Capsicum chinense Polyphenols Extraction by Supercritical Fluids Using Response Surface Methodology (RSM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Habanero Pepper Drying and Sieved Process
2.3. Habanero Pepper Polyphenols Extraction
2.3.1. Experimental Design
2.3.2. Extraction of Polyphenols by Supercritical Fluids
2.4. Determination of Total Polyphenol Content in Habanero Pepper Extract
2.5. Determination of Individual Polyphenol in Habanero Pepper Extract
2.6. Statistical Analysis
3. Results
3.1. Total Polyphenol Content in Habanero Pepper Extract
Total Polyphenol Content Response Surface Modelling
3.2. Individual Polyphenols from Habanero Pepper Extract
3.2.1. Catechin
3.2.2. Chlorogenic, Cinnamic, and Ferulic Acid
3.2.3. Coumaric Acid, Naringenin, and Apigenin
3.2.4. Rutin, Diosmin, Hesperidin, and Neohesperidin
3.2.5. Individual Polyphenol Response Surface Modeling
3.3. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oney-Montalvo, J.E.; Avilés-Betanzos, K.A.; de Jesús Ramírez-Rivera, E.; Ramírez-Sucre, M.O.; Rodríguez-Buenl, I.M. Polyphenols content in Capsicum chinense fruits at different harvest times and their correlation with the antioxidant activity. Plants 2020, 9, 1394. [Google Scholar] [CrossRef]
- Chel-guerrero, L.D.; Oney-montalvo, J.E.; Rodríguez-buenfil, I.M. Phytochemical characterization of by-products of habanero pepper grown in two different types of soils from yucatán, mexico. Plants 2021, 10, 779. [Google Scholar] [CrossRef]
- de Gobernación, S. Declaratoria General de Protección del a Denominación de Origen del Chile Habanero de la Penínsulade Yucatán. Diario Oficial de la Federación (DOF). 2010. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5145315&fecha=04/06/2010#gsc.tab=0 (accessed on 20 June 2023).
- Troconis-Torres, I.G.; Rojas-López, M.; Hernández-Rodríguez, C.; Villa-Tanaca, L.; Maldonado-Mendoza, I.E.; Dorantes-Álvarez, L.; Tellez-Medina, D.; Jaramillo-Flores, M.E. Biochemical and molecular analysis of some commercial samples of chilli peppers from Mexico. J. Biomed. Biotechnol. 2012, 2012, 873090. [Google Scholar] [CrossRef] [Green Version]
- Peñarrieta, J.M.; Tejeda, L.; Mollinedo, P.; Vila, J.L.; Bravo, J.A. Compuestos fenólicos y su presencia en alimentos. Rev. Boliv. Química 2014, 31, 68–81. Available online: https://www.redalyc.org/articulo.oa?id=426339682006 (accessed on 23 March 2023).
