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Abstract: In offshore drilling, accidents such as gas invasion, overflow, and kicks are unavoidable, and
they can escalate into blowouts and other catastrophic events, resulting in casualties and significant
economic losses. Therefore, ensuring drilling safety requires precise monitoring of gas invasion
and overflow. Currently, most overflow monitoring methods used at drilling sites are based on
threshold criteria. However, the monitoring parameters obtained during actual drilling operations
often contain noise signals, which makes it challenging for threshold-based methods to achieve a
balance between improving accuracy and minimizing false positives. This paper proposes a novel
method called Pattern-Recognition-based Kick Detection (PRKD) for diagnosing overflow in offshore
drilling. The PRKD method utilizes the overflow evolution process by integrating multiphase
flow calculations, data filtering theory, pattern recognition theory, the Bayesian framework, and
other theoretical models. By analyzing the shape and wave characteristics of the curves, PRKD
effectively detects and monitors gas intrusion and overflow based on single parameters. Through
case analysis, it is demonstrated that the proposed method achieves high precision in monitoring
drilling overflow while maintaining a low false positive rate. By combining advanced computational
techniques with pattern recognition algorithms, PRKD improves the accuracy and reliability of kick
detection, enabling proactive responses to potential risks, protecting the environment and human
lives, and optimizing drilling operations. The case analysis shows that by integrating the probabilistic
information of pre-drilling kicks and various characteristic parameters, when the noise amplitude is
less than 8 L/s, the PRKD model exhibits superior detection performance. Moreover, when the noise
amplitude is 16 L/s, the PRKD model detects the continuous overflow approximately 200 s after
the actual overflow occurs and predicts a 95.8% probability of overflow occurrence at the specified
location, meeting the on-site requirements. The gas invasion monitoring method proposed in this
paper provides accurate diagnostic results and a low false positive rate, offering valuable guidance
for gas invasion monitoring in drilling operations.

Keywords: offshore drilling; overflow; kick; gas invasion; pattern recognition; threshold method

1. Introduction

In the process of offshore drilling, if gas invasion and overflow are not detected in
time, a blowout can rapidly occur. Blowouts are often the most dangerous of the numerous
drilling accidents. To accomplish safe and efficient drilling, reduce downhole accidents,
and lower drilling costs, it is necessary to excel at early monitoring, early detection, and
early treatment of overflow [1–5]. In terms of theory, there are currently two types of
overflow detection techniques used in deepwater drilling: the threshold method and
predictive systems. The threshold method involves establishing a threshold value for the
identifying parameters detected during the kick process. When the detection parameter
exceeds the specified value, an alarm activates and a kick will be detected. For instance, if
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the increment of the mud pool is 1 m3, when the judged kick occurs under a certain working
condition, if the increment is less than 1 m3, the drilling is considered normal, while, if
the increment is greater than 1 m3, overflow is considered to have occurred [6–8]. Maus
L.D. et al. [9] pointed out that the incremental monitoring of the mud pit can be used as a
parameter for gas invasion monitoring. The mud pit increment is the result of integrating
the difference between inflow and outflow rates over time. J.M. Speers and G.F. Gehrig [10]
proposed a system for monitoring wellbore influx or losses during drilling using flow rate
differentials. B.T. Anfinsen et al. [11] reported that although the sensitivity of mud pit
increment monitoring to gas invasion is controversial, it can detect the infiltration of fluids
even at very low flow rates. D. Fraser et al. [12] proposed two major parameters related to
wellbore influx. The first parameter is the Kick Detection Volume (KDV), which represents
the volume of invaded formation fluid before the wellbore influx is identified. The second
parameter is the Kick Response Time (KRT), which refers to the time required for well
control operations once the wellbore influx is detected. Nayeem A.A. et al. [13] introduced
a method for monitoring wellbore influx based on changes in downhole parameters such
as mass flow rate, pressure, density, and drilling fluid conductivity. The major advantage
of this method is its short detection time and quick response to wellbore influx. It allows
for rapid identification of influx events, enabling timely well control actions.

