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Abstract: Configuring energy storage devices can effectively improve the on-site consumption rate
of new energy such as wind power and photovoltaic, and alleviate the planning and construction
pressure of external power grids on grid-connected operation of new energy. Therefore, a dual
layer optimization configuration method for energy storage capacity with source load collaborative
participation is proposed. The external model introduces a demand-side response strategy, deter-
mines the peak, flat, and valley periods of the time-of-use electricity price-based on the distribution
characteristics of load and new energy output, and further aims to maximize the revenue of the wind
and solar storage system. With the peak, flat, and valley electricity price as the decision variable, an
outer optimization model is established. Based on the optimized electricity price, the user’s electricity
consumption in each period is adjusted, and the results are transmitted to the inner optimization
model. The internal model takes the configuration power and energy storage capacity in the wind and
solar storage system as decision variables, establishes a multi-objective function that comprehensively
considers the on-site consumption rate of new energy and the cost of energy storage configuration,
and feeds back the optimization results of the inner layer to the outer layer optimization model. Use
ISSA-MOPSO algorithm to solve the optimized configuration model. Finally, the rationality of the
proposed model and algorithm in terms of on-site consumption rate and economy of new energy is
verified through numerical examples.

Keywords: dynamic electricity price; demand-side response; on site consumption of new energy;
new energy; energy storage; absorption

1. Introduction

With the intensification of the energy crisis, renewable energy represented by wind
and solar has been vigorously developed. However, the intermittent fluctuation of wind
and solar has affected the security and stability of the grid and increased the cost of grid
transformation [1,2]. Energy storage can enhance the value of wind and solar resources
due to its fast response and flexible charging and discharging characteristics.

At present, the cost of energy storage is relatively high, and it is necessary to reason-
ably optimize configuration capacity and fully coordinate the availability and economy of
energy storage. Currently, the issue of optimizing the configuration of energy storage has
received widespread attention from scholars at home and abroad [3-5]. Li et al. [6] com-
prehensively considered the multi-objective optimization configuration method for energy
storage with minimal comprehensive cost and load fluctuation and proposed an improved
fast non-dominated sorting genetic algorithm for model solving. Khezri et al. [7] proposed
a configuration scheme for grid-connected rooftop photovoltaic systems, discussing two
scenarios: independent grid connection and joint energy storage grid connection. The
impact of different factors such as grid constraints, load demand, roof space, and energy
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storage subsidies on the configuration results was analyzed in detail, providing practical
solutions for users to configure their photovoltaic storage capacity. Wu et al. [8] used
cloud model theory combined with the k-means method to obtain typical scenarios of
charge-discharge curves and studied the configuration of wind farm energy storage ca-
pacity. El-Bidairi et al. [9] established a multi-objective optimization method to reduce
microgrid fuel consumption and greenhouse gas emissions and proposed an energy storage
configuration method based on a combination of expert fuzzy system and grey wolf opti-
mization algorithm. Kong et al. [10] proposed a multi-objective optimization method that
considers economy, technology, and environment and analyzed the relationship between
the proportion of renewable energy and energy storage configuration. Cai et al. [11] aiming
at improving the utilization of wind energy, proposed a method based on wind power
consumption timing scenario to establish a battery energy storage configuration model,
and verified the effectiveness of the method with the actual data validation of the power
grid. Barrera-Santana et al. [12] studied the capacity planning scheme of an island power
system, discussed in detail different energy composite patterns such as renewable energy,
energy storage, electric vehicles, and HVDC transmission, and concluded that energy
storage has an important impact on power generation capacity planning and operation.
Naderipour et al. [13] focused on the optimal ratio of photovoltaic energy, wind power,
inverters, and energy storage capacity for hybrid energy systems in remote areas. With the
goal of optimizing the system’s economy, an improved grasshopper algorithm is proposed
to solve the optimization model, and the impact of interest rates on the model is empha-
sized. Nazir et al. [14] studied the optimization configuration of energy storage capacity
under wind farm prediction errors to increase the reliability of wind farm output power
and analyzed the benefits of energy storage facilities under different confidence levels.
Pires et al. [15,16] studied the optimal allocation strategy of wind and solar storage capacity
in microgrid scenarios and established a multi-objective model for system economy and
carbon emissions. The above literature mainly analyzes the important role of energy storage
configuration in the planning and operation of wind and solar systemsand establishes a
configuration plan that includes wind and solar storage as the main facility. However, it
lacks the exploration of demand-side flexibility resources in the system and ignores the
beneficial impact of source load interaction on energy storage optimization configuration.

In recent years, under the background of power market reform, demand-side manage-
ment policies based on electricity prices, incentives, etc. have been gradually promoted. As
an important and flexible adjustment method, demand response has been introduced into
the research of optimal allocation of energy storage. Kou et al. [17] proposed to reduce the
capacity allocation of energy storage by stimulating demand response, which improved the
economy of grid-connected system. In order to improve energy utilization, Yan et al. [18]
discussed the use of price-based demand response to reduce the investment cost of energy
storage system. V. et al. [19] analyzed the impact of demand-side response on the system
environment and economy when optimizing the configuration of hybrid energy sources
such as wind power, photovoltaic, energy storage, and distributed power generation. Hon-
armand et al. [20] studied the planning of an energy hub system with renewable energy
and introduced the price-based demand response into the optimization model to smooth
the load curve and reduce the system operation cost. The results show that the scheme
can effectively reduce the allocation capacity of energy storage. Kiptoo et al. [21,22] has
studied the scale of energy storage and other equipment in the cost minimization scheme
under different demand-side response resource allocation strategies the results show that
the demand response strategy can improve the flexibility of the system and the economy
of energy storage configuration. References [17-22] studied energy storage configuration
models from multiple perspectives, such as energy storage configuration scenarios and
demand-side responses. At present, the speed of new energy construction in the region
exceeds the absorption capacity, and the power grid construction is not coordinated with
new energy construction. The local consumption of new energy is still the most economical
way. Some scholars have investigated [23], but at present, there is little research on methods
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of applying demand response strategy to energy storage configuration around the local
consumption of new energy.

