Chemical Characterization of an ARDUINO® Board and Its Surface Mount Devices for the Evaluation of Their Intrinsic Economic Value
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ning, C.; Lin, C.S.K.; Hui, D.C.W.; McKay, G. Waste Printed Circuit Board (PCB) Recycling Techniques. Top. Curr. Chem. 2017, 375, 43. [Google Scholar] [CrossRef] [PubMed]
- Cadence PCB Solutions Identifying Electronic Components on a Circuit Board. Available online: https://resources.pcb.cadence.com/blog/2023-identifying-electronic-components-on-a-circuit-board (accessed on 17 June 2023).
- European Commission. Study on the Critical Raw Materials for the EU; European Commission: Brussels, Belgium, 2023; ISBN 9789268004135.
- Romano, P.; Melchiorre, E.; Vegliò, F. ASPEN PLUS Predictive Simulation of Printed Circuit Boards Pyrolysis and Steam Gasification for Organic Fraction Valorization. Waste 2023, 1, 281–292. [Google Scholar] [CrossRef]
- Korf, N.; Løvik, A.N.; Figi, R.; Schreiner, C.; Kuntz, C.; Mählitz, P.M.; Rösslein, M.; Wäger, P.; Rotter, V.S. Multi-element chemical analysis of printed circuit boards—Challenges and pitfalls. Waste Manag. 2019, 92, 124–136. [Google Scholar] [CrossRef] [PubMed]
- NextPCB FR-1 PCB|Difference Between FR-1, FR-2, FR-3 and FR-4 PCB. Available online: https://www.nextpcb.com/blog/fr-1-pcb (accessed on 1 April 2023).
- Lazar, S.T.; Kolibaba, T.J.; Grunlan, J.C. Flame-retardant surface treatments. Nat. Rev. Mater. 2020, 5, 259–275. [Google Scholar] [CrossRef]
- Bizzo, W.A.; Figueiredo, R.A.; De Andrade, V.F. Characterization of printed circuit boards for metal and energy recovery after milling and mechanical separation. Materials 2014, 7, 4555–4566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidini, G.; Fantozzi, F.; Bartocci, P.; D’Alessandro, B.; D’Amico, M.; Laranci, P.; Scozza, E.; Zagaroli, M. Recovery of precious metals from scrap printed circuit boards through pyrolysis. J. Anal. Appl. Pyrolysis 2015, 111, 140–147. [Google Scholar] [CrossRef]
- Terena, L.M.; Neto, A.F.D.A.; Gimenes, M.L.; Vieira, M.G.A. Characterisation of printed circuit boards of mobile phones discarded in Brazil. Chem. Eng. Trans. 2017, 56, 1945–1950. [Google Scholar] [CrossRef]
- Annamalai, M.; Gurumurthy, K. Characterization of end-of-life mobile phone printed circuit boards for its elemental composition and beneficiation analysis. J. Air Waste Manag. Assoc. 2021, 71, 315–327. [Google Scholar] [CrossRef]
- Van Yken, J.; Cheng, K.Y.; Boxall, N.J.; Sheedy, C.; Nikoloski, A.N.; Moheimani, N.R.; Kaksonen, A.H. A comparison of methods for the characterisation of waste-printed circuit boards. Metals 2021, 11, 1935. [Google Scholar] [CrossRef]
- Anić-Vučinić, A.; Bedeković, G.; Šarc, R.; Premur, V. Determining metal content in waste printed circuit boards and their electronic components. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 590–602. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, N.M.; Birloaga, I.; Ferella, F.; Centofanti, M.; Vegliò, F. Preliminary study on gold recovery from high grade e-waste by thiourea leaching and electrowinning. Minerals 2021, 11, 235. [Google Scholar] [CrossRef]
- Ippolito, N.M.; Medici, F.; Pietrelli, L.; Piga, L. Effect of acid leaching pre-treatment on gold extraction from printed circuit boards of spent mobile phones. Materials 2021, 14, 362. [Google Scholar] [CrossRef] [PubMed]
- Birloaga, I.; Vegliò, F. An innovative hybrid hydrometallurgical approach for precious metals recovery from secondary resources. J. Environ. Manag. 2022, 307, 114567. [Google Scholar] [CrossRef]
- Mishra, G.; Jha, R.; Rao, M.D.; Meshram, A.; Singh, K.K. Recovery of silver from waste printed circuit boards (WPCBs) through hydrometallurgical route: A review. Environ. Chall. 2021, 4, 100073. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Liu, L. Current Status and Future Perspective of Recycling Copper by Hydrometallurgy from Waste Printed Circuit Boards. Procedia Environ. Sci. 2016, 31, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Udayakumar, S.; Razak, M.I.B.A.; Ismail, S. Recovering valuable metals from Waste Printed Circuit Boards (WPCB): A short review. Mater. Today Proc. 2022, 66, 3062–3070. [Google Scholar] [CrossRef]
- Bae, H.; Kim, Y. Technologies of lithium recycling from waste lithium ion batteries: A review. Mater. Adv. 2021, 2, 3234–3250. [Google Scholar] [CrossRef]
- EUR-Lex Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012L0019&from=EN (accessed on 5 April 2023).