The second method is the simulation prediction method, which simulates the “theoret-
ical value” of the overflow characteristic parameters under normal conditions (no overflow)
in real time using computer software. If the “measured value” exceeds a predetermined
threshold of the “theoretical value” during the drilling process, it is considered an over-
flow [14–16]. Moreover, there are additional overflow diagnosis methods, such as the
BP neural network method and the probabilistic analysis method, but their applications
are limited. Liao Mingyan et al. [17] developed a drilling process state monitoring and
fault diagnosis method based on a BP neural network model. This method focused on
six parameters: drilling pressure, pump pressure, pump rate, rotary speed, torque, and
drilling speed. The neural network model possesses fault tolerance, self-learning, and
adaptive capabilities, allowing it to simulate complex nonlinear mappings and process data
in parallel with high real-time performance. However, neural networks often require many
training samples to achieve optimal performance. Roar et al. [18] combined theoretical
flow models with artificial intelligence techniques to identify hidden patterns in time-series
data and address limitations in physical models, thereby reducing false alarm rates. David
Hargreaves et al. [19] addressed the limitations of the threshold method and proposed
a new approach for wellbore influx diagnosis based on pattern recognition theory and
Bayesian discrimination. This method utilized statistical techniques to handle noise issues
and simulated gas influx and non-influx events to avoid false alarms or missed detections
due to ambiguous data. Pournazari et al. [20] developed a pattern recognition system for
rapid analysis and real-time diagnosis of drilling events using the SAX (Symbolic Aggregate
Approximation) method. This system enables fast and accurate wellbore influx diagnosis.

Although various kick monitoring methods have been proposed, many are unsuitable
for offshore deepwater drilling sites, where wellheads are usually placed on the seabed and
kick detection is necessary to prevent gas from entering the riser. Common kick monitoring
techniques, such as the flow back velocity method, mud pool increment method, etc., rely
on the volume expansion of gas in the invading wellbore. Under high-pressure conditions
in the wellbore, natural gas has a high solubility and density in the drilling fluid, as well
as a small volume after invasion, making it difficult to locate. Simultaneously, deepwater
drilling conditions are complex, the fluctuation range of kick monitoring parameters is
large, and the noise level is high. The traditional discriminant technique based on the
threshold value method has low kick diagnosis accuracy and a high false positive rate,
which poses significant difficulties for the early monitoring of the deep kick [21,22].

Currently, the threshold method is widely used for kick monitoring in the drilling field.
However, the monitoring parameters collected during actual drilling processes often con-
tain significant noise signals, making it challenging to achieve a balance between accuracy
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improvement and reducing false positives based solely on threshold judgment. To address
this issue, this study proposes a novel and reliable kick monitoring method called PRKD
(Pattern-Recognition-based Kick Detection) for offshore drilling. PRKD is established by
integrating multiphase flow calculations, data filtering theory, pattern recognition theory,
and the Bayesian framework. It focuses on a single-parameter gas intrusion monitoring
approach, utilizing the time series of kick monitoring parameters as the research object.
By combining the single-parameter process identification and diagnosis mechanism with
pattern recognition techniques, PRKD offers an innovative solution for kick detection and
has several advantages: (1) Maintaining accuracy in kick diagnosis while reducing false
positives: PRKD ensures the accuracy of kick detection while minimizing the occurrence
of false alarms. Real-time data matching enables early identification of kicks, allowing
proactive measures to be implemented promptly. (2) Minimizing the impact of data noise
on judgment results: The PRKD method incorporates data filtering techniques to mitigate
the effects of noise signals present in the monitoring parameters. This helps in achieving
more reliable and accurate kick detection. (3) Acquiring basic kick patterns from multiple
sources: The PRKD method allows for obtaining basic kick patterns from various channels,
reducing the dependence on the accuracy of computational software results. These patterns
can be continuously updated in real time and can be customized based on the experience
and expertise of technical personnel. (4) Utilizing multiple available data sources: By
integrating various data sources, PRKD achieves probabilistic output results, enhancing the
overall accuracy of kick detection. This comprehensive approach improves the reliability of
the monitoring system. (5) Potential for inferring additional kick information: The PRKD
method has the capability to infer other relevant kick information beyond basic detection.
This further expands the scope of kick monitoring and provides a more comprehensive
understanding of the drilling process. By incorporating sophisticated computational tech-
niques and pattern recognition algorithms, PRKD significantly enhances the reliability and
accuracy of kick detection. This empowers drilling operations with the ability to proac-
tively implement measures to mitigate potential risks, safeguard the environment, and
protect human lives. The integration of PRKD into drilling practices optimizes operational
efficiency while ensuring the safety and well-being of all involved parties.

