Interfacial Electron Transfer and Synergistic Effects on NiCo(CA)@M Microbars That Boost the Alkaline Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Synthesis of MIL-88A
2.3. Synthesis of Ni(CA), Co(CA), and NiCo(CA)
2.4. Synthesis of Ni(CA)@M, Co(CA)@M, and NiCo(CA)@M
2.5. Instruments and Characterization
2.6. Electrochemical Measurements
3. Results and Discussion
3.1. Structure of NiCo(CA)@M Composite Material
3.2. OER Activity and Stability of the NiCo(CA)@M Catalyst
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Razmjoo, A.; Gandomi, A.H.; Pazhoohesh, M.; Mirjalili, S.; Rezaei, M. The key role of clean energy and technology in smart cities development. Energy Strat. Rev. 2022, 44, 100943. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; Wang, F.; Yan, Y.; Chen, Y.; Shao, M.; Wu, Q.; Zhu, S.; Diao, G.; Chen, M. Development of copper foam-based composite catalysts for electrolysis of water and beyond. Sustain. Energy Fuels 2023, 7, 1604–1626. [Google Scholar] [CrossRef]
- Dos Santos, K.G.; Eckert, C.T.; De Rossi, E.; Bariccatti, R.A.; Frigo, E.P.; Lindino, C.A.; Alves, H.J. Hydrogen production in the electrolysis of water in Brazil, a review. Renew. Sustain. Energy Rev. 2017, 68, 563–571. [Google Scholar] [CrossRef]
- Fereja, S.L.; Li, P.; Zhang, Z.; Guo, J.; Fang, Z.; Li, Z.; He, S.; Chen, W. W-doping induced abundant active sites in a 3D NiS2/MoO2 heterostructure as an efficient electrocatalyst for urea oxidation and hydrogen evolution reaction. Chem. Eng. J. 2022, 432, 134274. [Google Scholar] [CrossRef]
- Iqbal, S.; Safdar, B.; Hussain, I.; Zhang, K.; Chatzichristodoulou, C. Trends and Prospects of Bulk and Single-Atom Catalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2023, 13, 1. [Google Scholar] [CrossRef]
- Shan, Y.; Sun, X.; Wang, Y.; Zhu, Y.; Li, T. Semimetallic Orbital Hybridization by Particular Surface Engineering in Ternary Cobalt Silicide to Accelerate Oxygen Evolution Reaction. Phys. Status Solidi Rapid Res. Lett. 2023, 17, 2200445. [Google Scholar] [CrossRef]
- Jung, H.B.; Kim, Y.; Lim, J.; Cho, S.; Seo, M.; Kim, I.-S.; Kim, M.; Lee, C.; Lee, Y.-W.; Yoo, C.-Y.; et al. ZIF-67 metal-organic frameworks synthesized onto CNT supports for oxygen evolution reaction in alkaline water electrolysis. Electrochim. Acta 2023, 439, 2200445. [Google Scholar] [CrossRef]
- Li, H.; Guo, Z.; Wang, X. Atomic-layer-deposited ultrathin Co9S8 on carbon nanotubes: An efficient bifunctional electrocatalyst for oxygen evolution/reduction reactions and rechargeable Zn-air batteries. J. Mater. Chem. A 2017, 5, 21353–21361. [Google Scholar] [CrossRef]
- Qin, C.; Tian, S.; Wang, W.; Jiang, Z.-J.; Jiang, Z. Advances in platinum-based and platinum-free oxygen reduction reaction catalysts for cathodes in direct methanol fuel cells. Front. Chem. 2022, 10, 1073566. [Google Scholar] [CrossRef]
- Hu, S.; Ge, S.; Liu, H.; Kang, X.; Yu, Q.; Liu, B. Low-Dimensional Electrocatalysts for Acidic Oxygen Evolution: Intrinsic Activity, High Current Density Operation, and Long-Term Stability. Adv. Funct. Mater. 2022, 32, 2201726. [Google Scholar] [CrossRef]
- Tan, D.; Xiong, H.; Zhang, T.; Fan, X.; Wang, J.; Xu, F. Recent progress in noble-metal-free electrocatalysts for alkaline oxygen evolution reaction. Front. Chem. 2022, 10, 1071274. [Google Scholar] [CrossRef]
- Rai, R.K.; Tyagi, D.; Gupta, K.; Singh, S.K. Activated nanostructured bimetallic catalysts for C–C coupling reactions: Recent progress. Catal. Sci. Technol. 2016, 6, 3341–3361. [Google Scholar] [CrossRef]
- Guo, J.; Huo, J.; Liu, Y.; Wu, W.; Wang, Y.; Wu, M.; Liu, H.; Wang, G. Nitrogen-Doped Porous Carbon Supported Nonprecious Metal Single-Atom Electrocatalysts: From Synthesis to Application. Small Methods 2019, 3, 1900159. [Google Scholar] [CrossRef]