- Tresserra-Rimbau, A.; Lamuela-Raventos, R.M.; Moreno, J.J. Polyphenols, food and pharma. Current knowledge and directions for future research. In Biochemical Pharmacology; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 156, pp. 186–195. [Google Scholar] [CrossRef]
- Panzella, L. Natural phenolic compounds for health, food and cosmetic applications. Antioxidants 2020, 9, 427. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of catechins and their applications. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef]
- Roy, J.; Azamthulla, M.; Mukkerjee, D. Hesperidin and diosmin-A novel drugs. Int. J. Pharm. Res. Technol. 2019, 10, 25–33. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef] [PubMed]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Roy, W.R. Environmental Impact of Solvents: The Environmental Chemistry of Organic Solvents. In Handbook of Solvents, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 361–385. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; Esteve-Turrillas, F.A.; de la Guardia, M. Green extraction techniques in green analytical chemistry. TrAC-Trends Anal. Chem. 2019, 116, 248–253. [Google Scholar] [CrossRef]
- Ahmad, T. Supercritical Fluid Extraction: A Review Supercritical Fluid Extraction: A Review. J. Biol. Chem. Chron. 2019, 5, 114–122. [Google Scholar] [CrossRef]
- Escobar, E.L.N.; da Silva, T.A.; Pirich, C.L.; Corazza, M.L.; Pereira Ramos, L. Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation. Front. Bioeng. Biotechnol. 2020, 8, 252. [Google Scholar] [CrossRef] [Green Version]
- Týskiewicz, K.; Konkol, M.; Rój, E. The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef] [Green Version]
- de Aguiar, A.C.; Sales, L.P.; Coutinho, J.P.; Barbero, G.F.; Godoy, H.T.; Martínez, J. Supercritical carbon dioxide extraction of Capsicum peppers: Global yield and capsaicinoid content. J. Supercrit. Fluids 2013, 81, 210–216. [Google Scholar] [CrossRef]
- Deka, D.; Swami Hulle, N.R. Supercritical fluid extraction of Bhut Jolokia oleoresin and its quality analysis. SN Appl. Sci. 2021, 3, 260. [Google Scholar] [CrossRef]
- Grande-Villanueva, P.; de Aguiar, A.C.; Pereira-Coutinho, J.; Teixeira-Godoy, H.; Escamilla-Silva, E.M.; Martinez, J. Oleoresin Extraction from Jalapeño Pepper (Capsicum annuum) with Supercritical Carbon Dioxide: Effects in the Global Yield. Cienc. Técnica Vitivinícola 2015, 30, 79–104. Available online: https://www.researchgate.net/publication/274374369 (accessed on 15 April 2023).
- de Aguiar, A.C.; dos Santos, P.; Coutinho, J.P.; Barbero, G.F.; Godoy, H.T.; Martínez, J. Supercritical fluid extraction and low-pressure extraction of Biquinho pepper (Capsicum chinense). LWT-Food Sci. Technol. 2014, 59, 1239–1246. [Google Scholar] [CrossRef]
- Santos, P.; Aguiar, A.C.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Supercritical carbon dioxide extraction of capsaicinoids from malagueta pepper (Capsicum frutescens L.) assisted by ultrasound. Ultrason. Sonochem. 2021, 22, 78–88. [Google Scholar] [CrossRef]
- Silva, L.P.S.; de Aguiar, A.C.; Barbero, G.F.; Martínez, J. Scale-up of SFE from capsicum pepper using supercritical carbon dioxide. In Proceedings of the III Iberoamerican Conference on Supercritical Fluids, Cartagena de Indias, Colombia, 1–5 April 2013; Volume 1, pp. 1–6. Available online: http://www.nupeg.ufrn.br/prosciba/prosciba2013/Papers/T2-24.pdf (accessed on 15 April 2023).
- Duarte, C.; Moldão-Martins, M.; Gouveia, A.F.; da Costa, S.B.; Leitão, A.E.; Bernardo-Gil, M.G. Supercritical fluid extraction of red pepper (Capsicum frutescens L.). J. Supercrit. Fluids 2004, 30, 155–161. [Google Scholar] [CrossRef]
- Radzali, S.A.; Markom, M.; Md Saleh, N. Parameter Effects and Optimisation in Supercritical Fluid Extraction of Phenolic Compounds from Labisia pumila. Separations 2022, 9, 385. [Google Scholar] [CrossRef]
- Oney-Montalo, J.; López-Domínguez, C.; Zamacona-Ruiz, M.; Gómez-Rincón, E.; Ramíre-Sucrez, M.; Rodríguez-Buenfil, I. Metabolitos presentes en Capsicum chinense en dos estados de maduración cultivados en diferentes tipos de suelos de Yucatán, México. Bionatura 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; pp. 152–178. [Google Scholar]
- Avilés-Betanzos, K.A.; Oney-Montalvo, J.E.; Cauich-Rodríguez, J.V.; González-Ávila, M.; Scampicchio, M.; Morozova, K.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent. Plants 2022, 11, 2060. [Google Scholar] [CrossRef] [PubMed]
- Gelmez, N.; Kincal, N.S.; Yener, M.E. Optimization of supercritical carbon dioxide extraction of antioxidants from roasted wheat germ based on yield, total phenolic and tocopherol contents, and antioxidant activities of the extracts. J. Supercrit. Fluids 2009, 48, 217–224. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Shao, R. Supercritical fluids Extraction of Flavonoids from Dandelion. Adv. J. Food Sci. Technol. 2014, 6, 97–101. Available online: https://maxwellsci.com/msproof.php?doi=ajfst.6.3037 (accessed on 8 May 2023).