2. The Basic Overflow Pattern

In the PRKD method, the “ruler” used to assess overflow events is a pattern or trend
of change rather than a single threshold. In the past, it was believed that an increase in
the outlet flow rate indicated a possible overflow event, but, an increase in the outlet flow
rate could also be caused by starting the pump. If a threshold is used to make decisions,
it is challenging to differentiate between overflow events and pump start events. In fact,
both overflow and pump start events can increase the outlet flow rate, but their “trends”
of change are different. During overflow, the outlet flow rate increases linearly, whereas
it increases abruptly and then maintains a specific value during pump start. Similarly,
traditional methods focus on “increasing to a certain specific value” for the basic event of
“the outlet flow rate increase”, whereas the PRKD method is concerned with “what the
trend the increase follows, linear increase or sudden change”.

Using change trends as the basic element has the following three advantages:

(1) Reduces the number of false alarms. The use of a threshold value alone cannot
distinguish excess events from similar events.

(2) Significantly decreases the dependence on the accuracy of calculation software. To
achieve high calculation accuracy, it is necessary to precisely describe the physical
processes and calculation parameters, and even a minor deviation can result in signifi-
cant errors, which is frequently challenging in deepwater drilling environments. For
instance, when the friction coefficient is 0.001 and 0.0011, the calculated value of the
bottom hole pressure will result in significant errors, but the influence of the changing
trend of the calculated value of the bottom hole pressure can be neglected.
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(3) Other stratigraphic information can be retrieved. For example, the increment pressure
and mud pool increment trend can be utilized to retrieve formation pressure data.
The gas invasion process is like the unstable well test process. Therefore, stratigraphic
information can be represented based on the change in gas invasion response pa-
rameters (standpipe pressure (SPP), outlet flow rate, mud pool increment, etc.), thus
realizing stratigraphic information inversion before shut-in, which plays an important
role in the density design of kill fluid.

The basic pattern can be obtained through various channels. If the drilling block
contains a large amount of geological history data of the stratigraphic profile, the basic
overflow pattern can be determined by fitting the statistical data. If historical data are
limited, the basic overflow pattern can be simulated for the well. In addition, drilling
engineers can establish the basic pattern based on their experience. Furthermore, the
basic overflow pattern can be updated in real time based on the well overflow events that
have occurred.

Theoretically, most overflow characteristic drilling parameters can be depicted by
segmented polynomial functions and sudden change functions. Hargreaves et al. [23]
found that after a wellbore surge occurs, the difference between inlet and outlet flow
rates increases linearly, and the mud increment changes with an increase to a quadratic
polynomial form. Reitsma et al. [24] reported that after a deepwater managed pressure
drilling surge occurs, the casing pressure increases linearly and the pore pressure increases
linearly before decreasing linearly. Based on the results of multiphase flow simulation and
the expertise of experts, the basic patterns of characteristic parameters such as the flow rate
differential, mud pit increment, casing pressure, pore pressure change, and mechanical
drilling speed during wellbore surges and other accidents can be determined, as shown in
Figures 1–4 below.

(1) Flow rate differential
1© Steady State: the flow rate differential remains within a relatively stable range,

indicating a balanced flow of drilling fluid entering the wellbore and returning
to the surface.

2© Kick State: the flow rate differential increases as a larger volume of gas returns
to the surface through the wellbore.

3© Pump on State: the flow rate differential increases as a large volume of mud is
injected into the wellbore.

4© Loss State: the flow rate differential decreases as some drilling fluids are
absorbed or leaked into the formation.

(2) Mud Pit Increment
1© Steady State: The mud pit increment is maintained within an appropriate

range to replenish the drilling fluid consumed during the drilling process.
Without mud replenishment, the mud pit increment will decrease as drilling
fluid is consumed.

2© Kick State: the mud pit increment increases to compensate for the decrease in
mud volume due to gas invasion

3© Pump on State: the mud pit increment decreases to accommodate the addi-
tional mud volume pumped into the wellbore.

4© Loss State: the mud pit increment decreases to compensate for the lost drilling fluid.

(3) Casing Pressure (CP) and Standpipe Pressure (SPP) Changes
1© Steady State: casing pressure and standpipe pressure changes are minimal,

indicating no abnormal influx or pressure variations.
2© Kick State: CP and SPP changes increase due to the added pressure from gas

influx. As well control measures are implemented, the SPP is expected to
decrease, while the CP is expected to further increase.

