Numerical Simulation of Multi-Fracture Propagation Based on the Extended Finite Element Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluid–Solid Coupling Simulation
2.2. The Mathematical Model of Extended Finite Element
2.2.1. Extended Finite Element Method
2.2.2. Fracture Propagation and Extension Criteria Based on Extended Finite Element
2.3. Stress Field Superimposed on Fracture Propagation of Multiple Clusters in Horizontally Oriented Well
3. Model Construction and Validation
3.1. Model Construction
3.2. Model Verification
4. Numerical Simulation Results
4.1. Horizontal Differential Principal Stress
4.2. Perforation Cluster Spacing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zou, J.; Zhang, Y.; Zhang, L.; Jing, J.; Fu, Y.; Wang, Y.; Zhang, G.; Zhou, F. Numerical Simulation Research on the Effect of Artificial Barrier Properties on Fracture Height. Processes 2023, 11, 310. [Google Scholar] [CrossRef]
- Dong, R.; Wang, Q.; Wheeler, M.F. Prediction of Mechanical Stability of Acidizing-Induced Wormholes through Coupled Hydro-Chemo-Mechanical Simulation; OnePetro: Richardson, TX, USA, 2019. [Google Scholar]
- Dong, R.; Alpak, F.O.; Wheeler, M.F. Accurate Two-Phase Flow Simulation in Faulted Reservoirs by Combining Two-Point Flux Approximation and Mimetic Finite Difference Methods. SPE J. 2023, 28, 111–129. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Ma, K.; Zhang, F. Numerical Simulation of Hydraulic Fracturing and Penetration Law in Continental Shale Reservoirs. Processes 2022, 10, 2364. [Google Scholar] [CrossRef]
- Jia, S.; Dai, Z.; Zhou, Z.; Ling, H.; Yang, Z.; Qi, L.; Wang, Z.; Zhang, X.; Thanh, H.V.; Soltanian, M.R. Upscaling Dispersivity for Conservative Solute Transport in Naturally Fractured Media. Water Res. 2023, 235, 119844. [Google Scholar] [CrossRef] [PubMed]
- Rybak, Y.; Khayrutdinov, M.; Kongar-Syuryun, C.; Tyulyayeva, Y. Resource-Saving Technologies for Development of Mineral Deposits. Sustain. Dev. Mt. Territ. 2021, 13, 405–415. [Google Scholar]
- Bosikov, I.I.; Klyuev, R.V.; Mayer, А.V. Comprehensive Assessment of Hydraulic Fracturing Technology Efficiency for Well Construction during Hydrocarbon Production. Записки Гoрнoгo Института 2022, 258, 1006–1013. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, F.; Zhang, Y.; Wang, Y.; Su, H.; Dong, R.; Wang, Q.; Bai, H. Numerical Studies and Analysis on Reaction Characteristics of Limestone and Dolomite in Carbonate Matrix Acidizing. Geoenergy Sci. Eng. 2023, 222, 211452. [Google Scholar] [CrossRef]
- Liu, C.; Cui, J.; Zhang, Z.; Liu, H.; Huang, X.; Zhang, C. The Role of TBM Asymmetric Tail-Grouting on Surface Settlement in Coarse-Grained Soils of Urban Area: Field Tests and FEA Modelling. Tunn. Undergr. Space Technol. 2021, 111, 103857. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Reimus, P.; Ma, F.; Soltanian, M.R.; Xing, B.; Zang, J.; Wang, Y.; Dai, Z. Plutonium Reactive Transport in Fractured Granite: Multi-Species Experiments and Simulations. Water Res. 2022, 224, 119068. [Google Scholar] [CrossRef] [PubMed]
- Bunger, A.P.; Peirce, A.P. Numerical Simulation of Simultaneous Growth of Multiple Interacting Hydraulic Fractures from Horizontal Wells. In Proceedings of the Shale Energy Engineering 2014, Pittsburgh, PA, USA, 21–23 July 2014; American Society of Civil Engineers: Pittsburgh, PA, USA, 2014; pp. 201–210. [Google Scholar]
- Singh, A.; Xu, S.; Zoback, M.; McClure, M. Integrated Analysis of the Coupling between Geomechanics and Operational Parameters to Optimize Hydraulic Fracture Propagation and Proppant Distribution; OnePetro: Richardson, TX, USA, 2019. [Google Scholar]
- Zhu, T.; Ding, H.; Wang, C.; Liu, Y.; Xiao, S.; Yang, G.; Yang, B. Parameters Calibration of the GISSMO Failure Model for SUS301L-MT. Chin. J. Mech. Eng. 2023, 36, 20. [Google Scholar] [CrossRef]
