An Investigation on Optimized Performance of Voluteless Centrifugal Fans by a Class and Shape Transformation Function
Abstract
:1. Introduction
2. Parametric Optimization Design of Fan Blades
2.1. Blades Shape Parametric Design
2.2. Optimization Schemes
3. Numerical Analysis and Experiment Test System
3.1. Geometric Parameters and Performance Indicators
3.2. Numerical Method and Boundary Conditions
3.3. Experimental Test
4. Results and Discussion
4.1. Experimental Verification
4.2. Pareto Front Optimization Design
4.3. Flow Field Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Wang, J.; Jiang, B.; Li, Z.; Xiao, Q.; Wu, L.; Xie, B. Multi-objective optimization for the radial bending and twisting law of axial fan blades. Processes 2022, 10, 753. [Google Scholar] [CrossRef]
- Heo, M.W.; Kim, J.H.; Seo, T.W.; Kim, K.Y. Aerodynamic and aeroacoustic optimization for design of a forward-curved blades centrifugal fan. Proc. Inst. Mech. Eng. Part A J. Power Energy 2016, 230, 154–174. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, J.; Jiang, B.; Yang, W.; Yang, X. Multi-objective optimization of squirrel cage fan for range hood based on Kriging model. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 219–232. [Google Scholar] [CrossRef]
- Gan, X.; Pei, J.; Wang, W.; Yuan, S.; Lin, B. Application of a modified MOPSO algorithm and multi-layer artificial neural network in centrifugal pump optimization. Eng. Optim. 2023, 55, 580–598. [Google Scholar] [CrossRef]
- Kulfan, B.M. Universal parametric geometry representation method. J. Aircr. 2008, 45, 142–158. [Google Scholar] [CrossRef]
- Akram, M.T.; Kim, M.H. CFD analysis and shape optimization of airfoils using class shape transformation and genetic algorithm—Part, I. Appl. Sci. 2021, 11, 3791. [Google Scholar] [CrossRef]
- Huang, S.; Lu, X.; Han, G.; Zhao, S.; Zhou, C.; Yang, C. Research on aerodynamic optimization design method and flow mechanism of a high-subsonic compressor cascade. Eng. Appl. Comp. Fluid Mech. 2022, 16, 316–334. [Google Scholar] [CrossRef]
- Liu, C.; Duan, Y.; Cai, J.; Wang, J. Application of the 3D multi-block CST method to hypersonic aircraft optimization. Aerosp. Sci. Technol. 2016, 50, 295–303. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, K.; Zhang, W.; Zhang, K.; Wang, C.; Jin, W. Optimization of multi-blade centrifugal fan blade design for ventilation and air-conditioning system based on disturbance CST function. Appl. Sci. 2021, 11, 7784. [Google Scholar] [CrossRef]
- Kim, J.H.; Ovgor, B.; Cha, K.; Kim, J.H.; Lee, S.; Kim, K.Y. Optimization of the aerodynamic and aeroacoustic performance of an axial-flow fan. AIAA J. 2014, 52, 2032–2044. [Google Scholar] [CrossRef]
- Kim, S.; Lee, K.Y.; Kim, J.H.; Yoon, J.Y.; Choi, Y.S. Design of mixed-flow pump for Ns475 based on optimum design database. J. Fluid Mech. 2018, 11, 123–128. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Yang, H.; Zhu, Z.; Wei, Y. Blade shape optimization and internal-flow characteristics of the backward non-volute centrifugal fan. Proc. Inst. Mech. Eng. Part A J. Power Energy 2022, 236, 673–688. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, H.; Yang, K.; Dong, H.; Gao, Z. Research on blade design method of multi-blade centrifugal fan for building efficient ventilation based on Hicks-Henne function. Sustain. Energy Technol. Assess. 2021, 43, 100971. [Google Scholar] [CrossRef]
- Forrester, A.; Sobester, A.; Keane, A. Engineering Design via Surrogate Modelling: A Practical Guide; John Wiley & Sons, Ltd.: New York, NY, USA, 2008; pp. 155–165. [Google Scholar]
- Li, Z.; Zheng, X. Review of design optimization methods for turbomachinery aerodynamics. Prog. Aeosp. Sci. 2017, 93, 1–23. [Google Scholar] [CrossRef]