3© Pump on State: CP and SPP changes may increase instantaneously as the
wellbore pressure rises due to the large volume of mud injection.
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4© Loss State: CP and SPP changes decrease due to the pressure loss in the
wellbore caused by losses.

(4) Rate of Penetration (ROP) Changes
1© Steady State: the ROP remains relatively stable, ensuring good drilling progress.
2© Kick State: If the density of the drilling fluid is not adjusted promptly when

gas kick, it can lead to a decrease in the bottom hole pressure compared to the
formation pressure or a reduction in the positive pressure difference between
the bottom hole pressure and formation pressure, resulting in an increase in
the ROP.

3© Pump on State: When pump on operations begin, the increased flow rate of
drilling fluid circulating through the drill string can enhance the hydraulic
horsepower at the bit. This can result in an increased bit penetration rate and,
therefore, an accelerated ROP.

4© Loss State: When drilling fluid is lost to the formation, it reduces the hydro-
static pressure exerted by the drilling fluid column. As a result, the effective
weight on the bit decreases, leading to a decrease in the ROP.
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3. The Principle of Data Processing and Filtering

The objective of data processing and filtration is to eliminate data noise without
distorting the overall trend. The processing of overflow characteristic data begins with
data normalization to reflect the data trend to the maximum extent, followed by Kalman
filtering to determine the data noise.

Kalman filtering is a recursive estimation algorithm introduced by Kalman, which
introduces the state space model into filtering theory and derives a set of recursive estima-
tion algorithms to overcome the drawback that previous filtering theories cannot make
unlimited use of past data and are not suitable for real-time processing. Kalman filtering
seeks a set of recursive estimation algorithms based on the best criterion of minimum mean
square error. Additionally, it has been documented in the field of overflow detection. The
two main equations are the discrete state equation and the observation equation [25].

X(K) = F(k, k− 1)× X(K− 1) + T(K, K− 1)×U(K− 1) (1)

Y(K) = H(k)× X(K) + N(K) (2)

where X(K) and Y(K) are the state vector and observation vector, respectively, at time k, F(k,
k − 1) is the state transition matrix, U(K) is the dynamic noise at time k, T(K, K − 1) is the
system control matrix, H(k) is the observation matrix at time k, and N(K) is the observation
noise at time k.

For each surge characteristic parameter, the data processing and filtering process is as
follows [26]:

Step 1: Data normalization Y(k)

Y(K) = (Y(k)−Ymin)/(Ymax −Ymin) (3)
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Step 2: Calculate the predicted covariance matrix

C(k)∧ = F(k, k− 1)× C(k)× F(k, k− 1)′ + T(k, k− 1)×Q(k)× T(k, k− 1)′ (4)

Q(k)∧ = U(k)×U(k)′ (5)

Step 3: Calculate the Kalman gain matrix

K(k) = C(k)∧ × H(k)∧ ×
[

H(k)× C(k)′ × H(k)′ + R(k)
]−1

(6)

R(k) = N(k)× N(k)1 (7)

Step 4: Estimate update

X(k)∼ = X(k)∧ + K(k)×
[
Y(k)− H(k)× K(k)∧

]
(8)

Step 5: Calculate the updated estimated covariance matrix

C(k)∼ = [I − K(k)× H(k)]× C(k)∧ × [I − K(k)× H(k)]′ + K(k)× R(k)× K(k)′ (9)

Step 6: Set parameters and repeat steps 2–6.

X(k + 1) = X(k)∼ (10)

C(k + 1) = C(k)∼ (11)

Using flow wave data as an example, the data curve before and after filtering is
compared, as shown in Figures 5 and 6.
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4. Pattern Recognition Representation Methods

Pattern recognition in the PRKD method consists of comparing the measured character-
istic parameter vector to the basic overflow pattern and measuring the degree of similarity.
In contrast to common function fitting, the challenge here is to avoid “entanglement” in
the change in specific values and to select the changing trend and turning point as the
characteristic parameters. Figure 7 depicts the measured flow variation of the drilling inlet
and outlet. Despite the large difference between the two curves at different times A and B,
the matching degree between the two curves and the overflow mode in the PRKD method
should be 100%.
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4.1. Pattern Classification

The difficulty in pattern classification lies in the extraction and matching of feature
vectors. A feature vector is a group of observed or preliminary calculated characteristic
values that serves as the basis for pattern classification. The basic overflow mode in the
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PRKD method is primarily composed of a piecework polynomial function or mutation
function, and the feature vector of any basic mode is as follows:

Vector = (Kall , m, x1, k1, x2, k2, . . . , xm−1, km−1, km) (12)

where Kall is the overall change trend of the curve; m is the turning point of the curve;
xi(i = 1, 2, . . . , m− 1) is the position of the segment point in the pattern; and ki(i = 1, 2, . . . , m)
is the trend change of the curve in paragraph i.

