A Fast Density Peak Clustering Method for Power Data Security Detection Based on Local Outlier Factors
Abstract
:1. Introduction
2. Related Works
3. FDPC Based on LOF for Power Data Security
3.1. AD of Fast Density Peak
3.2. LOF-Based Fast Density Peak AD
3.3. Power Load Cluster Analysis with Improved LOF
4. Performance Analysis of Power Data Security Detection Based on LOF-CFSFDP
4.1. Analysis of OD Detection Performance
4.2. Performance Analysis of Power Load Clustering
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, L.; Zhang, K.; Xu, H.; Liu, S.; Shi, Y. Abnormal Detection Based on Graph Attention Mechanisms and Transformer. Acta Electonica Sin. 2022, 50, 900–908. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, W.-A.; Guo, F. Distributed Kalman-Like Filtering and Bad Data Detection in the Large-Scale Power System. IEEE Trans. Ind. Inform. 2021, 18, 5096–5104. [Google Scholar] [CrossRef]
- Pei, C.; Zhang, S.; Zeng, X. Research on anomaly detection of wireless data acquisition in power system based on spark. Energy Rep. 2022, 8, 1392–1404. [Google Scholar] [CrossRef]
- Xiahou, K.; Liu, Y.; Wu, Q.H. Decentralized Detection and Mitigation of Multiple False Data Injection Attacks in Multiarea Power Systems. IEEE J. Emerg. Sel. Top. Ind. Electron. 2022, 3, 101–112. [Google Scholar] [CrossRef]
- Dutta, T.; Soni, A.; Gona, P.; Gupta, H.P. Real Testbed for Autonomous Anomaly Detection in Power Grid Using Low-Cost Unmanned Aerial Vehicles and Aerial Imaging. IEEE MultiMedia 2021, 28, 63–74. [Google Scholar] [CrossRef]
- Shao, N.; Chen, Y. Abnormal Data Detection and Identification Method of Distribution Internet of Things Monitoring Terminal Based on Spatiotemporal Correlation. Energies 2022, 15, 2151. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kang, J.; Shim, W.; Chung, H.-S.; Sung, T.-E. Pattern Detection Model Using a Deep Learning Algorithm for Power Data Analysis in Abnormal Conditions. Electronics 2020, 9, 1140. [Google Scholar] [CrossRef]
- Gorjão, L.R.; Jumar, R.; Maass, H.; Hagenmeyer, V.; Yalcin, G.C.; Kruse, J.; Timme, M.; Beck, C.; Witthaut, D.; Schäfer, B. Open database analysis of scaling and spatio-temporal properties of power grid frequencies. Nat. Commun. 2022, 11, 6362. [Google Scholar] [CrossRef]
- Sun, J.; Xu, S.; Li, G. Does China’s power supply chain systems perform well? A data-based path-index meta-frontier analysis. Ind. Manag. Data Syst. 2021, 121, 2048–2070. [Google Scholar] [CrossRef]
- Tenorio-Trigoso, A.; Castillo-Cara, M.; Mondragón-Ruiz, G.; Carrión, C.; Caminero, B. An Analysis of Computational Resources of Event-Driven Streaming Data Flow for Internet of Things: A Case Study. Comput. J. 2023, 66, 47–60. [Google Scholar] [CrossRef]
- He, X.; Yang, H.; Wang, G.; Yu, J. Towards trusted node selection using blockchain for crowdsourced abnormal data detection. Futur. Gener. Comput. Syst. 2022, 133, 320–330. [Google Scholar] [CrossRef]
- Ma, L.; Liu, J. Research on abnormal data detection of optical fiber communication network based on data mining. J. Appl. Opt. 2020, 41, 1305–1310. [Google Scholar] [CrossRef]
- Deng, X.; Bian, D.; Wang, W.; Jiang, Z.; Yao, W.; Qiu, W.; Tong, N.; Shi, D.; Liu, Y. Deep learning model to detect various synchrophasor data anomalies. IET Gener. Transm. Distrib. 2020, 14, 5739–5745. [Google Scholar] [CrossRef]
- Liu, S.; Liang, Y.; Wang, J.; Jiang, T.; Sun, W.; Rui, Y. Identification of stealing electricity based on big data analysis. Energy Rep. 2020, 6, 731–738. [Google Scholar] [CrossRef]
- Guan, J.; Li, S.; He, X.; Chen, J. Peak-Graph-Based Fast Density Peak Clustering for Image Segmentation. IEEE Signal Process. Lett. 2021, 28, 897–901. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, P. An automatic clustering algorithm based on the density-peak framework and Chameleon method. Pattern Recognit. Lett. 2021, 150, 40–48. [Google Scholar] [CrossRef]
- Jain, K.; Saxena, A. Simulation on supplier side bidding strategy at day-ahead electricity market using ant lion optimizer. J. Comput. Cogn. Eng. 2023, 2, 17–27. [Google Scholar] [CrossRef]