- Roussel, N.P.; Sharma, M.M. Strategies to Minimize Frac Spacing and Stimulate Natural Fractures in Horizontal Completions; OnePetro: Richardson, TX, USA, 2011. [Google Scholar]
- Yu, W.; Sepehrnoori, K. Optimization of Multiple Hydraulically Fractured Horizontal Wells in Unconventional Gas Reservoirs. J. Pet. Eng. 2013, 2013, 151898. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Calvez, J.L.; Thiercelin, M. Characterization of Hydraulically-Induced Fracture Network Using Treatment and Microseismic Data in a Tight-Gas Formation: A Geomechanical Approach; OnePetro: Richardson, TX, USA, 2009. [Google Scholar]
- Abousleiman, Y.; Tran, M.; Hoang, S.; Bobko, C.; Ortega, A.; Ulm, F.-J. Geomechanics Field and Laboratory Characterization of Woodford Shale: The Next Gas Play; OnePetro: Richardson, TX, USA, 2007. [Google Scholar]
- Morrill, J.C.; Miskimins, J.L. Optimizing Hydraulic Fracture Spacing in Unconventional Shales; OnePetro: Richardson, TX, USA, 2012. [Google Scholar]
- Ren, Q.; Dong, Y.; Yu, T. Numerical Modeling of Concrete Hydraulic Fracturing with Extended Finite Element Method. Sci. China Ser. E-Technol. Sci. 2009, 52, 559–565. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, F.; Dai, Z.; Wang, J.; Chen, L.; Ling, H.; Soltanian, M.R. Radionuclide Transport in Multi-Scale Fractured Rocks: A Review. J. Hazard. Mater. 2022, 424, 127550. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Barron, A.R.; Owen, D.R.J.; Li, C.-F. Propagation of a Plane Strain Hydraulic Fracture with a Fluid Lag in Permeable Rock. J. Appl. Mech. 2018, 85, 091003. [Google Scholar] [CrossRef] [Green Version]
- Dong, R.; Wheeler, M.F.; Ma, K.; Su, H. A 3D Acid Transport Model for Acid Fracturing Treatments with Viscous Fingering; OnePetro: Richardson, TX, USA, 2020. [Google Scholar]
- Sneddon, I.N.; Mott, N.F. The Distribution of Stress in the Neighbourhood of a Fracture in an Elastic Solid. Proceedings of the Royal Society of London. Ser. A Math. Phys. Sci. 1997, 187, 229–260. [Google Scholar] [CrossRef]
- Meehan, C.L.; VanBriesen, J.M.; Vahedifard, F.; Yu, X.; Quiroga, C. Shale Energy Engineering 2014; American Society of Civil Engineers: Reston, VA, USA, 2014; ISBN 978-0-7844-1365-4. [Google Scholar]
- Zhang, X.; Jeffrey, R.G. Role of Overpressurized Fluid and Fluid-Driven Fractures in Forming Fracture Networks. J. Geochem. Explor. 2014, 144, 194–207. [Google Scholar] [CrossRef]
- Moës, N.; Dolbow, J.; Belytschko, T. A Finite Element Method for Fracture Growth without Remeshing. Int. J. Numer. Methods Eng. 1999, 46, 131–150. [Google Scholar] [CrossRef]
- Peng, J.; Xu, C.; Dai, B.; Sun, L.; Feng, J.; Huang, Q. Numerical Investigation of Brittleness Effect on Strength and Microcracking Behavior of Crystalline Rock. Int. J. Geomech. 2022, 22, 04022178. [Google Scholar] [CrossRef]
- Wan, B.; Liu, Y.; Zhang, B.; Luo, S.; Wei, L.; Li, L.; He, J. Investigation of the Vertical Propagation Pattern of the 3D Hydraulic Fracture under the Influence of Interlayer Heterogeneity. Processes 2022, 10, 2449. [Google Scholar] [CrossRef]
- Zhu, H.; Deng, J.; Jin, X.; Hu, L.; Luo, B. Hydraulic Fracture Initiation and Propagation from Wellbore with Oriented Perforation. Rock Mech. Rock Eng. 2015, 48, 585–601. [Google Scholar] [CrossRef]
- Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T. Arbitrary Branched and Intersecting Fractures with the Extended Finite Element Method. Int. J. Numer. Methods Eng. 2000, 48, 1741–1760. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Zhang, Y.; Deng, D.; Wu, H. Optimal Spacing of Staged Fracturing in Horizontal Shale-Gas Well. J. Pet. Sci. Eng. 2015, 132, 86–93. [Google Scholar] [CrossRef]