In the basic overflow mode, the “kick” event against the increment of the mud pool is
taken, as an example, as m = 1, and the feature vector is:

Vector = (Kall , 1, x1, k1, k2) (13)

Kall decreases first and then increases, going from a negative value to a positive value;
m represents the number of inflection points in the curve; x1 approximates the time of
occurrence of overflow, which is the position of the curve’s inflection points; k1 represents
a linear change trend with a negative slope; and k2 represents a quadratic polynomial
function with a slope that transitions from negative to positive.

Another crucial advantage of the PRKD method is that feature vectors in pattern
recognition can invert the kick information. Similarly, taking the “kick” event of the
increment of the mud pool as an example, x1 and k2 can reflect the beginning of the
overflow moment and the overflow velocity. The kick process and formation information
can be retrieved by combining other characteristic changes.

4.2. Optimal Matching Algorithm

The PRKD method’s pattern recognition bases its success on identifying the optimal
solution. The fundamental concept is to arrange all possible combinations into a tree in
a specific order and then search along the tree to avoid superfluous calculations, thereby
ensuring that the algorithm is efficient, fast, and capable of real-time data processing. The
process of building an algorithm involves the following parameters and operations:

(1) The root node is all features (level 0), one feature is discarded on each node, and each
leaf node represents a variety of selection combinations. In the PRKD method, the
first-level leaf node is the segment number, the second-level leaf node is the curve
information of each segment, and so on, as shown in Figure 8.

(2) Record the maximum criterion function value of the currently searched leaf nodes and
set the initial value to 0 in order to avoid the same combination of branches and leaves
in the entire tree. In the PRKD method, the matching degree of each combination
must be recorded.

(3) P is defined as the value of the real-time matching degree. At each level, the feature
that is least likely to be discarded is placed on the leftmost side, and the search starts
from the right side. In the PRKD method, from left to right, each leaf node is xi, K, the
change in K, and function value.

(4) If the left level of the abandoned feature is not below this node, search for the leaf
node, update the value of Pmax, and then go back to the previous branch.

(5) If P < Pmax on the node, then do not search down, but instead retrace upwards. Each
retrace will put back the abandoned feature (put it back on the list to be discarded). If
the process has retraced to the top (root) and cannot search further down, then the
leaf node of P = Pmax is the solution.

Based on steps A to E, the optimal search algorithm is formulated, and the optimal
solution is searched based on various basic modes.

4.3. Measures of Pattern Matching Degree

The PRKD method must also address the problem of quantifying the degree of match
between the optimal solution and the basic mode. In the similarity measurement based on
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time series, Euclidean distance is the most basic measurement method. The advantage of
Euclidean distance is that it can represent the matching degree of a curve value based on
wave amplitude; however, its ability to recognize sequence shape is poor, and it is easily
disturbed by noise information.
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Figure 8. Schematic diagram of the pattern matching method.

Regarding morphological feature matching, several studies based on radian distance,
slope distance, morphological features, similarity, and other aspects have been conducted.
In this paper, the improved slope distance concept is proposed for measuring the matching
degree of the curve shape. The matching degree of the final model should be based on the
fluctuation amplitude, change trend, and time span. The matching degree measurement
standard is the product of the Euclidean distance and the improved slope distance.

It is assumed that the time series S of wellbore detection characteristic parameters is:

S = {(y0, y1, t1), (y1, y2, t2), . . . , (yi−1, yi, ti), . . . , (yn−1, yn, tn)} (14)

S = {(k1, t1), (k2, t2), . . . , (ki, ti), . . . , (kn, tn)} (15)

where (yi−1, yi, ti) is each segment; yi−1 is the starting point of the segment; yi is the
segmented endpoint; ti is the initial moment of the segment; and ki is the slope of the
segment.