- Zhou, K.; Li, Z.; Zhu, G.; Huang, Y.; Li, Y. An Adaptive Pulse Separation Strategy for PD Detection in Frequency-Tuned Resonant Tests. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Zhang, Y.; Xu, P.; Li, L.; Xie, Z.; Li, Q. An improved density-based approach to risk assessment on railway investment. Data Technol. Appl. 2022, 56, 382–408. [Google Scholar] [CrossRef]
- Long, Z.; Gao, Y.; Meng, H.; Yao, Y.; Li, T. Clustering based on local density peaks and graph cut. Inf. Sci. 2022, 600, 263–286. [Google Scholar] [CrossRef]
- Ma, J.; Teng, Z.; Tang, Q.; Qiu, W.; Yang, Y.; Duan, J. Measurement Error Prediction of Power Metering Equipment Using Improved Local Outlier Factor and Kernel Support Vector Regression. IEEE Trans. Ind. Electron. 2022, 69, 9575–9585. [Google Scholar] [CrossRef]
- Mokua, N.; Maina, C.W.; Kiragu, H. Anomaly Detection for Raw Water Quality—A Comparative Analysis of the Local Outlier Factor Algorithm and the Random Forest Algorithms. Int. J. Comput. Appl. 2022, 174, 47–54. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, T.; Zhang, Z.; Lei, Z.; Zhu, S. A new online quality monitoring method of chain resistance upset butt welding based on Isolation Forest and Local Outlier Factor. J. Manuf. Process. 2021, 68, 843–851. [Google Scholar] [CrossRef]
- Yang, X.; Xiang, Y.; Jiang, B. On multi-fault detection of rolling bearing through probabilistic principal component analysis denoising and Higuchi fractal dimension transformation. J. Vib. Control 2022, 28, 1214–1226. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kaneko, S.; Tamaki, T.; Kiguchi, M.; Tsukagoshi, K.; Terao, J.; Nishino, T. Principal Component Analysis of Surface-Enhanced Raman Scattering Spectra Revealing Isomer-Dependent Electron Transport in Spiropyran Molecular Junctions: Implications for Nanoscale Molecular Electronics. ACS Omega 2022, 7, 5578–5583. [Google Scholar] [CrossRef]
- Akiba, N.; Nakamura, A.; Sota, T.; Hibino, K.; Kakuda, H.; Aalders, M.C. Separation of overlapping fingerprints by principal component analysis and multivariate curve resolution–alternating least squares analysis of hyperspectral imaging data. J. Forensic Sci. 2022, 67, 1208–1214. [Google Scholar] [CrossRef]
Type | Parameter Value | Formula | Type | Parameter Value | Formula |
---|---|---|---|---|---|
Density | [0, 1.0] | / | Sample points | [1.25] | |
Distance | [0, 1.0] | / | Preference parameters | 1.2 | / |
Slope | 1%, 1.5%, 2% | / | Normalization | [0, 1] |
Index | Traditional CFSFDP Algorithm [8] | Improved CFSFDP Algorithm |
---|---|---|
Accuracy (%) | 92.54 | 97.41 |
Missing detection rate (%) | 3.49 | 1.26 |
Misdetection rate (%) | 3.97 | 1.33 |
Number of Data Points | 1520 | 15,200 | 45,600 | |
---|---|---|---|---|
K-means | Anomaly rate (%) | 5.73 | 1.12 | 0.63 |
Accuracy (%) | 88.72 | 89.80 | 88.76 | |
Error rate (%) | 11.28 | 10.20 | 11.24 | |
KNN | Anomaly rate (%) | 4.63 | 1.01 | 0.52 |
Accuracy (%) | 92.54 | 94.36 | 97.18 | |
Error rate (%) | 7.46 | 5.64 | 2.82 | |
LOF-CFSFDP | Anomaly rate (%) | 3.78 | 0.84 | 0.41 |
Accuracy (%) | 96.27 | 97.62 | 99.24 | |
Error rate (%) | 3.73 | 2.38 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Di, L.; Chen, C.; Zhang, B.; Li, N. A Fast Density Peak Clustering Method for Power Data Security Detection Based on Local Outlier Factors. Processes 2023, 11, 2036. https://doi.org/10.3390/pr11072036
Lv Z, Di L, Chen C, Zhang B, Li N. A Fast Density Peak Clustering Method for Power Data Security Detection Based on Local Outlier Factors. Processes. 2023; 11(7):2036. https://doi.org/10.3390/pr11072036
Chicago/Turabian StyleLv, Zhuo, Li Di, Cen Chen, Bo Zhang, and Nuannuan Li. 2023. "A Fast Density Peak Clustering Method for Power Data Security Detection Based on Local Outlier Factors" Processes 11, no. 7: 2036. https://doi.org/10.3390/pr11072036
APA StyleLv, Z., Di, L., Chen, C., Zhang, B., & Li, N. (2023). A Fast Density Peak Clustering Method for Power Data Security Detection Based on Local Outlier Factors. Processes, 11(7), 2036. https://doi.org/10.3390/pr11072036