Therefore, this article constructs a two-layer nested model for source load storage
coordination optimization. The outer model is based on the optimized time-of-use period,
with the time-of-use electricity price as the decision variable, and the objective function
is established to maximize the revenue of the wind and solar storage system. The inner
model takes the configured power and capacity of energy storage in the wind and solar
storage system as the decision variables and establishes a multi-objective function that
comprehensively considers the on-site consumption rate of new energy and the cost of
energy storage configuration. The combination of sparrow algorithm and multi-objective
particle swarm optimization algorithm is used to solve the model and the optimization
results of new energy local consumption rate and economy of the system under different
electricity prices and energy storage configurations are obtained. Further, the impact of
different penalty factors on energy storage configuration scheme is discussed.

2. Structure of Wind and Solar Energy Storage System

Wind power, photovoltaic cells, and energy storage systems are connected to wind
and solar storage systems through their respective converters and connected to the external
power grid. According to the characteristics of electricity consumption, loads can be
divided into two categories: fixed load and flexible load. In grid-connected wind and solar
energy storage systems, wind and solar power are prioritized for supplying local loads,
and excess electricity can be sent to the external power grid. When the power supply is
insufficient, electricity is purchased from the external power grid to meet the electricity
needs of local users. The wind and solar storage system studied in this article is shown in
Figure 1.

Power lines

- - communication line

energy storage fixed load flexible load The central controller

Figure 1. Wind and solar storage system.

3. Demand Response Model Considering Time Division and Price Optimization
3.1. Time Period Division Based on Fuzzy C-Means Clustering

With the gradual advancement of China’s power market reform policy, the demand
response mechanism on the user side plays an increasingly important role in the safe and
economic operation of the power grid, and the time-sharing price has been widely used in
demand-side management. Renewable energy wind power, photovoltaic power generation,
and their loads are constantly fluctuating due to factors such as wind speed, light, and
temperature. The division of time periods in traditional time-of-use electricity prices
is generally calculated by the power department based on experience, and the division
of time periods is generally fixed throughout the year, which does not fully reflect the
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characteristics of wind and photovoltaic power generation changes in different seasons. A
fixed time-of-use electricity price is not conducive to the consumption of renewable energy.
In order to fully tap into the flexible adjustment ability of demand-side resources, this article
adopts dynamic time-of-use electricity prices, which update peak, flat, and valley periods
based on the typical daily renewable energy generation and load electricity consumption
throughout the year. The difference between the predicted load power and the wind and
light output power is defined as the net load Pret, i-€., Pret = Pload — Prv — PwT, and the
set of predicted net load power is obtained as Pnet = {41,492, - - - , 423,924 }. This article uses
the fuzzy C-means method to determine the peak, flat, and valley periods.

The peak and valley membership of each time period is calculated using larger and
smaller semi trapezoidal membership functions, as shown in (1).

P _ _ gi—min(q)
éri ~ max(g;)—min(g;)

1 max(q;)—g;
Ci = mmax(g;)—min()

)

In the formula, g; is the net load of the i-th period.
According to the sample set { = {ép, é% ; C};, ‘:5 s ;61234, @4 }, the cluster center is set

as Cy (k = 1,2,3), and uy; is used to represent the membership degree of the i th sample
belonging to the k class. Then the fuzzy C-means clustering of ¢ is the minimum value for
solving the loss function J.

24 3
min](¢,C1, C2,Ca) = & & ()" - Cell®
1=1k=
0<u,; <1 )
3
Youg =1
k=1

In the formula, m refers to the fuzzy weighted index, generally m = 2 [24].
The necessary condition for obtaining the minimum value of J(&, C1, Cy, C3) is that
both 9] /duy; and 9] /dCy are zero, i.e.,:

1
Ui = 2 (3)
S (m—cm)"’l
S\l
24
L i Gi
Cr = 1_24 4)
L ug;
i=1

The initial membership matrix and clustering termination conditions are set and
Equations (3) and (4) are iteratively collected to finally output the clustering results for
each period of peak-valley leveling. To improve the smoothness of demand-side response
load operation, it is stipulated that each time period shall not be less than 2 h, and any time
period that does not meet the division requirements shall be corrected.

3.2. Price Setting

The establishment of appropriate time-of-use price can actively guide users to change
their electricity consumption behavior, thus helping to play a greater role in demand re-
sponse in reducing the pressure of system peak shaving and improving the consumption of
new energy. In order to reflect the relationship between electricity prices and user electricity
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demand, the concept of demand price elasticity coefficient in the field of economics is often
introduced [25,26], which is

PG (Ap()\ T

= PoutO(i)( po(j) ) ©®)

AP(i) = Pourt (Z) - PoutO(i) 6)
Ap(j) = p1(j) — po(j) )

In the formula, Poyto(i) and Poyt1 (i) are the load values before and after the electricity
price adjustment for period i, and p(j) and p;(j) are the electricity prices before and after
adjustment in period j; when the moments i and j are equal, ¢;; is the self-elastic coefficient;
otherwise it is the cross-elastic coefficient. The elasticity matrix based on the time-of-use
electricity price is

€11 €12 0 €1t
€1 €»n - €

E= ; ) ) ) (8)
&1 & o &

After implementing the time-of-use electricity price, the electricity consumption in the
period i with a daily cycle is

2 aly e PO —po(@) 35 pii) = po(®)
Poutl( ) = PoutO( ) 1+e¢ PO(i) +j:;j7éi ) Po(f) ©)

4. Build a Coordinated Optimization Model for Time-of-Use Electricity Prices and
Energy Storage Capacity

The user load distribution changes due to demand response, which affects the energy
storage configuration and dispatching results of the wind—solar storage system. Different
energy storage configurations also affect different time-sharing pricing strategies. In
response to the coordination optimization problem of energy storage configuration and
dynamic time-of-use electricity price in wind and solar storage systems, this section adopts
a double-layer optimization model, with the time-of-use electricity price as the decision
variable and the problem of maximizing the revenue of the wind and solar storage system
as the objective. The configuration power and capacity of energy storage in the wind and
solar storage system are used as the decision variables, and the problem of considering
the on-site consumption rate of new energy such as wind and solar and the configuration
cost of energy storage is described in the inner layer. The construction architecture of the
two-layer optimization model is shown in Figure 2.