Thus, the Euclidean distance of each parameter value of the time series S and another
series S’ is:

Do
(
S, S′

)
= sqrt

[
∑n

i=1

(
yi − y′i

)2
]

(16)

Obviously, Euclidean distance can reflect the amplitude of fluctuation between two
sequences. Similarly, the slope distance between two sequences is:

Dk
(
S, S′

)
=
∣∣∣∑n

i=1 ∆ti
(
ki − k′i

)
/tn

∣∣∣ (17)

The slope distance Dk has effective anti-noise properties and can intuitively describe
the trend of sequence changes. In fact, in addition to a trend change, the time span
should also be considered when determining morphological similarity; therefore, this
paper proposes an improved slope distance based on time weighting:

DKM
(
S, S′

)
=
∣∣∣∑n

i=1 ∆tiWi
(
ki − k′i

)∣∣∣ (18)

Wi =
(Di − Dmin)× a

Dmax − Dmin
+ (1− a) (19)
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where Wi ∈ [a, 1] is the time weighting of paragraph i, Wi ∈ [a, 1], a ∈ [0.1, 1] and Di =
max(|yi−1 − yi−1

′|, |yi − yi
′|) is the fluctuation value.

Based on the fluctuation amplitude, change trend, and time span, this paper proposes
that the distance between the monitoring data in the PRKD method and the optimal
solution is:

Cr = DO × DKM (20)

Based on this, the similarity probability between the optimal solution of an event
and the basic mode should be inversely proportional to the distance Cr, and the similar
probability vector of the basic mode can be written as:

[P1, P2, . . . , PM] =

[
1
c1

r
/∑M

i=1

(
1
ci

r

)
,

1
c2

r
/∑M

i=1

(
1
ci

r

)
, . . . ,

1
cM

r
/∑M

i=1

(
1
ci

r

)]
(21)

where M represents the type of basic mode. For example, there are four basic events,
namely, kick, state, pump on, and loss, aiming at the incremental change of the mud pool,
namely, M = 4.

Based on the above pattern matching method, the possible probability of each optimal
solution in Figure 9 can be obtained as follows:[

Pkick, Ppump on, Pstate, Ploss
]
= [74.886, 17.456, 7.657, 0]/100 (22)
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Figure 9. Matching result of the optimal solution of flow wave data.

There is a 71.886% chance of flooding, a 17.456% chance of pumping, a 7.657% chance
of drilling properly, and a zero chance of loss.

5. Bayesian Framework

In this paper, the Bayesian framework is adopted to coordinate the prior information
and likelihood information and realize the output form of the probability. The expression
for the Bayes formula is:

P(Ai|B) =
P(B|Ai)P(Ai)

∑n
i=1 P(B|Ai)P(Ai)

, i = 1, 2, . . . , n (23)

where Ai are different kinds of detection parameters; B is the overflow event; P(Ai) is the
prior probability; and P(B|Ai) is the likelihood function.
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(1) Prior information: Kick prior probability is the kick probability derived from the
uncertain profile of formation pressure. Prior probabilities for other events, such
as state events and pump on events, can be obtained from statistics. If the prior
information of each parameter is missing, its influence is neglected.

(2) Likelihood function: the similarity measure between kick characteristic data and the
basic model of overflow, which is obtained by multiplying the PRKD model results
with the weight vector of overflow characteristic parameters.

(3) Posteriori probability: posteriori probability is proportional to the product of prior
probability and the likelihood function, and can be obtained by normalization on
this basis.

6. Case Analysis

The monitoring data that were obtained in a well kick event, including the inlet/outlet
flow differential, mud pool increment, Stand Pipe Pressure (SPP), casing pressure (CP), and
Rate of Penetration (ROP) data, were applied, as shown in Figure 10. The PRKD model
was used to diagnose the overflow without taking the prior information of each parameter
into account, and the rule of the calculated results was analyzed.
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Figure 10. Change in kick characteristic parameters before and after 0–600 s overflow.

The range of real-time data automatically processed by the PRKD model can be set
manually, but too much data will affect the computing speed, and too little data will not
accurately reflect the overflow process. In consideration of the duration of the general
overflow process, the calculation process time range was set to 10 min; thus, the PRKD
model automatically collected data from the previous 10 min for real-time diagnosis.