- Haddad, M.; Sepehrnoori, K. XFEM-Based CZM for the Simulation of 3D Multiple-Cluster Hydraulic Fracturing in Quasi-Brittle Shale Formations. Rock Mech. Rock Eng. 2016, 49, 4731–4748. [Google Scholar] [CrossRef]
- Abdullah, E.; Ferrero, J.-F.; Barrau, J.-J.; Mouillet, J.-B. Development of a New Finite Element for Composite Delamination Analysis. Compos. Sci. Technol. 2007, 67, 2208–2218. [Google Scholar] [CrossRef]
- Heidari-Rarani, M.; Sayedain, M. Finite Element Modeling Strategies for 2D and 3D Delamination Propagation in Composite DCB Specimens Using VCCT. CZM and XFEM Approaches. Theor. Appl. Fract. Mech. 2019, 103, 102246. [Google Scholar] [CrossRef]
- Salehi, S.; Nygaard, R. Full Fluid-Solid Cohesive Finite-Element Model to Simulate Near Wellbore Fractures. J. Energy Resour. Technol. 2014, 137, 012903. [Google Scholar] [CrossRef]
- Liu, F.; Gordon, P.A.; Valiveti, D.M. Modeling Competing Hydraulic Fracture Propagation with the Extended Finite Element Method. Acta Geotech. 2018, 13, 243–265. [Google Scholar] [CrossRef]
- Sepehri, J.; Soliman, M.Y.; Morse, S.M. Application of Extended Finite Element Method (XFEM) to Simulate Hydraulic Fracture Propagation from Oriented Perforations; OnePetro: Richardson, TX, USA, 2015. [Google Scholar]
- Wu, K.; Olson, J.E. Simultaneous Multifracture Treatments: Fully Coupled Fluid Flow and Fracture Mechanics for Horizontal Wells. SPE J. 2015, 20, 337–346. [Google Scholar] [CrossRef]
- Wu, R.; Kresse, O.; Weng, X.; Cohen, C.; Gu, H. Modeling of Interaction of Hydraulic Fractures in Complex Fracture Networks; OnePetro: Richardson, TX, USA, 2012. [Google Scholar]
Variables | Unit | Value of Reservoir Rock |
---|---|---|
Young’s modulus | GPa | 15 |
Poisson’s ratio | / | 0.25 |
Permeability coefficient | m/s | 1 × 10−7 |
Initial pore ratio | / | 0.1 |
Filtration loss factor | m/(Pa·s) | 1 × 10−14 |
Tensile strength | MPa | 6 |
Variables | Unit | Value |
---|---|---|
Young’s modulus | psi | 4.35 × 106 |
Poisson’s ratio | / | 0.35 |
Maximum horizontal stress | psi | 6903 |
Minimum horizontal stress | psi | 6773 |
Injection rate | bbl/min | 40 |
Fluid viscosity | cp | 1 |
Distance between initiation points | ft | 33 |
Case | Vertical Stress/ MPa | Minimum Horizontal Principal Stress/MPa | Maximum Horizontal Principal Stress/MPa | Horizontal Principal Stress Difference/MPa | Cluster Spacing/m |
---|---|---|---|---|---|
Case 1 | 15 | 6 | 8 | 2 | 10 |
Case 2 | 15 | 6 | 10 | 4 | 10 |
Case 3 | 15 | 6 | 12 | 6 | 10 |
Case 4 | 15 | 6 | 14 | 8 | 10 |
Case | Vertical Stress /MPa | Minimum Horizontal Principal Stress /MPa | Maximum Horizontal Principal Stress /MPa | Cluster Spacing /m |
---|---|---|---|---|
Case 5 | 15 | 6 | 10 | 6 |
Case 6 | 15 | 6 | 10 | 8 |
Case 7 | 15 | 6 | 10 | 10 |
Case 8 | 15 | 6 | 10 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, Q.; Zhou, X.; Dong, J.; Xu, M.; Ren, D.; Li, R. Numerical Simulation of Multi-Fracture Propagation Based on the Extended Finite Element Method. Processes 2023, 11, 2032. https://doi.org/10.3390/pr11072032
Ran Q, Zhou X, Dong J, Xu M, Ren D, Li R. Numerical Simulation of Multi-Fracture Propagation Based on the Extended Finite Element Method. Processes. 2023; 11(7):2032. https://doi.org/10.3390/pr11072032
Chicago/Turabian StyleRan, Qiquan, Xin Zhou, Jiaxin Dong, Mengya Xu, Dianxing Ren, and Ruibo Li. 2023. "Numerical Simulation of Multi-Fracture Propagation Based on the Extended Finite Element Method" Processes 11, no. 7: 2032. https://doi.org/10.3390/pr11072032
APA StyleRan, Q., Zhou, X., Dong, J., Xu, M., Ren, D., & Li, R. (2023). Numerical Simulation of Multi-Fracture Propagation Based on the Extended Finite Element Method. Processes, 11(7), 2032. https://doi.org/10.3390/pr11072032