/ammonia with additives and nano-particles. J. Cent. South. Univ. 2015, 22, 1979–1985. [Google Scholar] [CrossRef]
- Luo, R.; Zhang, D.R.; Zeng, Z.; Lytton, R.L. Effect of surface tension on the measurement of surface energy components of asphalt binders using the Wilhelmy Plate Method. Constr. Build. Mater. 2015, 98, 900–909. [Google Scholar] [CrossRef]
- Yuta, I.; Takeshi, O.; Hiroki, K.; Carlos, B.; Yasutaka, Y. Wilhelmy equation revisited: A lightweight method to measure liquid-vapor, solid-liquid, and solid-vapor interfacial tensions from a single molecular dynamics simulation. J. Chem. Phys. 2020, 153, 034701. [Google Scholar] [CrossRef]
- Pei, Y.; Liu, R.H.; Wang, P.F.; Tan, X.H.; Gou, S.X.; Wang, J. Effect of Surfactant Combination on Wettability of Coal Dust. J. Miner. Eng. Res. 2018, 33, 46–50. [Google Scholar] [CrossRef]
- Zhou, H.T.; Gao, A.T.; Xing, H.; Gou, Z.M.; Xiao, J.X. Abnormal Surface-Active Behavior of Perfluorooctanoates Induced by Salt. Acta Chim. Sin. 2011, 69, 1035–1040. [Google Scholar]
- Ruan, K.; Zhao, Z.G.; Ma, J.M. Pseudophase models of micellar catalysis. Folia Chim. Sin. 2000, 12, 18–25. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, J.Z.; He, Y.L. Research on static electricity interaction between SDBS, NPSS-10 surfactants and Na+, Ca2+ in high temperature. J. Southwest Pet. Univ. Sci. Technol. Ed. 2012, 34, 149–155. [Google Scholar]
- Amin, S.A.; Pazouki, M.; Hosseinnia, A. Synthesis of TiO2-Agnanocomposite with sol-gel method and investigation of itsantibacterial activity against E. coli. Powder Technol. 2009, 196, 241–245. [Google Scholar] [CrossRef]
- Cui, Z.G. Fundamentals of Surfactants, Colloids, and Interface Chemistry; Chemical Industry Press: Beijing, China, 2013. [Google Scholar]
- Du, J.; Zeng, X.C. An investigation on the variation of critical micelle concentrations of CTAB and SDS surfactants influenced by salts. J. Sichuan Univ. (Nat. Sci. Ed.) 2002, 39, 721–724. [Google Scholar]
- Ren, Z.H.; Chen, D.J.; Luo, Y.; Huang, J. Investigation of Influence of Inorganic Salt on the Critical Micelle Concentration of Sodium Octylphenol Polyoxyethylenated Ethylsulfonate. Acta Chim. Sin. 2010, 68, 1771–1775. [Google Scholar]
Name | Chemical Formula | Exterior | Purity |
---|---|---|---|
Sodium chloride | NaCl | Colorless cubic crystal or fine crystalline powder. | Analytically pure |
Calcium chloride | CaCl2 | White, hard pieces or granules at room temperature. | Analytically pure |
Aluminum Chloride | AlCl3 | Colorless and transparent crystalline powder. | Analytically pure |
Sodium sulfate | Na2SO4 | White, odorless, bitter crystal or powder. | Analytically pure |
Sodium carbonate | Na2CO3 | White powder. | Analytically pure |
Sodium bicarbonate | NaHCO3 | Small white particles. | Analytically pure |
Type | No Inorganic Salt Additives | 0.7% NaCl | 0.5% CaCl2 | 0.5% Na2SO4 |
---|---|---|---|---|
ln (CMC) (%) | −5.0769 | −5.9427 | −5.9404 | −5.9313 |
CMC (%) | 0.00623 | 0.00262 | 0.00263 | 0.00266 |
Surface Tension (mN/m) | 28.1 | 27.7 | 27.7 | 28.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Liu, Y.; Wang, P.; Liu, R.; Jiang, Y. Influence of Inorganic Salt Additives on the Surface Tension of Sodium Dodecylbenzene Sulfonate Solution. Processes 2023, 11, 1708. https://doi.org/10.3390/pr11061708
Zhu B, Liu Y, Wang P, Liu R, Jiang Y. Influence of Inorganic Salt Additives on the Surface Tension of Sodium Dodecylbenzene Sulfonate Solution. Processes. 2023; 11(6):1708. https://doi.org/10.3390/pr11061708
Chicago/Turabian StyleZhu, Biyong, Yan Liu, Pengfei Wang, Ronghua Liu, and Yidan Jiang. 2023. "Influence of Inorganic Salt Additives on the Surface Tension of Sodium Dodecylbenzene Sulfonate Solution" Processes 11, no. 6: 1708. https://doi.org/10.3390/pr11061708
APA StyleZhu, B., Liu, Y., Wang, P., Liu, R., & Jiang, Y. (2023). Influence of Inorganic Salt Additives on the Surface Tension of Sodium Dodecylbenzene Sulfonate Solution. Processes, 11(6), 1708. https://doi.org/10.3390/pr11061708