4.1. External Revenue Model Considering Demand-Side Response
4.1.1. Objective Function
The outer layer aims to maximize the revenue of the wind and solar energy storage

system, which can be expressed as:
maxF (10)

In the formula, F represents the revenue of the wind and solar energy storage system.
The benefits of the wind and solar energy storage system can be calculated by Equation (11):

F = Igen+ Iline-grid - Cgrid-line - Cope — Cline + L (11)
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Iline-grid = t;l |:p hne‘gridl)line-grid (t):|
24
Cgrid-line = tgl pgrid-linep grid-line(t) (12)
LA L2 2
Cline = Klineﬂtgl <|P line,t| — ﬂtgluj line,t )
24
e = tzl [Pev (t) + Pwr(t)]repe
pet € Tg
pi(t) =q prte Ty (13)
ppt €Tp

Objective function: F (Maximum system revenue)

Decision variables: Peak, flat, and valley electricity prices

Constraints: 'mem (,) - Z[’uum (f)
=]

Outer layer
optimization

A
Load value after Optimization costs for
participating in energy storage, penalties
demand response for power fluctuations in
v interconnection lines, etc

Objective function: On site consumption rate of new energy f; and fz

Decision variables: Energy storage configuration power and capacity
Constraints: pon < B (£) < P
Inner layer
optimization 0 Py (£), Pas (1) < P

E, (t+At)=E, (£)+ Pu, (£) Atna, — P (£) At/ 174,
P:m (')pu.. (’)=0

Figure 2. Architecture of the bilevel programming model.

In the formula, I represents the system'’s electricity sales revenue to users; I, .
represents the revenue from selling electricity to the external power grid of the system;
Cgrid-line Tepresents the cost of purchasing electricity from the solar energy storage system
to the external power grid; Cope represents the daily operating cost of energy storage; Ciine
represents the penalty cost for power fluctuations in the interconnection line; Ijc represents
low-carbon benefits. Carbon trading is a mechanism for reducing carbon dioxide emissions
in a market environment, which is an important way to develop a low-carbon economy.
Here, low-carbon benefits are quantified and included in the benefits of wind and solar

energy storage systems; pj (t) represents the electricity price sold by the optimized wind
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and solar storage system to users; Py (t) represents the power after users participate
in demand response; P, .4 (t) is the selling power of the solar energy storage system to
the external power grid, and pjinegrid is the purchasing electricity price of the external
power grid; P, .. (t) is the purchasing power of the solar energy storage system from
the external power grid, and pgiq-iine is the selling electricity price of the external power
grid; Pjine () and Kjjne respectively represent the power of the interconnection line and its
fluctuation penalty coefficient; r. represents the carbon emissions that can be reduced per
unit of renewable energy generation, and p. represents the carbon trading price; Py (t)
and Ppy(t) are the grid power of wind power and photovoltaic power, respectively; p.
pr and pg respectively represent peak, flat, and valley electricity prices; Ty, T, and Ty

represent peak, flat, and valley periods, respectively.

4.1.2. Constraints

(1) The total load after the user participates in demand response will remain unchanged,
and the load change in any time period will be controlled within a certain range to
ensure the power demand of the user.

24 24
Z Poutl(t) = Z PoutO(t) (14)
t=1 t=1

|AP(t)| < APmax(t) (15)

(2) The implementation of time-of-use tariff has changed users’ electricity consumption
habits to a certain extent and reduced their comfort. Therefore, it is necessary to
ensure the economy of users’ participation in demand response, so as to mobilize
users” enthusiasm for electricity consumption. It is stipulated that the total electricity
cost before users’ participation in demand response should not be greater than the
total electricity cost when users do not participate in demand response.

24 24
Y () Pount (£) < Y po(t) Pouro(t) (16)
=1 =1

(3) Improper time-of-use electricity prices can lead to peak—valley inversion or insufficient
response, so it is necessary to constrain the peak—valley electricity price ratio.

<fr<g, (17)
Ps
0< Pg < Pf<PpPp < Pmax (18)

In the formula, the range of peak-to-valley electricity price ratio is usually taken as
2-5[27], and k; = 2 and k, = 5 are taken; pmax is the upper limit of peak electricity price in
this paper.

(4) Marginal cost constraint in valley time

rg = Co (19)

where, Cy is the marginal cost of the valley period.

4.2. Internal Multi-Objective Model Considering the Daily Life Loss Cost of Energy Storage

Based on the load data optimization results of the outer time-of-use electricity price model,
with the goal of maximizing the on-site consumption rate of new energy and minimizing
the cost of energy storage configuration, appropriate capacity and power are allocated for
the energy storage equipment in the wind and solar storage system. The daily operating
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cost of the entire life cycle of the energy storage system is further established, and the inner
optimization results are fed back to the outer optimization problem for further solving.

4.2.1. Energy Storage Cycle Life Loss Model

In the optimization configuration of energy storage that takes into account the entire life
cycle, initial investment cost and cycle life are important factors to consider, while the life loss
during energy storage is mainly determined by the discharge depth [28]. Different charging and
discharging depths restrict the different recyclable times of energy storage, thereby affecting the
length of energy storage cycle life. Among various energy storage materials, lithium batteries
have high charging and discharging efficiency as well as high specific energy and power. This
article selects lithium battery energy storage as the research object.

(1) Battery discharge depth

DOD(t) = 1 —SOC(t) (20)
E(t)

SOC(t) = —p> x 100% (1)
ESS

In the formula, SOC(t) and DOD(t) respectively represent the state of charge and
discharge depth at time #; E(t) is the amount of electricity stored at the time ¢ of energy
storage; E]IE{SS is the rated capacity of energy storage.