- Cerecedo-Sáenz, E.; Cárdenas-Reyes, E.A.; Rojas-Calva, A.H.; Reyes-Valderrama, M.I.; Rodríguez-Lugo, V.; Toro, N.; Gálvez, E.; Acevedo-Sandoval, O.A.; Hernández-ávila, J.; Salinas-Rodríguez, E. Use of the O2-thiosemicarbazide system, for the leaching of: Gold and copper from WEEE & silver contained in mining wastes. Materials 2021, 14, 7329. [Google Scholar] [CrossRef]
- Salinas-Rodríguez, E.; Hernández-ávila, J.; Cerecedo-Sáenz, E.; Arenas-Flores, A.; Veloz-Rodríguez, M.A.; Toro, N.; Gutiérrez-Amador, M.D.P.; Acevedo-Sandoval, O.A. Leaching of Copper Contained in Waste Printed Circuit Boards, Using the Thiosulfate—Oxygen System: A Kinetic Approach. Materials 2022, 15, 2354. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.Z.; Yang, Y.B.; Huang, Z.C. Influence of copper minerals on cyanide leaching of gold. J. Cent. South Univ. Technol. 2001, 8, 24–28. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J. The selective leaching of copper from a gold-copper concentrate in glycine solutions. Hydrometallurgy 2014, 150, 14–19. [Google Scholar] [CrossRef]
- Vermeşan, H.; Tiuc, A.E.; Purcar, M. Advanced recovery techniques for waste materials from IT and telecommunication equipment printed circuit boards. Sustainability 2020, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gaustad, G.; Babbitt, C.W.; Bailey, C.; Ganter, M.J.; Landi, B.J. Economic and environmental characterization of an evolving Li-ion battery waste stream. J. Environ. Manag. 2014, 135, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Arduino S.r.l. Available online: https://store.arduino.cc/products/arduino-mega-2560-rev3 (accessed on 5 April 2023).
- Trading Economics. Available online: https://tradingeconomics.com/ (accessed on 2 April 2023).
FR-1 | FR-2 | FR-3 | FR-4 | |
---|---|---|---|---|
Materials | Paper and phenol-formaldehyde resin. | Paper with a plasticized phenol formaldehyde resin. | Cotton linter/alpha cellulose paper with epoxy resin formulation. | Woven/Unwoven fiber-glass cloth with epoxy resin. |
Glass Transition Temperature | 130 °C | 130 °C | 130 °C | 140–170 °C |
Chemical resistance | Low | Low | Medium | High |
Base Metals Content (wt%) | Precious Metals Content (ppm) | ||
---|---|---|---|
Cu | 3–40 | Au | 250–2050 |
Al | 0.2–14 | Ag | 110–4500 |
Sn | 0.6–8.8 | Pd | 50–4000 |
Fe | 1.2–8 | Pt | 5–30 |
Pb | 1–4.2 | Co | 1–4000 |
Zn | 0.04–6 | ||
Ni | 0–5.4 |
N. | Name | Image | Method |
---|---|---|---|
1 | Board | Size reduction + AR | |
2 | External pin | AR | |
3 | USB-B port | AR | |
4 | DC power jack | AR | |
5 | Internal pin | AR | |
6 | ICC 1 | Size reduction + AR | |
7 | Capacitors | Size reduction + AR | |
8 | Q.C. Oscillator | AR | |
9 | Push button | AR | |
10 | Voltage regulator | Size reduction + AR | |
11 | M7 Diode | AR | |
12 | Fuse | AR | |
13 | Led | AR | |
14 | MLCC | Size reduction, Calcination at 350 °C with KOH + DL | |
15 | Transistor | AR | |
16 | Plastic cover | - | |
17 | Other 2 | - | AR |
Metal | q (EUR/kg) | Metal | q (EUR/kg) |
---|---|---|---|
Au | 58,251.97 € | Si | 9.00 € |
Pd | 43,196.81 € | Cu | 8.29 € |
Pt | 29,940.00 € | Ti | 7.53 € |
Ag | 712.51 € | Mg | 2.82 € |
Ga | 535.43 € | Zn | 2.68 € |
Ba | 347.28 € | Al | 2.23 € |
Co | 27.34 € | Fe | 0.23 € |
Sn | 23.84 € | Mn | 0.004 € |
Ni | 21.76 € |
Ag | Al | Au | Ba | Co | Cu | Fe | Ga | Mg | Mn | Ni | Pd | Pt | Si | Sn | Ti | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Board | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||