- Monroy, Y.M.; Rodrigues, R.A.F.; Sartoratto, A.; Cabral, F.A. Influence of ethanol, water, and their mixtures as co-solvents of the supercritical carbon dioxide in the extraction of phenolics from purple corn cob (Zea mays L.). J. Supercrit. Fluids 2016, 118, 11–18. [Google Scholar] [CrossRef]
- Sökmen, M.; Demir, E.; Alomar, S.Y. Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. J. Supercrit. Fluids 2018, 133, 171–176. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef] [PubMed]
- Hassim, N.; Markom, M.; Rosli, M.I.; Harun, S. Effect of Static Extraction Time on Supercritical Fluid Extraction of Bioactive Compounds from Phyllanthus niruri. J. Comput. Theor. Nanosci. 2020, 17, 918–924. [Google Scholar] [CrossRef]
- Al-Jabari, M. Modeling analytical tests of supercritical fluid extraction from solids with langmuir kinetics. Chem. Eng. Commun. 2003, 190, 1620–1640. [Google Scholar] [CrossRef]
- Daraee, A.; Ghoreishi, S.M.; Hedayati, A. The Journal of Supercritical Fluids Supercritical CO2 extraction of chlorogenic acid from sunflower (Helianthus annuus) seed kernels: Modeling and optimization by response surface methodology. J. Supercrit. Fluids 2019, 144, 19–27. [Google Scholar] [CrossRef]
- Pellicanò, T.M.; Sicari, V.; Loizzo, M.R.; Leporini, M.; Falco, T.; Poiana, M. Optimizing the supercritical fluid extraction process of bioactive compounds from processed tomato skin by-products. Food Sci. Technol. 2020, 40, 692–697. [Google Scholar] [CrossRef] [Green Version]
- Ekinci, M.S. Supercritical fluid extraction of quercetin from sumac (Rhus coriaria L.): Effects of supercritical extraction parameters. Sep. Sci. Technol. 2022, 57, 256–262. [Google Scholar] [CrossRef]
- Palma, M.; Robert, P.; Holgado, F.; Velasco, J.; Márquez-Ruiz, G. Antioxidant Activity and Kinetics Studies of Quercetin, Epicatechin and Naringenin in Bulk Methyl Linoleate. JAOCS J. Am. Oil Chem. Soc. 2017, 94, 1189–1196. [Google Scholar] [CrossRef]
- Farías-Campomanes, A.M.; Rostagno, M.A.; Coaquira-Quispe, J.J.; Meireles, M.A.A. Supercritical fluid extraction of polyphenols from lees: Overall extraction curve, kinetic data and composition of the extracts. Bioresour. Bioprocess. 2015, 2, 45. [Google Scholar] [CrossRef] [Green Version]