(2) Equivalent number of cycles model

The cycle life of energy storage [29] is shown in (22):
Niite = No(DOD)™ (22)

In the formula, Nj;, represents the number of cycles in the energy storage life cycle;
Ny represents the number of life cycle cycles corresponding to energy storage at 100%
discharge depth; DOD represents the actual discharge depth of energy storage; both Nj
and K}, are known parameters given by the energy storage battery manufacturer.

Each time the energy storage battery is charged and discharged, it cannot be guaran-
teed that the discharge depth remains unchanged. It needs to be converted to a unified
standard for statistics. Generally, it is converted according to the equivalent 100% discharge
depth. The number of equivalent cycles n¢q(t) for a single time can be calculated using
Equation (23):

ni) ~ [ADOD(t )]k (23)
ADOD(t) = E”R( ) (24)
EESS
Eﬂ(t) - [Wchapcha(t) + Wdis_lpdis(t)} At (25)

In the formula, 77, and 74is are the charging and discharging efficiency, respectively;
Pna(t) and Pgis(t) are, respectively, charging and discharging power; E,(t) is the charg-
ing and discharging capacity of energy storage during period t; DOD(f) represents the
discharge depth of energy storage during period .

The daily equivalent cycle number Neq of energy storage batteries can be obtained
from Equation (26):

NS;Y Y ! 100 SOEDY nlOO dis (4 (26)
techa tedis

In the formula, when the energy storage battery is in the charging or discharging
state during period t, the equivalent number of cycles during that period is represented by
ni(?o'd‘a( ) and nlOO dis (1), respectively.



Processes 2023, 11, 1725 9 of 24
(3) The equivalent cycle life of energy storage is
N

Tcyc = 70@ (27)

365-Neq

(4) The daily cycle life loss cost of energy storage is
C (c PR + cpER ) B+ )" (28)

= \cp E
loss ESS ESS 365-(1 + ﬁ)TcyC -1
1 + Tcyc

Kgss = B+ P) (29)

365-(1+ B) T —1

In the formula, cp and cg are the cost per unit power and per unit capacity of the
energy storage system, respectively; f is the discount rate; K2 is the isodiurnal coefficient;
ERss and PR represent the rated capacity and power of the energy storage configuration,
and they are the internal decision variables.

4.2.2. Daily Cost of Energy Storage throughout Its Entire Life Cycle

The daily operating cost Cype Of the entire life cycle of the energy storage system is
y op g p y gy ge sy

composed of the daily investment cost Cinyestment, daily operation and maintenance cost

Cmaintenance, and daily loss cost Cjoss. The calculation formula is shown in Equation (32).

Y,
‘ _ R R BL+p)"
Cmvestment - (CPPESS + CEEESS> 365 % (1 N IB)Ya 1 (30)
Cmaint ER
Cmaint = % (31)
Cope = Cinvestment + Cmaintenance + Closs (32)

In the formula, Y; is the investment period of the energy storage system; Cy,in is the
average annual maintenance cost per unit capacity of energy storage.

4.2.3. Objective Function

In the formula, f; is the on-site consumption rate of new energy; f» is the configuration
cost of energy storage, Psc(t). Ppat(f) represents the new energy consumed by the load and
energy storage at time ¢.

max fi
24
£ (Buc (0 Pouc(8)) ,

fi= |5 x100%, Psc(t) = min{Ppy (t) + Pwr(t), Pout(t)}
tgl(PI’V(t)""PWT(t)) (33)

minf,

_ R R
f2 = cg X Eggg + cp X Pggg

4.2.4. Constraints

(1) Power balance constraints
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Pwr(t) + Ppv(t) + Pess(t) — Piine(t) = Pload (f)

0 < Pwr(t) < Pwry(f)

0 < Ppy(t) < Ppyy(t)

0 < Pioad(t) < Proadx(t)

Pioss (t) = Pioadx (t) — Pioad (t)

Pyaste(t) = Pwry(t) + Ppyy(t) — Pwr(t) — Ppy(t)

In the formula, Pwt(t) and Ppy(t) are the actual grid power of wind power and
photovoltaic power during time ¢, respectively; Pio,q(t) is the actual load power supplied
by the system during period t; Pwry(t) and Ppyy(t) are the predicted power of wind
power and photovoltaic power during the ¢ period, respectively; Ppaqx (#) is the load power
transmitted from the outer layer to the inner layer during the t period; Pgss(t) is the energy
storage charging and discharging power during period t; Pjoss(t) is the power loss during
period t; Pyaste (t) represents the excess power of wind and solar power during the ¢ period.

(34)

(2) Transmission power constraints of interconnection lines

P < Piine(t) < P (35)

line line

In the formula, P* and Pﬁfl‘f‘ are the upper and lower limits of the transmission
power of the interconnection line, respectively.

(3) Energy storage operation constraints

During any period of time, the charging and discharging power of the energy storage
system is limited to
0< Pcha(t)/Pdis(t) < Pmax (36)

In the formula, P, (t) and Py (f) respectively represent the charging and discharging
power during the energy storage period ¢, and Pmax represents the maximum charging and
discharging power.

{ Ey(t + At) = Ey(t) + Peha () At X 1cha — Pais (£) At/ 14is &)
=0

Pcha(t)Pdis(t)

In the formula, Ey,(t) is the energy storage capacity at time ¢. To avoid overcharging
and discharging of energy storage, then

{ sOC(t) =

ESS (38)
SOCin<SOC(t) < SOCmax

In the equation, SOCmpax and SOCi, are the maximum and minimum values of SOC.
To ensure the sustainability of the scheduling cycle of the energy storage system, the
state of charge is consistent throughout a cycle, i.e.,

SOC(0) = SOC(24) (39)

(4) Limited by factors such as investment funds and site conditions, the power and
capacity of energy storage are constrained

PR < PR < PR (40)

Efee < Efss < ER& (41)
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In the formula, PEI%%X, PE“éié‘, EEmSan/ and Eg‘slé‘ are the boundary values of the configured
power and capacity of the energy storage system allowed by the installation conditions.

