Effect of Freeze–Thaw Cycles on Physicochemical and Functional Properties of Ginger Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagent
2.2. Sample Preparation
2.3. Analysis of Resistant Starch and Total Starch Content
2.4. Analysis of Amylose Content
2.5. In Vitro Digestibility
2.6. Water-Holding and Oil-Holding Capacity Measurement
2.7. Swelling Power and Solubility
2.8. Differential Scanning Calorimeter (DSC)
2.9. Pasting Properties
2.10. Fourier Transform Infrared Spectrometer (FTIR Spectrometer)
2.11. X-ray Diffractometry
2.12. Maltese Cross
2.13. Microstructural Characteristics
2.14. Statistical Analysis
3. Results and Discussion
3.1. Composition Analysis of Ginger Starch
3.2. The Physicochemical Properties of Ginger Starch
3.3. The Gelatinization Characteristics of Ginger Starch
3.4. The Pasting Properties of Ginger Starch
3.5. Structural Analysis of Ginger Starch
3.6. Microstructure of Ginger Starch
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Afshari, A.T.; Shirpoor, A.; Farshid, A.; Saadatian, R.; Rasmi, Y.; Saboory, E.; Ilkhanizadeh, B.; Allameh, A. The effect of ginger on diabetic nephropathy, plasma antioxidant capacity and lipid peroxidation in rats. Food Chem. 2007, 101, 148–153. [Google Scholar] [CrossRef]
- Gao, Y.; Ozel, M.Z.; Dugmore, T.; Sulaeman, A.; Matharu, A.S. A biorefinery strategy for spent industrial ginger waste. J. Hazard Mater. 2021, 401, 123400. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ye, F.; Tao, J.; Zhang, Z.; Zhao, G. Ozone exposure tunes the physicochemical properties of sweet potato starch by modifying its molecular structure. Int. J. Biol. Macromol. 2023, 236, 124002. [Google Scholar] [CrossRef]
- Braga, M.E.M.; Moreschi, S.R.M.; Meireles, M.A.A. Effects of supercritical fluid extraction on Curcuma longa L. and Zingiber officinale R. starches. Carbohydr. Polym. 2006, 63, 340–346. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, 33–50. [Google Scholar]
- Snelson, M.; Jong, J.; Manolas, D.; Kok, S.; Louise, A.; Stern, R.; Kellow, N. Metabolic effects of resistant starch type 2: A systematic literature review and meta-analysis of randomized controlled trials. Nutrients 2019, 11, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawi, M.H.; Abdullah, A.; Ismail, A.; Sarbini, S.R. Manipulation of gut microbiota using Acacia gum polysaccharide. ACS Omega 2021, 6, 17782–17797. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lin, L.; Shen, M.; Wang, W.; Xiao, Y.; Xie, J. Effect of mesona chinensis polysaccharide on the pasting, thermal and rheological properties of wheat starch. Int. J. Biol. Macromol. 2018, 118, 945–951. [Google Scholar] [CrossRef]
- Park, E.Y.; Baik, B.K.; Lim, S.T. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel. J. Cereal Sci. 2009, 50, 43–48. [Google Scholar] [CrossRef]
- Elfstrand, L.; Frigard, T.; Andersson, R.; Eliasson, A.C.; Jonsson, M.; Reslow, M.; Wahlgren, M. Recrystallisation behaviour of native and processed waxy maize starch in relation to the molecular characteristics. Carbohydr. Polym. 2004, 57, 389–400. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, J.; Wu, H.; Gou, M.; Jing, L.; Zhao, K.; Zhang, B.; Zhang, G.; Li, W. Molecular, crystal and physicochemical properties of granular waxy corn starch after repeated freeze-thaw cycles at different freezing temperatures. Int. J. Biol. Macromol. 2019, 133, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hu, X.P.; Wang, Z.; Bao, Q.Q.; Zhou, B.; Li, T.P.; Li, S.H. Preparation and characterization of highly lipophilic modified potato starch by ultrasound and freeze-thaw treatments. Ultrason. Sonochem. 2020, 64, 105054. [Google Scholar] [CrossRef]