- Zhu, B.; Wan, T.; Li, J.; Meng, C.; Du, X.; Liu, G.; Guan, Y. Graphene-wrapped bimetallic nanoparticles bifunctional electrocatalyst for rechargeable Zn-air battery. J. Electroanal. Chem. 2022, 927, 116946. [Google Scholar] [CrossRef]
- Yan, H.; Xiang, H.; Liu, J.; Cheng, R.; Ye, Y.; Han, Y.; Yao, C. The Factors Dictating Properties of Atomically Precise Metal Nanocluster Electrocatalysts. Small 2022, 18, e2200812. [Google Scholar] [CrossRef]
- Ruan, B.; Guo, H.-P.; Hou, Y.; Liu, Q.; Deng, Y.; Chen, G.; Chou, S.-L.; Liu, H.-K.; Wang, J.-Z. Carbon-Encapsulated Sn@N-Doped Carbon Nanotubes as Anode Materials for Application in SIBs. ACS Appl. Mater. Interfaces 2017, 9, 37682–37693. [Google Scholar] [CrossRef] [Green Version]
- Linke, J.; Rohrbach, T.; Ranocchiari, M.; Schmidt, T.J.; Fabbri, E. Enlightening the journey of metal-organic framework (derived) catalysts during the oxygen evolution reaction in alkaline media via operando X-ray absorption spectroscopy. Curr. Opin. Electrochem. 2021, 30, 100845. [Google Scholar] [CrossRef]
- Zha, X.; Zhao, X.; Webb, E.; Khan, S.U.; Wang, Y. Beyond Pristine Metal-Organic Frameworks: Preparation of Hollow MOFs and Their Composites for Catalysis, Sensing, and Adsorption Removal Applications. Molecules 2023, 28, 144. [Google Scholar] [CrossRef]
- Meng, S.; Li, G.; Wang, P.; He, M.; Sun, X.; Li, Z. Rare earth-based MOFs for photo/electrocatalysis. Mater. Chem. Front. 2023, 7, 806–827. [Google Scholar] [CrossRef]
- Luo, P.; Li, S.; Zhao, Y.; Ye, G.; Wei, C.; Hu, Y.; Wei, C. In-situ Growth of a Bimetallic Cobalt-Nickel Organic Framework on Iron Foam: Achieving the Electron Modification on a Robust Self-supported Oxygen Evolution Electrode. ChemCatChem 2019, 11, 6061–6069. [Google Scholar] [CrossRef]
- Ling, J.-L.; Wu, C.-D. Transformation of metal–organic frameworks with retained networks. Chem. Commun. 2022, 58, 8602–8613. [Google Scholar] [CrossRef]
- Wen, M.; Cui, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Non-Noble-Metal Nanoparticle Supported on Metal-Organic Framework as an Efficient and Durable Catalyst for Promoting H2 Production from Ammonia Borane under Visible Light Irradiation. ACS Appl. Mater. Interfaces 2016, 8, 21278–21284. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Yuan, H.; Liu, F.; Hu, T.; Yang, B. Strong Electronic Interaction between Amorphous MnO2 Nanosheets and Ultrafine Pd Nanoparticles toward Enhanced Oxygen Reduction and Ethylene Glycol Oxidation Reactions. Adv. Funct. Mater. 2023, 33, 2011909. [Google Scholar] [CrossRef]
- Xiao, M.; Zhu, J.; Li, S.; Li, G.; Liu, W.; Deng, Y.-P.; Bai, Z.; Ma, L.; Feng, M.; Wu, T.; et al. 3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catal. 2021, 11, 8837–8846. [Google Scholar] [CrossRef]
- Wu, W.; Chen, R.; Chen, S.; Wang, Z.; Cheng, N. Optimizing d-Orbital Electronic Configuration via Metal-Metal Oxide Core-Shell Charge Donation for Boosting Reversible Oxygen Electrocatalysis. Small 2023, 19, e2300621. [Google Scholar] [CrossRef]
- Yaqoob, L.; Noor, T.; Iqbal, N.; Nasir, H.; Zaman, N.; Talha, K. Electrochemical synergies of Fe–Ni bimetallic MOF CNTs catalyst for OER in water splitting. J. Alloy. Compd. 2021, 850, 156583. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, P.; Zhang, H.; Yao, J.; Wang, X.; Chen, D.; Zuo, X.; Yang, Q.; Jin, S.; Li, G. Enhanced Oxygen Evolution Activity Aroused from Interfacial Electron Transfer and Synergism in Co(OH)2/MIL-88A Heterostructure. J. Electrochem. Soc. 2022, 169, 106518. [Google Scholar] [CrossRef]