4.2.5. Optimal Scheduling Strategy for Wind and Solar Energy Storage Systems

In the operation of the wind and solar storage grid-connected system, a strategy of joint
interaction between the energy storage system and the external power grid is adopted to
balance the output of new energy such as wind and solar in the system and the electricity
demand of users. The optimization control strategy proposed in this article is shown in
Appendix A Figure Al. Ppet is the net load, that is, Pnet = Pioag — Prv — P, which
detects the difference between Ppet and the energy storage system SOC, and determines the
magnitude of ¢ period Pret(t) and the rated power PX of the energy storage system, then
adjusts accordingly to balance the main body of the fluctuation in wind and solar energy
storage power. When Pnet(t) is greater than PX., the external power grid is mainly used
to supply the power demand of the load, and the portion exceeding the power limit of
the tie line is supplied by the energy storage system for the load. If Pnet(t) is within the
power supply capacity of the interconnection line, the external power grid should consider
charging the energy storage system while supplying electricity; When Ppet(f) is less than
zero or greater than zero and less than PXg, this situation mainly relies on the energy storage
system to maintain the balance of Ppet(t). If Pret(t) is less than zero, first consider charging
the energy storage system, then consider selling the remaining electricity to the external
power grid. If Pnet(t) is less than zero, the energy storage system is first considered to be
charged, and the remaining electricity is considered to be sold to the external power grid. If
Pret(t) is greater than zero and less than Pk, priority will be given to discharging the energy
storage system, and for the part with insufficient electricity, external grid electricity will be
purchased. In the entire control strategy, the charging and discharging of energy storage
should be dynamically adjusted based on the SOC state to avoid the problem of energy
storage system SOC exceeding the limit. When SOC(t — 1) is in the boundary state SOCpin,
the energy storage system does not perform discharge operation, and when SOC(t — 1) is in
the boundary state SOCpax, the energy storage system does not perform charging operation.
If the energy storage system exceeds the boundary state P, (t) or Pyis(f) after charging
and discharging with SOCpin or SOCpay, the charging and discharging power needs to be
corrected according to Equations (42) and (43).

P a(t) = SO0Cmax — SOC(E 1) Efss (42)
Mcha

P’ gis(t) = [SOC(t — 1) — SOCpin] Efss/dis (43)

5. Model Solving Algorithms and Processes
5.1. Solution Algorithm

The model solving algorithms in this article include the improved sparrow algorithm
and the multi-objective particle swarm optimization algorithm, among which the ISSA
algorithm can refer to reference [30,31]. The basic concepts of multi-objective particle
swarm algorithm are as follows.

5.1.1. Multi-Objective Particle Swarm Optimization Algorithm

The multi-objective particle swarm optimization algorithm, like the sparrow algo-
rithm, is also a biomimetic algorithm where individuals in the population participate in



Processes 2023, 11, 1725

12 of 24

cooperation and competition using a velocity displacement model to guide optimization
searches. The evolutionary process is as follows:

k+1 _ k k .k ko k) i
vi,]. =w X ‘Ul-,]- + 111 X (pi,]- xi’j> + corp X (31‘,]‘ xi,].>,] =1,2, n

k+1 _ .k k+1
Xij =Xt (44)
W = Wmax — (Wmax —Wmin) Xk

max

In the formula, 7 is the number of individuals in the population; w is the inertia weight
used for manipulating algorithm development and exploration scales, Kmax is the number
of iterations, Wmax, Wmin are artificially set empirical values, and k is the current algebra; cj,
¢y is the learning factor; 1 and r, are random numbers within [0, 1]; vi-‘, j and xff j correspond
to the individual’s position and speed respectively; p;‘, j and gf»‘, j are individual extreme
value and global extreme value determined by fitness function respectively.

The above internal function Equation (33) can be summarized as the following multi-
objective model:

{ maxf (E, P)
(

minR(E, P)
(45)
; g(E,P)=0
"1 wEP) <0

In the formula, F(E, P) and R(E, P) are the objective functions of the on-site consump-
tion rate of new energy and the purchase cost of energy storage, respectively; g(E, P) and
h(E, P) represent equality and inequality constraints, respectively; E and P represent the
configured capacity and configured power of energy storage.

For F(E, P) and R(E, P), the two objective functions interact and constrain each other,
making it difficult for them to achieve optimal results simultaneously. Instead, they are
replaced by the Pareto optimal solution [32,33]. These solutions are mapped by functions
F(E,P) and R(E, P) to form the optimal frontier of Pareto. The solution to Equation (45) is
to find a sufficient number of optimal solutions for Pareto and try to distribute the optimal
frontier diagram evenly, in order to provide reference for power practitioners.

5.1.2. Choosing the Compromise Optimal Solution

After obtaining the Pareto optimal solution set, the optimal compromise solution is
determined using fuzzy mathematics [34]. Using fuzzy membership functions to characterize
the satisfaction of the solution set elements corresponding to various dimensional functions:

1 fm < fm,min
"<
R R e L R (46)
O fm > fm,max
">

In the equation, f;" is the objective function, m € ¢1,2,---, Noh]-}; frmaXand f mmin
are the maximum and minimum values corresponding to f", respectively.

The satisfaction calculation of each Pareto optimal solution is shown in Equation (47),
and the corresponding solution when it reaches its maximum is considered the optimal

compromise solution.
Nob'
)

pi= " (47)
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In the equation, N is the number of Pareto optimal solutions.