- Wang, M.; Bai, X.; Jiang, Y.; Lang, S.; Yu, L. Preparation and characterization of low oil absorption starch via freeze-thawing. Carbohydr. Polym. 2019, 211, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Knutson, C.A. Evaluation of variations in amylose–iodine absorbance spectra. Carbohydr. Polym. 2000, 42, 65–72. [Google Scholar] [CrossRef]
- Zhang, X.W.; Zhang, Y.T.; Xu, Z.; Liu, W.M.; Gao, B.Y.; Xie, J.H.; Chen, T.T.; Li, E.P.; Li, B.G.; Li, C. The addition of crosslinked corn bran arabinoxylans with different gelling characteristics was associated with the pasting, rheological, structural, and digestion properties of corn starch. J. Biol. Macromol. 2023, 236, 123906. [Google Scholar] [CrossRef]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Sangnark, A.; Noomhorm, A. Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chem. 2003, 80, 221–229. [Google Scholar] [CrossRef]
- Ye, J.; Luo, S.; Huang, A.; Chen, J.; Liu, C.; McClements, D. Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch. Food Hydrocoll. 2019, 92, 135–142. [Google Scholar] [CrossRef]
- Qi, Q.T.; Hong, Y.; Zhang, Y.Y.; Gu, Z.B.; Cheng, L.; Li, Z.F.; Li, C.M. Effect of cassava starch structure on scalding of dough and baking expansion ability. Food Chem. 2021, 352, 129350. [Google Scholar] [CrossRef]
- Sun, G.; Ni, P.; Lam, E.; Hrapovic, S.; Bing, D.; Yu, B.; Ai, Y. Exploring the functional attributes and in vitro starch and protein digestibility of pea flours having a wide range of amylose content. Food Chem. 2023, 405, 134938. [Google Scholar] [CrossRef]
- Shah, A.; Masoodi, F.A.; Gani, A.; Ashwar, B.A. In-vitro digestibility, rheology, structure, and functionality of RS3 from oat starch. Food Chem. 2016, 212, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y.; Tokunaga, N.; Takeda, C.; Hizukuri, S. Physicochemical properties of sweet potato starches. Starch Stärke 1986, 38, 345–350. [Google Scholar] [CrossRef]
- Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydr. Polym. 2001, 45, 253–267. [Google Scholar] [CrossRef]
- Dundar, A.N.; Gocmen, D. Effects of autoclaving temperature and storing time on resistant starch formation and its functional and physicochemical properties. Carbohydr. Polym. 2013, 97, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Hasjim, J.; Ai, Y.; Jane, J.L. Novel Applications of Amylose-Lipid Complex as Resistant Starch Type 5. In Resistant Starch; Wiley: Hoboken, NJ, USA, 2013; pp. 79–94. [Google Scholar]
- Brand-Miller, J.C.; Stockmann, K.; Atkinson, F.; Petocz, P.; Denyer, G. Glycemic index, postprandial glycemia, and the shape of the curve in healthy subjects: Analysis of a database of more than 1000 foods. Am. J. Clin. Nutr. 2019, 89, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, P.; Dollimore, D. A thermal analysis investigation of partially hydrolyzed starch. Thermochim. Acta 1998, 319, 17–25. [Google Scholar] [CrossRef]
- Chen, B.R.; Teng, Y.X.; Wang, L.H.; Xu, F.Y.; Li, Y.; Wen, Q.H.; Wang, R.; Li, J.; Wang, Z.; Zeng, X.A. Pulsed electric field-assisted esterification improves the freeze-thaw stability of corn starch gel by changing its molecular structure. J. Biol. Macromol. 2023, 231, 123085. [Google Scholar] [CrossRef]