- Isemura, M. Catechin in human health and disease. Molecules 2019, 24, 528. [Google Scholar] [CrossRef] [Green Version]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic Acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [Green Version]
- Thom, E. The Effect of Chlorogenic Acid Enriched Coffee on Glucose Absorption in Healthy Volunteers and Its Effect on Body Mass When Used Long-term in Overweight and Obese People. J. Int. Med. Res. 2007, 35, 900–908. [Google Scholar] [CrossRef]
- Iwai, K.; Narita, Y.; Fukunaga, T.; Nakagiri, O.; Kamiya, T.; Ikeguchi, M.; Kikuchi, Y. Study on the Postprandial Glucose Responses to a Chlorogenic Acid-Rich Extract of Decaffeinated Green Coffee Beans in Rats and Healthy Human Subjects. Food Sci. Technol. Res. 2012, 18, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Ward, N.C.; Hodgson, J.M.; Woodman, R.J.; Zimmermann, D.; Poquet, L.; Leveques, A.; Actis-Goretta, L.; Puddey, I.B.; Croft, K.D. Acute effects of chlorogenic acids on endothelial function and blood pressure in healthy men and women. Food Funct. 2016, 7, 2197–2203. [Google Scholar] [CrossRef] [Green Version]
- Shabir, I.; Kumar Pandey, V.; Shams, R.; Dar, A.H.; Dash, K.K.; Khan, S.A.; Bashir, I.; Jeevarathinam, G.; Rusu, A.V.; Esatbeyoglu, T.; et al. Promising bioactive properties of quercetin for potential food applications and health benefits: A review. Front. Nutr. 2022, 9, 999752. [Google Scholar] [CrossRef]
- Caporali, S.; de Stefano, A.; Calabrese, C.; Giovannelli, A.; Pieri, M.; Savini, I.; Tesauro, M.; Bernardini, S.; Minieri, M.; Terrinoni, A. Anti-Inflammatory and Active Biological Properties of the Plant-Derived Bioactive Compounds Luteolin and Luteolin 7-Glucoside. Nutrients 2022, 14, 1155. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Ikram, M.; Park, T.J.; Ahmad, R.; Saeed, K.; Alam, S.I.; Rehman, I.U.; Khan, A.; Khan, I.; Jo, M.G.; et al. Vanillic acid, a bioactive phenolic compound, counteracts lps-induced neurotoxicity by regulating c-jun n-terminal kinase in mouse brain. Int. J. Mol. Sci. 2021, 22, 361. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Stamova, B.; Sharp, F.R. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease brain: A review. Front. Aging Neurosci. 2018, 10, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, I.; Corrigan, F.; Zhai, G.; Zhou, X.F.; Bobrovskaya, L. Lipopolysaccharide animal models of Parkinson’s disease: Recent progress and relevance to clinical disease. Brain Behav. Immun.-Health 2020, 4, 100060. [Google Scholar] [CrossRef]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