5.2. Energy Storage Charging and Discharging Verification

Inner-layer optimization belongs to the multi-time period coupling optimization
problem, which means that the operating state of energy storage is not only constrained by
its capacity and maximum charging and discharging power but also related to multiple
other time periods. The constraint of equal starting and ending energy during the daily
operation cycle of energy storage, as shown in Equation (38), is not easy to implement. To
this end, a backstepping method is proposed to verify and adjust the capacity status of
each period of energy storage, as follows:

(1) First, based on the decision variables of energy storage capacity and maximum
charging and discharging power at the lower level, and on the principle that the
initial state of charge SOC(0) of energy storage is equal to the end time SOC(24), the
maximum state of charge SOC® and minimum state of charge SOCI™™ that should
be constrained for each time period SOC(23), SOC(22)...SOC(t) are derived.

SOCP™ = min 05+ (24— 1)-PX/ (1a-ER, ), 0.9] (48)

ess’/

SOCMN = max [0.5 — (24 — )¢ P/ EQ, 0'2} (49)

(2) Detect and correct P! and P}

Py = min{x, [SOC(t — 1) - SOC™ | (4-ER,) }
s.t. SOC(t) < SOCmin

P! = max{x, [SOC(t — 1) — SOC}"]|-ER . /11.}
s.t. SOC(t) > SOCmax

(50)

In the formula, x represents other constraints that need to be comprehensively consid-
ered during the energy storage charging and discharging process.

(3) Detect and correct P*! and Pé” based on, SOCI?, SOCﬁhl‘, until SOC(24) equal
SOC(0).

5.3. Solution Flowchart

The improved sparrow algorithm is used to solve the outer layer of the model to
optimize electricity price. Users actively respond to the electricity price policy and transfer
the load after participating in demand response to the inner layer. The inner layer uses
the common multi-objective particle swarm optimization algorithm to solve the problem.
The objective function is to coordinate and optimize the capacity and maximum charging
and discharging power of the energy storage system, taking the on-site consumption rate
of new energy and the optimization configuration cost of energy storage as the objective
functions. The optimization results are fed back to the outer layer to participate in the
optimization of the outer layer decision variables. The solving process of the double-layer
multi-objective model is shown in Appendix A Figure A2.

6. Example Analysis
6.1. Example Parameter Description

To verify the rationality of the model proposed in this article, a simplified wind and
solar energy storage grid-connected system is used as an example to study the optimization
configuration of energy storage capacity. The relevant parameters are shown in Table 1.
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Table 1. Simulation parametersis.

Parameter Numerical Value Parameter Numerical Value
Penalty cost coefficient 0.1 Cross elasticity coefficient 0.03
Ciscounted rate 5% cp (RMB/kW) 1085
Kp 2 P (kW) 600
Maximum number of charges and disCharges for 5000 pmin (k) 600
energy storage line
Carbon trading price (RMB/1000 kg) 15 cg (RMB/KkW) 3224
Operation and maintenance
"Ter 1d 095 Costs (RMB/KW h) 50
SOCmax 0.9 EEE 2500
SOChnin 0.2 P 500
s Carbon reduction per unit of
SOC initial value 0.5 New energy (kg /kW-h) 0.16
Electricity selling price 0.58 Co (RMB/kW-h) 0.12
Electricity purchase price 0.69 Pmax (RMB/kW -h) 1.2
Coefficient of self elasticity -0.2 Ya/Year 20

Wind power, photovoltaic power, and load are all selected according to the typical daily
power curve according to the season. Due to the close relationship between wind, light,
and load power curves in spring and autumn, the situation in autumn is not considered,
and spring is referred to as the transitional season, as shown in Appendix A Figure A3. The
initial electricity price is shown in Table 2.

Table 2. Initial time-of-use tariff table.

Parameter Period of Time Electricity Price (RMB/kW-h)
Peak period 07:00-11:00, 17:00-21:00 0.96
Peacetime period 12:00-16:00, 22:00-23:00 0.58
Valley period 00:00-6:00 0.27

Based on the example data combined with the mathematical model described earlier,
the solution algorithm can be used to optimize the model. The subsequent analysis of
the results will mainly optimize the expressions based on the three objective functions
mentioned in the previous text, namely Equations (2), (11) and (33). The division of time
periods for dynamic time-of-use electricity prices mainly relies on functional Equation (2).
The calculation of the electricity price value, energy storage power and capacity, on-site
consumption rate of wind and solar energy, and economic cost of wind and solar energy
storage systems for dynamic time-of-use electricity prices is mainly based on the final
optimization solution results of outer objective Equation (11) and inner optimization
objective Equation (33).

6.2. Optimization Configuration Results under Different Typical Weather Conditions

Due to the different distribution characteristics of net load in different seasons and time
periods, it is necessary to divide the peak-to-valley electricity prices into three scenarios,
as shown in Figure 3. From the figure, it can be seen that the electricity prices under three
typical daily scenarios are different in size and distribution during peak-to-valley periods.
Taking peak electricity prices as an example, the highest electricity price is in summer, with
a peak value of 0.91 RMB/kW-h, and the peak electricity prices in transition season and
winter are 0.75 RMB/kW-h and 0.73 RMB/kW h, respectively.
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Figure 3. Optimization results of time-of-use electricity prices in different seasons.

Figure 4 and Table 3 show the optimization solution results under different seasonal
scenarios. From this, it can be concluded that the energy storage capacity configuration
scale in summer is the largest, reaching 1194 kW-h, and the energy storage configuration
power in spring is the largest, reaching 210 kW. When configuring the energy storage
capacity of the system, the energy storage configuration results of the typical day with
the highest demand are considered the energy storage planning standard of the system.
Therefore, based on the energy storage configuration results of three typical scenarios,
the final energy storage scale configured in this combined power generation system is
1194 kW-h capacity and 210 kW power.

*  Winter Scenery
7F o *  Transitional Season Scenarios
X Summer Scenes

2k

1% : -
e ,

Energy storage optimization configuration cost/yuan

*

O 1
1 0.98 0.96 0.94 0.92 0.9
On site consumption rate

Figure 4. Configuration of energy storage in different seasons.
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Table 3. Optimization results of typical days in three seasons.