- Bagherzadeh, E.; Zebarjad, S.M.; Hosseini, H.R.M. Morphology Modification of the Iron Fumarate MIL-88A Metal-Organic Framework Using Formic Acid and Acetic Acid as Modulators. Eur. J. Inorg. Chem. 2018, 2018, 1909–1915. [Google Scholar] [CrossRef]
- Khandelwal, G.; Raj, N.P.M.J.; Vivekananthan, V.; Kim, S.-J. Biodegradable metal-organic framework MIL-88A for triboelectric nanogenerator. iScience 2021, 24, 102064. [Google Scholar] [CrossRef]
- Islam, D.A.; Barman, K.; Jasimuddin, S.; Acharya, H. Ag-Nanoparticle-Anchored rGO-Coated MIL-88B(Fe) Hybrids as Robust Electrocatalysts for the Highly Efficient Oxygen Evolution Reaction at Neutral pH. Chemelectrochem 2017, 4, 3110–3118. [Google Scholar] [CrossRef]
- Song, G.; Wang, Z.; Wang, L.; Li, G.; Huang, M.; Yin, F. Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chin. J. Catal. 2014, 35, 185–195. [Google Scholar] [CrossRef]
- Xie, Q.; Li, F.; Guo, H.; Wang, L.; Chen, Y.; Yue, G.; Peng, D.-L. Template-Free Synthesis of Amorphous Double-Shelled Zinc–Cobalt Citrate Hollow Microspheres and Their Transformation to Crystalline ZnCo2O4 Microspheres. ACS Appl. Mater. Interfaces 2013, 5, 5508–5517. [Google Scholar] [CrossRef] [PubMed]
- Septiani, N.L.W.; Kaneti, Y.V.; Fathoni, K.B.; Kani, K.; Allah, A.E.; Yuliarto, B.; Nugraha; Dipojono, H.K.; Alothman, Z.A.; Golberg, D.; et al. Self-Assembly of Two-Dimensional Bimetallic Nickel–Cobalt Phosphate Nanoplates into One-Dimensional Porous Chainlike Architecture for Efficient Oxygen Evolution Reaction. Chem. Mater. 2020, 32, 7005–7018. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Lin, Z.; Huang, F. The pH-dependent binding of zinc citrate to bipy/phen (bipy=2,2-bipyridine, phen=1,10-phenanthroline). J. Mol. Struct. 2010, 966, 59–63. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Shi, X.; Zhou, F.; Wang, R.; Li, X. Facile fabrication of ultrafine nickel -iridium alloy nanoparticles/graphene hybrid with enhanced mass activity and stability for overall water splitting. J. Energy Chem. 2020, 49, 166–173. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, L.; Liu, X.; Ai, L. Bioinspired Cobalt-Citrate Metal-Organic Framework as an Efficient Electrocatalyst for Water Oxidation. ACS Appl. Mater. Interfaces 2017, 9, 7193–7201. [Google Scholar] [CrossRef]
- Wang, S.; Hou, Y.; Wang, X. Development of a Stable MnCo2O4 Cocatalyst for Photocatalytic CO2 Reduction with Visible Light. ACS Appl. Mater. Interfaces 2015, 7, 4327–4335. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J.D.; Nørskov, J.K.; Abild-Pedersen, F.; Jaramillo, T.F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029. [Google Scholar] [CrossRef]
- Yan, L.; Cao, L.; Dai, P.; Gu, X.; Liu, D.; Li, L.; Wang, Y.; Zhao, X. Metal-Organic Frameworks Derived Nanotube of Nickel-Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting. Adv. Funct. Mater. 2017, 27, 1703455. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, H.; Han, Y.; Qin, Y.; Nie, N.; Cai, W.; Zhang, X.; Li, Z.; Lai, J.; Wang, L. Constructing stable charge redistribution through strong metal-support interaction for overall water splitting in acidic solution. J. Mater. Chem. A 2022, 10, 13241–13246. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, Q.; Ding, J.; Zhong, L.; Li, T.-T.; Pan, J.; Hu, Y.; Qian, J.; Huang, S. CoMo carbide/nitride from bimetallic MOF precursors for enhanced OER performance. Int. J. Hydrogen Energy 2021, 46, 22268–22276. [Google Scholar] [CrossRef]
- Li, F.; Li, J.; Zhou, L.; Dai, S. Enhanced OER performance of composite Co-Fe-based MOF catalysts via a one-pot ultrasonic-assisted synthetic approach. Sustain. Energy Fuels 2021, 5, 1095–1102. [Google Scholar] [CrossRef]