- Mihalcea, L.; Păcularu-Burada, B.; Milea Ștefania, A.; Aprodu, I.; Condurache (Lazăr), N.N.; Cucolea, E.I.; Dănilă, G.M.; Cîrciumaru, A.; Nicoleta, S. CO2 supercritical extraction and microencapsulation of oleoresins from rosehip fruits for getting powders with multiple applications. Curr. Res. Food Sci. 2023, 6, 100449. [Google Scholar] [CrossRef]
Exp | Factors | Variable Response | ||||||
---|---|---|---|---|---|---|---|---|
Coded Values | Real Values | TPC (mg GAE/100 g Ext) | Individual Polyphenols * (mg/100 g Xt) | |||||
X1 | X2 | X3 | Tp (°C) | Ps (psi) | Et (min) | |||
1 | −1 | −1 | −1 | 45 | 1450 | 60 | Y1 | Z1 |
2 | 1 | −1 | −1 | 60 | 1450 | 60 | Y2 | Z2 |
3 | −1 | 1 | −1 | 45 | 2900 | 60 | Y3 | Z3 |
4 | 1 | 1 | −1 | 60 | 2900 | 60 | Y4 | Z4 |
5 | −1 | −1 | 1 | 45 | 1450 | 120 | Y5 | Z5 |
6 | 1 | −1 | 1 | 60 | 1450 | 120 | Y6 | Z6 |
7 | −1 | 1 | 1 | 45 | 2900 | 120 | Y7 | Z7 |
8 | 1 | 1 | 1 | 60 | 2900 | 120 | Y8 | Z8 |
9 | 0 | 0 | 0 | 52.5 | 2175 | 90 | Y9 | Z9 |
10 | 0 | 0 | 0 | 52.5 | 2175 | 90 | Y10 | Z10 |
11 | 0 | 0 | 0 | 52.5 | 2175 | 90 | Y11 | Z11 |
12 | −1.414 | 0 | 0 | 41.9 | 2175 | 90 | Y12 | Z12 |
13 | 1.414 | 0 | 0 | 63.1 | 2175 | 90 | Y13 | Z13 |
14 | 0 | −1.414 | 0 | 52.5 | 1150 | 90 | Y14 | Z14 |
15 | 0 | 1.414 | 0 | 52.5 | 3200 | 90 | Y15 | Z15 |
16 | 0 | 0 | −1.414 | 52.5 | 2175 | 48 | Y16 | Z16 |
17 | 0 | 0 | 1.414 | 52.5 | 2175 | 132 | Y17 | Z17 |
Exp | Factors | Variable Response | |||||
---|---|---|---|---|---|---|---|
Coded Values | Real Values | TPC (mg GAE/100 g Xt) | |||||
X1 | X2 | X3 | Tp (°C) | Ps (psi) | Et (min) | ||
1 | −1 | −1 | −1 | 45 | 1450 | 60 | 736.62 ± 1.46 k |
2 | 1 | −1 | −1 | 60 | 1450 | 60 | 600.74 ± 1.47 j |
3 | −1 | 1 | −1 | 45 | 2900 | 60 | 361.76 ± 2.4 f |
4 | 1 | 1 | −1 | 60 | 2900 | 60 | 1075.00 ± 1.68 m |
5 | −1 | −1 | 1 | 45 | 1450 | 120 | 322.060 ± 1.69 e |
6 | 1 | −1 | 1 | 60 | 1450 | 120 | 758.24 ± 1.76 l |
7 | −1 | 1 | 1 | 45 | 2900 | 120 | 67.93 ± 0.20 b |
8 | 1 | 1 | 1 | 60 | 2900 | 120 | 403.68 ± 2.81 h |
9 | 0 | 0 | 0 | 52.5 | 2175 | 90 | 62.74 ± 0.44 a |
10 | 0 | 0 | 0 | 52.5 | 2175 | 90 | 62.90 ± 0.38 a |
11 | 0 | 0 | 0 | 52.5 | 2175 | 90 | 62.21 ± 0.39 a |
12 | −1.414 | 0 | 0 | 41.9 | 2175 | 90 | 115.50 ± 0.40 d |