6.1. Basic Pattern Matching Results

Figures 11–14 show the results of data mode matching for outlet flow difference, mud
pool increment, SPP, and ROP at different times. As depicted in the figures, the PRKD
model can automatically match the changing trend of each detection parameter based
on the evolution process of overflow, and can automatically identify overflow and other
working conditions with a high degree of accuracy. Using the optimal matching result of
mud pool increment as an example, the matching result is the normal drilling mode at 200 s
and 400 s. At 600 s, the matching result is overflow mode.
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Different overflow monitoring parameters have different sensitivities to the overflow
evolution process, so the pattern recognition results at different times may vary. Taking the
flow difference and mud pool increment data in this example as an example, at 400 s, the
matching result of flow difference data is overflow, while the matching result of mud pool
increment is no overflow. Obviously, the former diagnosis is timelier, which is consistent
with standard drilling practices.

6.2. Overflow Probability Analysis

Figure 15 illustrates the analysis curve for overflow probability based on kick char-
acteristic parameters. As shown in the figure, the probability of overflow diagnosis for
each parameter increases progressively with increasing time. In this case, the overflow
“trend” is diagnosed by ROP, flow differential, pressure, and mud pool increment, in
descending order.
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Although the PRKD method can reduce the impact of data noise to the maximum
extent possible, the probability result of a single type of detection data will still be disturbed
by noise, making it challenging to propose a “threshold probability” applicable to all
conditions for a single type of data. In general, the larger the level of data noise, the
smaller the probability (lower threshold probability) of successfully judging overflow. The
comprehensive probability of various available types of data can reduce the impact of data
noise from a single type of detection data. Therefore, “comprehensive diagnosis probability
of more than 50%” is adopted as the overflow judgment standard in this paper. This means
that by integrating all available data, if the probability of an overflow is greater than the
probability of all other modes, it is judged to be an overflow. If only a single type of data is
available, 50% is also recommended as the “overflow threshold probability”, but should be
appropriately modified according to data noise. In the figure, the time when the combined
probability is equal to 50%—the time when overflow is detected—is approximately 465 s.

6.3. Comparison with Traditional Methods

(1) Comparison of result accuracy

Inlet and outlet flow difference data is the most used type of overflow monitoring
data. Figure 16 shows a comparison between the diagnostic results of the traditional
threshold method for traffic difference data and the PRKD model. As shown in the figure,
the traditional threshold method has low diagnostic accuracy and a high false positive rate
when applied to the example data, whereas the PRKD model yields superior diagnostic
results. When the threshold value is 10 L/s and 15 L/s, the false positive rate of the
diagnosis results of the threshold method is very high in 0–400 s. When the threshold value
is 20 L/s, the diagnostic results of the threshold method are discontinuous and have a
low degree of accuracy. The figure depicts overflow at 460 s and non-overflow at 470 s.
Compared with the threshold method, the PRKD model found overflow at 465 s, and in the
form of probabilities, which can provide additional reference information for engineers.
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(2) The influence of data noise

Figure 17 illustrates the results of applying noise with amplitudes of 1, 2, 4, 8, and
16 L/s to the standard overflow mode data in order to investigate the impact of different
levels of data noise on the PRKD model. The probability curve of kick diagnosis with the
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PRKD method under different noise levels is shown in Figure 18. According to the standard
overflow mode data, the overflow occurred at a time of 300 s. With the increase in noise
intensity, the time of overflow diagnosis was gradually extended. In this case, the PRKD
model with a noise amplitude of less than 8 L/s has superior detection performance. When
the noise amplitude is 16 L/s, the PRKD model detects the continuous overflow time ap-
proximately 200 s after the real overflow, which satisfies engineering practice requirements.
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Figure 18. Kick probability distribution curves of the PRKD method under different noise levels.

6.4. Bayesian Probability Analysis

The case data are as follows: The calculated pre-drilling kick probability is 84.56%
when the drilling depth is 3500 m. The relative prior probabilities of state, pump on, and
loss events are assumed to be 91%, 7%, and 2%, respectively, based on field experience.
The available data are flow differential data, mud pool increment data, pressure data, and
ROP data.
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(1) Prior probability: basic events can be divided into overflow events and non-overflow
events, which can be obtained according to pre-drilling kick probability calculation
and prior data:[

Pkick, Pstate, Ppump on, Ploss
]

prior = [84.560%, 14.046%, 1.175%, 0.219%] (24)

(2) Likelihood function: the PRKD method is used to obtain the likelihood probability of
each overflow characteristic parameter:[

Pkick, Pstate, Ppump on, Ploss
]delt f low

likehood = [62.506%, 25.414%, 12.080%, 0.000%] (25)

[
Pkick, Pstate, Ppump on, Ploss

]pit gain
likehood = [97.8%, 2.200%, 0.000%, 0.000%] (26)