- Zhou, J.; Han, Z.; Wang, X.; Gai, H.; Chen, Z.; Guo, T.; Hou, X.; Xu, L.; Hu, X.; Huang, M.; et al. Discovery of Quantitative Electronic Structure-OER Activity Relationship in Metal-Organic Framework Electrocatalysts Using an Integrated Theoretical-Experimental Approach. Adv. Funct. Mater. 2021, 31, 1–13. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Fei, T.; Mao, C.; Song, Y.; Zhou, Y.; Dong, G. NiCoP/NF 1D/2D Biomimetic Architecture for Markedly Enhanced Overall Water Splitting. Chemelectrochem 2021, 8, 3064–3072. [Google Scholar] [CrossRef]
- Tasviri, M.; Shekarabi, S.; Taherinia, D.; Zare Pour, M.A. Nanosized NiFeSe2/NiCo2O4 hierarchical arrays on Ni foam as an advanced electrocatalyst for hydrogen generation. Sustain. Energy Fuels 2022, 7, 112–121. [Google Scholar] [CrossRef]
- Cai, K.; Zuo, S.; Luo, S.; Yao, C.; Liu, W.; Ma, J.; Mao, H.; Li, Z. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv. 2016, 6, 95965–95972. [Google Scholar] [CrossRef]
- Wang, A.-L.; Xu, H.; Li, G.-R. NiCoFe Layered Triple Hydroxides with Porous Structures as High-Performance Electrocatalysts for Overall Water Splitting. ACS Energy Lett. 2016, 1, 445–453. [Google Scholar] [CrossRef]
- Hou, G.; Jia, X.; Kang, H.; Qiao, X.; Liu, Y.; Li, Y.; Wu, X.; Qin, W. CoNi nano-alloys modified yolk-shell structure carbon cage via Saccharomycetes as carbon template for efficient oxygen evolution reaction. Appl. Catal. B Environ. 2022, 315, 121551. [Google Scholar] [CrossRef]
- Yan, X.; Li, K.; Lyu, L.; Song, F.; He, J.; Niu, D.; Liu, L.; Hu, X.; Chen, X. From Water Oxidation to Reduction: Transformation from NixCo3-xO4 Nanowires to NiCo/NiCoOx Heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 3208–3214. [Google Scholar] [CrossRef]
- Lim, D.; Oh, E.; Lim, C.; Shim, S.E.; Baeck, S.-H. Bimetallic NiFe alloys as highly efficient electrocatalysts for the oxygen evolution reaction. Catal. Today 2020, 352, 27–33. [Google Scholar] [CrossRef]
- Kiran, S.; Yasmeen, G.; Shafiq, Z.; Abbas, A.; Manzoor, S.; Hussain, D.; Pashameah, R.A.; Alzahrani, E.; Alanazi, A.K.; Ashiq, M.N. Nickel-based nitrodopamine MOF and its derived composites functionalized with multi-walled carbon nanotubes for efficient OER applications. Fuel 2023, 331, 125881. [Google Scholar] [CrossRef]
- Gaur, A.; Pundir, V.; Krishankant; Rai, R.; Kaur, B.; Maruyama, T.; Bera, C.; Bagchi, V. Interfacial interaction induced OER activity of MOF derived superhydrophilic Co3O4-NiO hybrid nanostructures. Dalton T. 2022, 51, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Kim, J. Optimal cobalt-based catalyst containing high-ratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement. Appl. Surf. Sci. 2021, 560, 150035. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, X.; Min, Y.; Li, Q.; Xu, Q. Interfacial Electron Transfer and Synergistic Effects on NiCo(CA)@M Microbars That Boost the Alkaline Oxygen Evolution Reaction. Processes 2023, 11, 1874. https://doi.org/10.3390/pr11071874
Liu J, Wang X, Min Y, Li Q, Xu Q. Interfacial Electron Transfer and Synergistic Effects on NiCo(CA)@M Microbars That Boost the Alkaline Oxygen Evolution Reaction. Processes. 2023; 11(7):1874. https://doi.org/10.3390/pr11071874
Chicago/Turabian StyleLiu, Jiajia, Xiao Wang, Yulin Min, Qiaoxia Li, and Qunjie Xu. 2023. "Interfacial Electron Transfer and Synergistic Effects on NiCo(CA)@M Microbars That Boost the Alkaline Oxygen Evolution Reaction" Processes 11, no. 7: 1874. https://doi.org/10.3390/pr11071874
APA StyleLiu, J., Wang, X., Min, Y., Li, Q., & Xu, Q. (2023). Interfacial Electron Transfer and Synergistic Effects on NiCo(CA)@M Microbars That Boost the Alkaline Oxygen Evolution Reaction. Processes, 11(7), 1874. https://doi.org/10.3390/pr11071874