13 | 1.414 | 0 | 0 | 63.1 | 2175 | 90 | 736.81 ± 3.6 k |
14 | 0 | −1.414 | 0 | 52.5 | 1150 | 90 | 1656.42 ± 5.29 n |
15 | 0 | 1.414 | 0 | 52.5 | 3200 | 90 | 377.51 ± 1.28 g |
16 | 0 | 0 | −1.414 | 52.5 | 2175 | 48 | 93.49 ± 0.57 c |
17 | 0 | 0 | 1.414 | 52.5 | 2175 | 132 | 569.37 ± 3.60 i |
Exp | Factors | Variables Response * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tp (°C) | Ps (psi) | Et (min) | Protocatechuic Acid | Catechin | Chlorogenic Acid | Coumaric Acid | Cinnamic Acid | Rutin | Quercetin + Luteolin | Kaempferol | |
1 | 45 | 1450 | 60 | 12.45 ± 0.03 g | 143.63 ± 0.12 o | 31.17 ± 0.08 cde | 1.92 ± 0.16 d | 7.39 ± 0.04 j | 7.73 ± 0.09 d | 1.30 ± 0.00 a | 13.84 ± 0.02 cd |
2 | 60 | 1450 | 60 | 3.76 ± 0.06 c | 4.58 ± 0.02 b | 4.42 ± 0.02 a | 1.65 ± 0.00 b | 2.09 ± 0.01 e | 2.46 ± 0.04 b | 4.91 ± 0.26 b | 3.47 ± 0.14 a |
3 | 45 | 2900 | 60 | 19.27 ± 0.31 k | 25.95 ± 0.06 i | 81.67 ± 0.24 g | 3.16 ± 0.29 f | 2.92 ± 0.03 f | 4.40 ± 0.08 c | 24.30 ± 0.21 f | 8.38 ± 2.21 b |
4 | 60 | 2900 | 60 | 1.42 ± 0.10 b | 3.20 ± 0.63 a | 1.87 ± 0.20 a | 1.60 ± 0.01 b | 1.66 ± 0.00 d | 2.94 ± 0.13 b | 425.69 ± 3.25 g | 2.33 ± 0.14 a |
5 | 45 | 1450 | 120 | 21.76 ± 0.32 l | 15.55 ± 0.02 e | 21.23 ± 0.13 bc | 1.80 ± 0.08 bc | 2.78 ± 0.00 f | 4.44 ± 0.01 c | 1.23 ± 0.35 a | 3.61 ± 0.21 a |
6 | 60 | 1450 | 120 | 15.44 ± 0.06 h | 137.33 ± 0.12 n | 288.59 ± 0.76 k | 0.00 a | 10.35 ± 0.02 k | 0.00 a | 11.71 ± 0.28 de | 67.57 ± 0.08 j |
7 | 45 | 2900 | 120 | 12.67 ± 0.01 g | 88.92 ± 0.58 m | 164.79 ± 2.47 j | 0.00 a | 0.94 ± 0.00 c | 0.00 a | 9.20 ± 0.09 cd | 39.06 ± 0.92 g |
8 | 60 | 2900 | 120 | 17.43 ± 0.22 j | 29.39 ± 0.07 k | 27.98 ± 1.34 bcd | 2.53 ± 0.07 e | 6.24 ± 0.31 i | 21.95 ± 1.14 e | 2.58 ± 1.52 ab | 11.08 ± 0.16 bc |
9 | 52.5 | 2175 | 90 | 9.74 ± 0.04 e | 24.71 ± 0.06 h | 129.91 ± 1.58 i | 0.00 a | 0.00 a | 0.00 a | 8.91 ± 0.02 c | 24.56 ± 0.18 f |
10 | 52.5 | 2175 | 90 | 9.00 ± 0.12 d | 23.11 ± 0.18 fg | 121.24 ± 0.16 i | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 15.04 ± 0.33 e |
11 | 52.5 | 2175 | 90 | 8.78 ± 0.18 d | 23.05 ± 0.20 f | 110.38 ± 0.97 h | 0.00 a | 0.00 a | 0.00 a | 9.52 ± 0.03 cd | 22.41 ± 0.10 f |
12 | 41.9 | 2175 | 90 | 11.94 ± 0.02 f | 27.48 ± 0.25 j | 27.83 ± 0.35 bcd | 0.00 a | 5.15 ± 0.01 h | 0.00 a | 10.46 ± 0.03 cde | 69.52 ± 0.95 j |