Typical Daily Scenario

On Site Consumption Rate of

New Energy Energy Storage Capacity/(kW-h)  Energy Storage Power/(kW)

Peak period
Peacetime period
Valley period

07:00-11:00, 17:00-21:00 285 210
12:00-16:00, 22:00-23:00 1194 136
00:00-6:00 826 192

To study the coordination relationship between energy storage configuration and
electricity price in wind and solar energy storage systems, typical summer days are selected
as the energy storage configuration carriers, and the following scenarios are set up for
further comparative analysis:

Scenario 1: Revenue from wind and solar systems (excluding energy storage) and on-site
consumption of new energy without implementing dynamic time-of-use electricity prices.

Scenario 2: Implementation of dynamic time-of-use electricity prices for wind and
solar systems (excluding energy storage) and on-site consumption of new energy.

Scenario 3: Revenue and internal multi-objective optimization of wind and solar
energy storage systems without implementing dynamic time-of-use pricing.

Scenario 4: Implementing the revenue and internal multi-objective optimization of
wind and solar energy storage systems under dynamic time-of-use electricity prices.

6.3. Analysis of Simulation Results
6.3.1. Analysis of On-Site Consumption of New Energy

Table 4 shows the results of energy storage configuration scale and on-site consumption
rate under four different scenarios. From Table 4, it can be seen that compared to Scenario 1,
the on-site consumption rate of new energy in Scenario 2 has increased by 4.12%, indicating
that implementing the time-of-use electricity price can improve the distribution characteristics
of the initial predicted load and enhance the absorption capacity of the wind and solar storage
system for new energy. Compared with Scenario 1, the on-site consumption rate of new
energy in Scenario 3 has increased by 2.34%, indicating that the system is equipped with
energy storage facilities to store excess local wind and solar resources, thereby reducing the
electricity output of new energy from the wind and solar storage system to the external power
grid. Scenario 4 has the highest on-site consumption rate of new energy, as the optimized
time-of-use electricity price through the outer layer provides the inner layer with a load that
has undergone demand-side response. The peak—valley difference and volatility of the load
curve are reduced, and the flexible adjustment ability of the system’s new energy is further
improved through the charging and discharging actions of energy storage in the inner layer.
Figure 5 depicts the relationship between the energy storage configuration and the on-site
consumption rate of new energy in Scenarios 3 and 4. It can be seen from the figure that
when the wind and solar storage system achieves the same on-site consumption rate of new
energy, Scenario 3 needs to be configured with a larger energy storage capacity. This further
demonstrates that the optimized time-of-use electricity price is conducive to further improving
the on-site consumption rate of new energy.

Table 4. Optimization results of typical days in three Seasons.

Scene

On Site Consumption Rate of

New Energy/% Energy Storage Capacity/(kW-h) Energy Storage Power/(kW)

= W N =

91.55% 0 0
95.67% 0 0
93.89% 1194 210
97.93% 1194 210
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Figure 5. Configuration of energy storage before and after demand response.

Table 5 and Figure 6 show the characteristic changes in typical daily load in summer
before and after participating in demand response. From Table 5 and Figure 6, it can be con-
cluded that users have a high demand for electricity from 11:00-14:00 and from 18:00-21:00,
with insufficient wind and photovoltaic output and net load in the peak range. Therefore,
these periods are divided into peak periods. Users consume less electricity during the
period from 1:00 to 8:00, wind power has a higher output during this period, and the net
load takes a smaller value during the day. This period is divided into valley periods, and
the rest of the period is divided into regular periods. According to the net load, the peak-to-
valley electricity price periods are further optimized, and the optimized electricity prices for
valley, flat, and peak periods are 0.28 RMB/kW-h, 0.42 RMB/kW-h, and 0.91 RMB/kW-h,
respectively. The optimized load curve reduces the peak—valley difference, the peak load
decreases by 17.3 kW, and the valley load increases by 88.4 kW. From the calculation results
and Figure 6, it can be seen that the demand response strategy can effectively stabilize the
load peak-valley difference and the net load peak-valley difference. The total load before
users’ participation in demand response remains unchanged, and Table 4 shows that the
total price before users’ participation is 14,301 RMB, and the total price after response is
13,238 RMB, which meets the constraint setting requirements of demand response in the
model, and the reduced power cost helps to improve the enthusiasm and feasibility of
users’ participation in demand response.
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Figure 6. Summer electricity price optimization and source load changes.
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Table 5. Demand response effect.
Before and after . . Peak—Valley Difference Net Load Peak Valley
Optimization Maximum Load/kW Minimum Load/kW of Load/kW Difference/kW
Before optimization 1356.3 458.6 897.7 646.9
After optimization 1339 547 792 4114
Variation —17.3 88.4 —105.7 —235.5

Power/kW

Power/kW

1000

I
N
=3

|
A
S

Figure 7 shows optimization scheduling results under four different scenarios. Figure 8
shows the energy storage charging and discharging power and charging state of each period
in Scenario 3 and Scenario 4. The initial charging state of the energy storage is 0.5, and
it recovers to 0.5 at the end of one cycle, meeting the sustainability of the energy storage
system scheduling cycle. According to the scheduling strategy mentioned earlier, the
non-on-site consumption period of new energy is distributed during the period when the
wind and solar output exceeds the load demand. From Figure 7a, it can be seen that the
non-on-site consumption period of new energy is from 1:00 to 8:00, as well as at 22:00 and
24:00. From Figure 7b, it can be seen that the user load after demand response increases at
these moments, thus reducing the surplus of the scenery. As shown in Figure 7c,d, when
energy storage devices are installed in the new energy system, energy storage will absorb a
portion of excess wind and solar new energy during the remaining hours of 1:00-3:00 and
22:00, thereby improving the on-site consumption rate of new energy.
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Figure 8. Energy storage charge and discharge power and state of charge for Scenarios 3 and 4.