External pin | x | x | x | x | x | x | x | ||||||||||
USB-B port | x | x | x | x | x | x | x | ||||||||||
DC power jack | x | x | x | x | x | x | x | x | x | x | |||||||
Internal pin | x | x | x | x | x | x | x | ||||||||||
ICC | x | x | x | x | x | x | x | x | x | ||||||||
Capacitors | x | x | x | x | x | x | x | x | x | ||||||||
Q.C. Oscillator | x | x | x | x | x | x | x | x | x | x | |||||||
Push button | x | x | x | x | x | x | x | x | x | x | |||||||
V. Regulator | x | x | x | x | x | x | x | x | x | ||||||||
M7 Diode | x | x | x | x | x | x | |||||||||||
Fuse | x | x | x | x | x | x | x | x | |||||||||
Led | x | x | x | x | x | x | x | x | x | x | |||||||
MLCC | x | x | x | x | x | x | x | x | x | x | x | ||||||
Transistor | x | x | x | x | x | x | x | ||||||||||
Plastic cover | |||||||||||||||||
Other | x | x | x | x | x | x | x | x | x | x |
Weight (g) | Plastic (g) | Base Metals (wt%) | Precious Metals (ppm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Sn | Ni | Al | Zn | Fe | Ti | Ag | Au | Pd | |||
Board | 20.251 | n.a. | 15.09 | 3.36 | - | - | 0.36 | - | - | 350 | 2 | 15 |
External pin | 7.929 | 5.505 | 56.95 | 9.56 | 1.00 | - | 25.84 | - | - | 642 | 107 | 45 |
USB-B port | 3.406 | 1.531 | 63.11 | 4.82 | 0.07 | - | 25.81 | - | - | 403 | 5 | 50 |
DC power jack | 1.329 | 0.685 | 48.57 | 7.03 | 0.24 | - | 25.53 | 19.07 | - | 811 | - | 45 |
Internal pin | 0.800 | 0.190 | 58.40 | 12.41 | 1.02 | - | 28.99 | - | - | 975 | 63 | 59 |
ICC | 0.629 | - | 28.75 | 3.19 | - | - | 0.17 | 1.67 | - | 639 | 191 | 34 |
Capacitors | 0.541 | - | 0.41 | 0.27 | - | 37.76 | 0.01 | 59.50 | - | 59 | - | - |
Q. C. Oscillator | 0.503 | - | 9.26 | 0.05 | 0.01 | - | 5.36 | 14.21 | - | 905 | - | 2 |
Push button | 0.197 | - | 13.85 | 0.87 | - | 0.05 | 7.12 | 0.60 | - | 403 | - | 18 |
V. Regulator | 0.129 | - | 42.80 | 2.96 | - | - | 0.29 | 0.02 | - | 3754 | - | 58 |
M7 Diode | 0.065 | - | 33.95 | 4.26 | - | - | 0.21 | - | - | 1374 | - | 47 |
Fuse | 0.028 | - | 38.41 | 9.38 | 0.67 | 0.49 | 0.24 | - | - | 2801 | 727 | 53 |
Led | 0.003 | - | 24.47 | 8.08 | 4.97 | 2.11 | 0.34 | 0.19 | - | 2097 | 1774 | 161 |
CMC | 0.164 | - | 9.63 | 6.07 | - | - | 0.40 | - | 15.72 | 13,335 | 104 | 162 |
Transistor | 0.093 | - | 3.46 | 5.46 | - | - | 0.04 | - | - | 2032 | 581 | - |
Plastic cover | 15.230 | 15.230 | - | - | - | - | - | - | - | - | - | - |
Other | 0.115 | - | 3.42 | 8.31 | - | - | 0.05 | - | 0.48 | 1813 | 52 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, P.; Ippolito, N.M.; Vegliò, F. Chemical Characterization of an ARDUINO® Board and Its Surface Mount Devices for the Evaluation of Their Intrinsic Economic Value. Processes 2023, 11, 1911. https://doi.org/10.3390/pr11071911
Romano P, Ippolito NM, Vegliò F. Chemical Characterization of an ARDUINO® Board and Its Surface Mount Devices for the Evaluation of Their Intrinsic Economic Value. Processes. 2023; 11(7):1911. https://doi.org/10.3390/pr11071911
Chicago/Turabian StyleRomano, Pietro, Nicolò Maria Ippolito, and Francesco Vegliò. 2023. "Chemical Characterization of an ARDUINO® Board and Its Surface Mount Devices for the Evaluation of Their Intrinsic Economic Value" Processes 11, no. 7: 1911. https://doi.org/10.3390/pr11071911
APA StyleRomano, P., Ippolito, N. M., & Vegliò, F. (2023). Chemical Characterization of an ARDUINO® Board and Its Surface Mount Devices for the Evaluation of Their Intrinsic Economic Value. Processes, 11(7), 1911. https://doi.org/10.3390/pr11071911