13 | 63.1 | 2175 | 90 | 16.39 ± 0.07 i | 32.88 ± 0.08 l | 41.44 ± 3.42 e | 0.00 a | 0.00 | 0.00 a | 10.29 ± 0.09 cde | 52.61 ± 0.35 h |
14 | 52.5 | 1150 | 90 | 0.00 a | 27.65 ± 0.29 j | 30.78 ± 0.52 cd | 0.00 a | 3.87 ± 0.04 g | 0.00 a | 9.14 ± 0.09 cd | 90.81 ± 3.85 k |
15 | 52.5 | 3200 | 90 | 0.00 a | 24.27 ± 0.23 gh | 19.27 ± 0.20 b | 0.00 a | 0.59 ± 0.02 b | 0.00 a | 9.84 ± 0.09 cde | 53.50 ± 2.33 h |
16 | 52.5 | 2175 | 48 | 0.00 a | 9.14 ± 0.06 c | 33.43 ± 0.36 de | 0.00 a | 0.00 a | 0.00 a | 10.52 ± 0.12 cde | 14.61 ± 0.07 cd |
17 | 52.5 | 2175 | 132 | 0.00 a | 11.87 ± 1.30 d | 53.73 ± 0.52 f | 0.00 a | 0.00 a | 0.00 a | 12.44 ± 0.55 e | 62.70 ± 0.25 i |
Exp | Factors | Variables Response * | |||||||||
Tp (°C) | Ps (psi) | Et (min) | Vanillic Acid | Ferulic Acid | Ellagic Acid | Diosmin + Hesperidin | Neohesperidin | Naringenin | Apigenin | Diosmetin | |
1 | 45 | 1450 | 60 | 10.15 ± 0.06 d | 2.47 ± 0.35 f | 2.30 ± 0.03 c | 1.98 ± 0.01 a | 3.62 ± 0.01 bc | 8.43 ± 0.04 c | 6.30 ± 0.04 c | 4.23 ± 0.01 c |
2 | 60 | 1450 | 60 | 1.57 ± 0.30 ab | 0.36 ± 0.02 ab | 1.82 ± 0.24 b | 2.20 ± 0.39 a | 1.48 ± 0.49 ab | 0.00 | 2.55 ± 0.23 b | 2.47 ± 0.17 b |
3 | 45 | 2900 | 60 | 51.98 ± 0.07 i | 0.86 ± 0.00 bc | 7.71 ± 0.54 i | 0.00 | 10.99 ± 0.94 d | 11.42 ± 2.05 d | 7.49 ± 0.80 d | 9.04 ± 0.11 e |
4 | 60 | 2900 | 60 | 1.34 ± 0.44 a | 0.00 a | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
5 | 45 | 1450 | 120 | 96.02 ± 0.15 l | 1.27 ± 0.62 cd | 9.78 ± 0.02 j | 4.31 ± 0.09 a | 4.44 ± 0.09 c | 7.90 ± 0.11 c | 6.03 ± 0.06 c | 14.77 ± 0.13 f |
6 | 60 | 1450 | 120 | 3.67 ± 0.04 bc | 2.68 ± 0.27 f | 4.27 ± 0.27 e | 0.00 | 0.00 | 9.29 ± 0.06 c | 0.00 | 3.55 ± 0.07 bc |
7 | 45 | 2900 | 120 | 3.23 ± 0.07 ab | 1.45 ± 0.01 d | 2.98 ± 0.01 d | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
8 | 60 | 2900 | 120 | 54.35 ± 0.18 j | 0.25 ± 0.04 | 6.21 ± 0.00 h | 54.51 ± 9.59 b | 16.52 ± 3.31 f | 1.53 ± 0.14 b | 3.01 ± 0.01 b | 9.58 ± 0.19 e |
9 | 52.5 | 2175 | 90 | 2.28 ± 0.12 ab | 1.27 ± 0.03 cd | 2.93 ± 0.02 d | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
10 | 52.5 | 2175 | 90 | 42.18 ± 0.00 h | 0.97 ± 0.00 cd | 2.74 ± 0.02 d | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
11 | 52.5 | 2175 | 90 | 35.25 ± 0.17 g | 0.00 a | 2.81 ± 0.01 d | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
12 | 41.9 | 2175 | 90 | 36.04 ± 0.07 g | 0.00 a | 5.44 ± 0.10 g | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