- Baixauli, R.; Salvador, A.; Martínez-Cervera, S.; Fiszman, S.M. Distinctive sensory features introduced by resistant starch in baked products. LWT Food Sci. Technol. 2008, 41, 1927–1933. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Chang, Q.; Zhang, Y.; Zheng, B.; Zeng, H. Structural and physicochemical properties of ginger (Rhizoma curcumae longae) starch and resistant starch: A comparative study. Int. J. Biol. Macromol. 2020, 144, 67–75. [Google Scholar] [CrossRef]
- Liu, H.S.; Yu, L.; Xie, F.W.; Chen, L. Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydr. Polym. 2006, 65, 357–363. [Google Scholar] [CrossRef]
- Tao, H.; Zhang, B.; Wu, F.F.; Jin, Z.Y.; Xu, X.M. Effect of multiple freezing/thawing-modified wheat starch on dough properties and bread quality using a reconstitution system. J. Cereal Sci. 2016, 69, 132–137. [Google Scholar] [CrossRef]
- Du, K.; Jiang, H.X.; Yu, X.Z.; Jane, J.L. Physicochemical and functional properties of whole legume flour. LWT Food Sci. Technol. 2014, 55, 308–313. [Google Scholar] [CrossRef]
- Jyothi, A.N.; Moorthy, S.N.; Vimala, B. Physicochemical and functional properties of starch from two species of Curcuma. Int. J. Food Prop. 2007, 6, 135–145. [Google Scholar] [CrossRef]
- Huang, T.T.; Zhou, D.N.; Jin, Z.Y.; Xu, X.M.; Chen, H.Q. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocoll. 2016, 54, 202–210. [Google Scholar] [CrossRef]
- Zhao, A.Q.; Yu, L.; Yang, M.; Wang, C.J.; Wang, M.M.; Bai, X. Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch. Food Hydrocoll. 2018, 83, 465–472. [Google Scholar] [CrossRef]
- He, H.; Chi, C.; Xie, F.; Li, X.; Liang, Y.; Chen, L. Improving the in vitro digestibility of rice starch by thermomechanically assisted complexation with guar gum. Food Hydrocoll. 2020, 102, 123130. [Google Scholar] [CrossRef]
- Szymońska, J.; Krok, F.; Komorowska-Czepirska, E.; Rębilas, K. Modification of granular potato starch by multiple deep-freezing and thawing. Carbohydr. Polym. 2003, 52, 1–10. [Google Scholar] [CrossRef]
- Bogracheva, T.Y.; Wang, Y.L.; Hedley, C.L. The effect of water content on the ordered/disordered structures in starches. Biopolymers 2001, 58, 247–259. [Google Scholar] [CrossRef]
- Chung, H.J.; Jeong, H.Y.; Lim, S.T. Effects of acid hydrolysis and defatting on crystallinity and pasting properties of freeze-thawed high amylose corn starch. Carbohydr. Polym. 2003, 54, 449–455. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, S.S.; Li, Z.; Pan, Z.; Huang, Z.M.; Zhao, J.Z.; Ai, Z. Influence of three types of freezing methods on physicochemical properties and digestibility of starch in frozen unfermented dough. Food Hydrocoll. 2021, 115, 106619. [Google Scholar] [CrossRef]
- Mishra, S.; Rai, T. Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocoll. 2006, 20, 557–566. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, L.; Man, J.; Wang, J.; Zhou, W.; Huai, H.; Wei, C. Comparison of physicochemical properties of B-type nontraditional starches from different sources. Int. J. Biol. Macromol. 2015, 78, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Wang, S.; Xu, W.; Yin, Y.; Xu, D.; Zhang, L.; Liu, G.Q.; Luo, F.; Sun, S.; Lin, Q.; et al. The study on starch granules by using darkfield and polarized light microscopy. J. Food Compos. Anal. 2020, 92, 103576. [Google Scholar] [CrossRef]