- Zhou, L.; Hang, J.; Bai, L.; Krzemianowski, Z.; Yasser, E.; El-Emam, M.A.; Agarwal, R. Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review. Appl. Energy 2022, 318, 119211. [Google Scholar] [CrossRef]
- Liang, Z.; Xiang, L.; Wei, X.; Chen, S.; Liu, J.; Hao, Z. Numerical study on the flow characteristics of centrifugal compressor impeller with crack damage. Adv. Mech. Eng. 2021, 13, 16878140211034622. [Google Scholar] [CrossRef]
- Zamiri, A.; Choi, M.; Chung, T. Effect of blade squealer tips on aerodynamic performance and stall margin in a transonic centrifugal compressor with vaned diffuser. Aerosp. Sci. Technol. 2022, 123, 107504. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, B.; Xia, X.; Yang, H.; Zuo, Q.; Liu, Z. Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method. Energy 2022, 245, 123312. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Yuan, Z.; Yuan, Z.; Ji, K. Development and application of the entropy production diagnostic model to the cavitation flow of a pump-turbine in pump mode. Renew. Energy 2020, 154, 774–785. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Blazek, J. Computational Fluid Dynamics: Principles and Applications, 3rd ed.; Elsevier: Oxford, UK, 2015; pp. 225–265. [Google Scholar]
- Li, Z.; Dou, H.; Lin, P.; Wei, Y.; Chen, Y.; Lin, L.; Ye, X. Design for a squirrel cage fan with double arc blade. J. Appl. Fluid. Mech. 2020, 13, 881–891. [Google Scholar] [CrossRef]
- Li, Z.; Ye, X.; Wei, Y. Investigation on vortex characteristics of a multi-blade centrifugal fan near volute outlet region. Processes 2020, 8, 1240. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Impeller inside diameter (mm) | 266 |
Impeller outside diameter (mm) | 460 |
Blade inlet angle (deg.) | 8 |
Blade outlet angle (deg.) | 28 |
Number of blades | 6 |
Impeller width (mm) | 160 |
Volumetric Flow Rate/m3 s−1 | Pressure Coefficient (N) | Pressure Coefficient (E) | Efficiency (N) | Efficiency (E) | Errors |
---|---|---|---|---|---|
1.31 | 0.73 | 0.63 | 60.14 | 60.86 | 1.20% |
1.63 | 0.63 | 0.58 | 62.5 | 64.64 | 3.42% |
1.88 | 0.53 | 0.53 | 62.2 | 64.36 | 3.47% |
2.2 | 0.38 | 0.44 | 58.16 | 60.76 | 4.47% |
Case | Pressure/Pa (K) | Pressure/Pa (N) | Pressure Errors | Efficiency (K) | Efficiency (N) | Efficiency Errors |
---|---|---|---|---|---|---|
prototype | - | 1052 | - | - | 73.63 | - |
case 0 | 1132.59 | 1147 | −1.26% | 75.83 | 77.52 | −2.18% |
case 1 | 1098.92 | 1101 | −0.19% | 76.02 | 75.91 | 0.15% |
case 2 | 1150.80 | 1156 | −0.45% | 75.88 | 75.57 | 0.42% |
case 3 | 1174.52 | 1173 | 0.15% | 75.18 | 75.02 | 0.23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Li, Z.; Li, G.; Ye, X.; Liu, Y.; Chen, Z.; Li, N. An Investigation on Optimized Performance of Voluteless Centrifugal Fans by a Class and Shape Transformation Function. Processes 2023, 11, 1751. https://doi.org/10.3390/pr11061751
Zhu M, Li Z, Li G, Ye X, Liu Y, Chen Z, Li N. An Investigation on Optimized Performance of Voluteless Centrifugal Fans by a Class and Shape Transformation Function. Processes. 2023; 11(6):1751. https://doi.org/10.3390/pr11061751
Chicago/Turabian StyleZhu, Meijun, Zhehong Li, Guohui Li, Xinxue Ye, Yang Liu, Ziyun Chen, and Ning Li. 2023. "An Investigation on Optimized Performance of Voluteless Centrifugal Fans by a Class and Shape Transformation Function" Processes 11, no. 6: 1751. https://doi.org/10.3390/pr11061751
APA StyleZhu, M., Li, Z., Li, G., Ye, X., Liu, Y., Chen, Z., & Li, N. (2023). An Investigation on Optimized Performance of Voluteless Centrifugal Fans by a Class and Shape Transformation Function. Processes, 11(6), 1751. https://doi.org/10.3390/pr11061751