[
Pkick, Pstate, Ppump on, Ploss

]SPP
likehood = [78.900%, 17.750%, 3.350%, 0.000%] (27)

[
Pkick, Pstate, Ppump on, Ploss

]ADP
likehood = [74.300%, 21.290%, 4.410%, 0.000%] (28)

[
Pkick, Pstate, Ppump on, Ploss

]ROP
likehood = [82.400%, 4.900%, 12.700%, 0.000%] (29)

The normalized weight vector of flow difference data, mud pool increment data, pres-
sure data, and ROP data is obtained by using the method of middle hierarchical analysis:

w = [0.5104, 0.2574, 0.1276, 0.0645, 0.0401] (30)

By synthesizing all overflow parameters, the overflow likelihood function vector is:

[
Pkick, Pstate, Ppump on, Ploss

]
likehood =

5
∑

i=1
wi
[
Pkick, Pstate, Ppump on, Ploss

]i
likehood

= [0.7538, 0.1715, 0.0747, 0.0000]

(31)

(3) Posterior distribution:

[
Pkick, Pstate, Ppump on, Ploss

]
posterior =

[
Pkick, Pstate, Ppump on, Ploss

]
prior ×

[
Pkick, Pstate, Ppump on, Ploss

]
likehood

= [0.9580, 0.0408, 0.0012, 0.0000]
(32)

Therefore, the overflow probability at this location is 95.8% when the pre-drilling kick
probability information and the PRKD prediction results of each characteristic parameter
are combined.

7. Conclusions

(1) A single-parameter gas intrusion monitoring method for offshore drilling called PRKD
based on pattern recognition is established by combining multiphase flow calcula-
tions, data filtering theory, pattern recognition theory, and the Bayesian framework.
By integrating sophisticated computational techniques with pattern recognition algo-
rithms, PRKD enhances the reliability and precision of kick detection. This enables
the implementation of proactive measures to mitigate potential risks, protecting the
environment and human lives while optimizing drilling operations.

(2) Although the PRKD method can minimize the impact of data noise to the maximum
extent possible, the probability result obtained from a single type of detection data
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will still be disturbed by noise. Combining the comprehensive probability of various
available types of data and adopting “comprehensive diagnosis probability over 50%”
as the overflow judgment standard, can meet the requirements of engineering practice.

(3) The traditional threshold method has low accuracy and a high false positive rate in
diagnosing kicks, while the PRKD model shows better diagnostic results in the chosen
case study. When the threshold value is set at 10 L/s, the threshold method has a high
false positive rate in the range of 0 to 400 s. When the threshold value is set at 10 and
15 L/s, the threshold method lacks continuity and has low accuracy. For example, at
460 s in the graph, it diagnoses an overflow, while at 470 s it diagnoses a non-overflow.
Compared to the threshold method, the PRKD model detects the overflow at 465 s
and provides the output in the form of probabilities, which can provide engineers
with more reference information.

(4) In the case analysis of standard overflow pattern data, the occurrence of overflow is at
300 s. As the intensity of noise increases, the time at which overflow is diagnosed grad-
ually extends. In this case, the PRKD model performs well when the noise amplitude
is below 8 L/s. Under severe conditions, with a noise amplitude of 16 L/s, the PRKD
model detects continuous overflow approximately 200 s after the actual overflow
occurs (at around 500 s), which meets the requirements of engineering practice.

(5) Based on the case analysis, the PRKD method combines the probabilistic information
of pre-drilling kicks and various characteristic parameters to predict a 95.8% probabil-
ity of overflow occurrence at the specified location, which satisfies the requirements
in the field. The gas invasion monitoring method proposed in this study delivers
accurate diagnostic results with a low false positive rate, thereby providing valuable
guidance for gas invasion monitoring in drilling operations.

(6) Through case studies, it has been observed that the proposed kick monitoring method
in this paper can accurately and rapidly detect the occurrence of well kicks. Ad-
ditionally, this method exhibits good noise resistance and outperforms traditional
threshold-based methods in terms of lower false positive rates and higher monitoring
accuracy. Furthermore, this method is not limited to kick monitoring alone but can
also be applied for real-time monitoring of other drilling conditions such as wellbore
leakage. However, due to the difficulty in obtaining a large amount of field data, the
PRKD kick monitoring model established in this study is still not perfect. Future work
will focus on further improving the PRKD kick monitoring model.
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