6.3.2. Economic Analysis

Table 6 shows the system benefits under four scenarios. Compared with Scenario 2,
Scenario 1 has an increase of 1560 RMB in system revenue. As users participate in the
demand response policy, the revenue from selling electricity to users in the system has
decreased by 1063 RMB, but in Scenario 2, the penalty for contact line fluctuation has
decreased by 2519.6 RMB, and in Scenario 2, the system revenue has increased. Although
there is a small difference between Scenario 1 and Scenario 2 and the settlement amount of
purchasing and selling electricity from the external network, the scale of single purchasing
and selling electricity in Scenario 1 is larger than that in Scenario 2. This also verifies the
conclusion that demand response policy can improve the local consumption rate of new
energy. Compared with Scenario 1, Scenario 3 showed a decrease of 3307.6 RMB in system
revenue. This difference is mainly due to the daily loss cost of energy storage equipment
in the system and the penalty for contact line fluctuations. As a result, the reduction in
electricity purchase revenue from the grid also indicates that Scenario 3 with energy storage
facilities has improved the on-site consumption rate of new energy compared to Scenario
1 without energy storage facilities. Compared with Scenarios 1 and 3, Scenario 4 has the
highest system revenue, mainly due to the significant reduction in penalties for tie line
fluctuations. This indicates that the method proposed in this article can better suppress
power fluctuations in the interconnection line. This method has the lowest electricity sales
revenue for the power grid, which minimizes the sales of new energy to external power
grids. This reduces the impact of integration fluctuations between new energy and external
power grids in wind and solar energy storage systems, and improves the safe and stable
operation of the power grid. Compared with Scenario 2, the decrease in system revenue
in this scenario mainly comes from the daily loss cost of energy storage, but the on-site
consumption of new energy in Scenario 4 is better than that in Scenario 2.

Table 6. Economic analysis under different scenarios (Unit:RMB).

System Consumer Revenue from Cost of Purchasing Penalty for Daily Loss Cost
Scene Benefits Electricity Selling Electricity to  Electricity from the Contact Line of Energy
Consumption the Power Grid Power Grid Fluctuations Storage
1 10,354 14,301 1124.9 1514.9 3612.1 0
2 11,914 13,238 576.17 863.19 1092.5 0
3 7046.4 14,301 985.51 1426.3 5197.7 1670.9
4 10,527 13,238 276.12 560.53 856.43 1625.7

6.3.3. Optimization Results of Different Penalty Factors

To study the impact of power fluctuation penalties on interconnection lines, three
different penalty values, 0.1, 0.01, and 0.001, are set. The solution results under different
scenarios are shown in Table 7. From the table, it can be seen that in scenarios 1 to 4, for
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each scenario with the same on-site consumption rate and energy storage configuration
scale of new energy, the system revenue is maximum at a penalty factor of 0.001, and
minimum at a penalty factor of 0.1.

Table 7. EffectSystem returns and contact line fluctuation penalties under different penalty factors.

. . Returns and Volatility Different Penalty Factors
Different Scenarios .

Penalties 0.1 0.01 0.001
. System benefits 10,354 13,605 13,930

Scenario 1 Volatility Penalties 3612.1 361.21 36.12
. System benefits 11,914 12,897 12,995

Scenario 2 Volatility Penalties 1092.5 109.25 10.93
. System benefits 7046.4 11,725 12,192

Scenario 3 Volatility Penalties 5197.7 519.77 51.98
. System benefits 10,527 11,297 11,374

Scenario 4 Volatility Penalties 856.43 85.64 8.56

The inner model is solved under the set control strategy. When the load transmitted
from the outer layer to the inner layer is the same and the energy storage configuration
scale of the inner layer is the same, the variables in the inner layer of the model obtain
the same results, The main change at this point comes from the power fluctuation penalty
of the interconnection line. When the penalty coefficient is large, the system revenue will
correspondingly decrease. Under the penalty factors of 0.001 and 0.01, the revenue in
Scenario 1 is the largest, and the revenue in Scenario 4 is the smallest. This indicates that
some users participate in demand response, reducing the revenue of the system, and the
system configured with energy storage also increases the energy storage loss, which is
greater than the loss caused by the system reducing the power fluctuation of the tie line.
When the penalty factor is 0.1, the fluctuation penalty cost of Scenario 1 and Scenario 2 is
relatively large, which greatly reduces system revenue. At this time, Scenario 4 has the
largest system revenue, because this scenario has the smallest power fluctuation of tie lines
under the influence of demand response and energy storage configuration.

7. Conclusions

This article studies the allocation of energy storage capacity considering electricity prices
and on-site consumption of new energy in wind and solar energy storage systems. A nested
two-layer optimization model is constructed, and the following conclusions are drawn:

(1) The distribution of source load power curves varies for typical days in different
seasons. Using dynamic time-of-use electricity prices can more flexibly obtain the capacity
configuration scale of energy storage. The article adopts the capacity and maximum power
values of energy storage configuration in each season, which can meet the demand for energy
storage capacity in each season. The optimization of park electricity prices can slightly increase
the on-site consumption rate of new energy, while energy storage can significantly increase the
consumption rate of new energy, but the cost of energy storage configuration is relatively high.
This article proposes a coordinated optimization method for energy storage and electricity
prices in the park, which can achieve maximum on-site consumption of new energy while
improving the economy of energy storage to a certain extent.

(2) This article adopts a joint optimization model of load demand-side response and
energy storage configuration, which can effectively improve the revenue of wind and solar
storage systems and the on-site consumption rate of new energy, and greatly reduce the
fluctuation penalty of connecting lines.

(3) The energy storage daily loss model proposed in this article can accurately reflect
the operational loss of energy storage, and the proposed backstepping method can effec-
tively verify and adjust the capacity status of each period of energy storage, ensuring that
the optimization of energy storage has equal states of charge from beginning to end.
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(4) This article does not consider user satisfaction factors and does not analyze the
impact of typical day prediction errors on energy storage configuration results when
participating in demand-side response. The next step can focus on this point.
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Figure A1. Optimization operation strategy for wind and solar storage system.
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strategy in Figure 3 and the energy storage charging and discharging power verification
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Figure A2. Double layered multi-objective optimization calculation process.
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