- Bogracheva, T.Y.; Meares, C.; Hedley, C.L. The effect of heating on the thermodynamic characteristics of potato starch. Carbohydr. Polym. 2006, 63, 323–330. [Google Scholar] [CrossRef]
- Cai, C.; Wei, C. In situ observation of crystallinity disruption patterns during starch gelatinization. Carbohydr. Polym. 2013, 92, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Tahir, R.; Ellis, P.P.; Bogracheva, T.Y.; Meares-Taylor, C.; Butterworth, P.J. Study of the structure and properties of native and hydrothermally processed wild-type, Iam, and Variant pea starch that affect amylolysis of these starches. Biomacromolecules 2011, 12, 123–133. [Google Scholar] [CrossRef]
Parameter | TS (g/100 g) | RDS (%) | SDS (%) | RS (g/100 g) | Amylose (%) | eGI |
---|---|---|---|---|---|---|
Native | 73.31 ± 0.57 a | 1.77 ± 0.46 c | 11.73 ± 0.18 f | 63.05 ± 0.16 a | 30.93 ± 0.87 abc | 26.50 ± 0.47 g |
GS | 70.98 ± 0.78 b | 39.85 ± 0.66 a | 23.01 ± 0.54 a | 8.50 ± 0.11 e | 28.22 ± 0.27 d | 115.09 ± 0.99 a |
FT0 | 67.98 ± 0.37 c | 3.49 ± 0.50 b | 17.06 ± 1.16 d | 59.29 ± 0.44 b | 31.92 ± 0.88 a | 32.11 ± 0.78 ef |
FT1 | 64.16 ± 1.28 d | 1.39 + 0.13 c | 20.27 ± 0.71 b | 56.29 ± 0.63 d | 29.93 ± 0.54 c | 40.23 ± 0.66 b |
FT3 | 64.54 ± 0.06 d | 1.02 ± 0.13 c | 19.13 ± 0.33 c | 57.34 ± 0.33 c | 30.68 ± 0.25 bc | 37.42 ± 0.71 c |
FT5 | 69.10 ± 1.00 c | 0.95 ± 0.24 c | 17.39 ± 0.31 d | 57.99 ± 0.56 c | 30.67 ± 0.55 bc | 34.16 ± 0.60 d |
FT7 | 70.85 ± 0.53 b | 1.06 ± 0.30 c | 15.70 ± 0.20 e | 58.86 ± 0.56 b | 31.54 ± 0.46 ab | 32.39 ± 0.21 e |
Parameter | Peak Temperature (°C) | Peak Viscosity (Pa·s) | Trough Viscosity (Pa·s) | Final Viscosity (Pa·s) | Breakdown (BD) | Setback (SB) |
---|---|---|---|---|---|---|
NATIVE | 89.6 ± 0.28 a | 1.55 ± 0.08 c | 1.55 ± 0.08 c | 3.11 ± 0.27 c | 0.01 ± 0.00 b | 1.56 ± 0.19 c |
GS | 76.5 ± 0.00 b | 3.89 ± 0.10 a | 3.48 ± 0.08 a | 7.08 ± 0.20 a | 0.41 ± 0.03 a | 3.60 ± 0.12 a |
FT0 | 89.3 ± 0.21 a | 1.65 ± 0.01 bc | 1.65 ± 0.01 bc | 3.34 ± 0.01 bc | 0.00 b | 1.69 ± 0.00 bc |
FT1 | 89.6 ± 0.28 a | 1.66 ± 0.03 bc | 1.66 ± 0.03 bc | 3.44 ± 0.00 bc | 0.00 b | 1.79 ± 0.21 bc |
FT3 | 89.6 ± 0.28 a | 1.72 ± 0.01 bc | 1.72 ± 0.01 b | 3.65 ± 0.09 b | 0.00 b | 1.93 ± 0.08 b |
FT5 | 90.1 ± 0.92 a | 1.74 ± 0.07 b | 1.74 ± 0.07 b | 3.71 ± 0.28 b | 0.00 b | 1.97 ± 0.21 b |
FT7 | 90.3 ± 0.64 a | 1.73 ± 0.14 bc | 1.73 ± 0.14 b | 3.75 ± 0.42 b | 0.00 b | 2.02 ± 0.28 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-C.; Liang, Y.-C.; Huang, F.-L.; Chang, W.-C. Effect of Freeze–Thaw Cycles on Physicochemical and Functional Properties of Ginger Starch. Processes 2023, 11, 1828. https://doi.org/10.3390/pr11061828
Wang Y-C, Liang Y-C, Huang F-L, Chang W-C. Effect of Freeze–Thaw Cycles on Physicochemical and Functional Properties of Ginger Starch. Processes. 2023; 11(6):1828. https://doi.org/10.3390/pr11061828
Chicago/Turabian StyleWang, Yu-Ching, Ya-Ching Liang, Fu-Long Huang, and Wen-Chang Chang. 2023. "Effect of Freeze–Thaw Cycles on Physicochemical and Functional Properties of Ginger Starch" Processes 11, no. 6: 1828. https://doi.org/10.3390/pr11061828
APA StyleWang, Y. -C., Liang, Y. -C., Huang, F. -L., & Chang, W. -C. (2023). Effect of Freeze–Thaw Cycles on Physicochemical and Functional Properties of Ginger Starch. Processes, 11(6), 1828. https://doi.org/10.3390/pr11061828