13 | 63.1 | 2175 | 90 | 66.40 ± 0.18 k | 0.84 ± 0.04 bc | 7.47 ± 0.27 i | 1.67 ± 0.04 a | 0.00 | 0.00 | 0.00 | 0.00 |
14 | 52.5 | 1150 | 90 | 25.91 ± 0.19 e | 0.82 ± 0.02 bc | 4.99 ± 0.00 f | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
15 | 52.5 | 3200 | 90 | 30.28 ± 0.10 f | 0.00 a | 2.88 ± 0.02 d | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
16 | 52.5 | 2175 | 48 | 30.93 ± 2.88 f | 0.86 ± 0.00 bc | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6.40 ± 1.02 d |
17 | 52.5 | 2175 | 132 | 5.49 ± 0.12 c | 1.17 ± 0.02 cd | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6.32 ± 1.18 d |
IP | R2 | Prediction Equation (Y) |
---|---|---|
PtAc | 65.5 | 190.68 − 9.90X1 + 0.085 X2 + 1.47 X3 + 0.1081X12 − 0.0013 X1X2 − 0.02 X1X3 − 0.0000019 X22 − 0.00088 X2X3 − 0.0010 X32 + 0.000015X1X2X3 |
Ctn | 79.2 | 3574.97 − 73.95X1 − 1.13 X2 − 33.61 X3 + 0.1936 X12 + 0.02 X1X2 + 0.62 X1X3 + 0.000016X22 + 0.0124 X2X3 + 0.0013 X32 − 0.0002 X1X2X3 |
ChAc | 77 | 1573.03 − 29.89X1 − 0.58 X2 − 34.73 X3 − 0.1154 X12 + 0.01 X1X2 + 0.73 X1X3 − 0.000021 X22 + 0.0136 X2X3 − 0.0019 X32 − 0.0002 X1X2X3 |
CuAc | 72.9 | 6.07 − 0.433 X1 + 0.01 X2 + 0.30 X3 + 0.0093 X12 − 0.0003 X1X2 − 0.008 X1X3 + 0.00000099 X22 − 0.0002 X2X3 + 0.0006 X32 + 0.0000043 X1X2X3 |
CnAc | 82.4 | 217.45 − 5.46 X1 − 0.04 X2 −1.20 X3 + 0.0328 X12 + 0.0004 X1 X2 + 0.02 X1 X3 + 0.0000031 X22 + 0.00024 X2 X3 + 0.00064 X32 − 0.0000048 X1 X2 X3 |
Rt | 85.4 | 96.99 − 2.61 X1 + 0.02 X2 + 0.66 X3 + 0.0323 X12 − 0.0009 X1X2 − 0.02 X1X3 + 0.0000034 X22 − 0.00079 X2X3 + 0.002 X32 + 0.000017 X1X2X3 |
Q + L | 88.7 | −201.156 + 4.13 X1 + 0.11 X2 + 0.48 X3 − 0.0179X12 − 0.002 X1X2 − 0.003 X1X3 − 0.0000027 X22 − 0.00049 X2X3 − 0.00053 X32 + 0.0000071 X1X2X3 |
Kpf | 49.4 | 732.83 − 16.18 X1 − 0.31 X2 − 7.36 X3 + 0.0329 X12 + 0.005 X1X2 + 0.19 X1X3 + 0.000014 X22 + 0.0037 X2X3 − 0.0108 X32 − 0.000073 X1X2X3 |
VaAc | 76.3 | −1057.69 + 10.58 X1 + 0.64 X2 + 19.12 X3 + 0.1012 X12 − 0.01 X1X2 − 0.30 X1X3 − 0.000011 X22 − 0.0079 X2X3 − 0.0122 X32 + 0.00014 X1X2X3 |
FeAc | 86.1 | −30.61 − 1.70 X1 + 0.07 X2 + 1.78 X3 + 0.0385X12 − 0.0013 X1X2 − 0.03 X1X3 + 0.0000017 X22 − 0.00082 X2X3 − 0.0011 X32 + 0.000014 X1X2X3 |
EgAc | 79.3 | 2.952 − 2.06 X1 + 0.03 X2 + 1.42 X3 + 0.0341 X12 − 0.0007 X1X2 − 0.02 X1X3 + 0.0000012 X22 − 0.0005 X2X3 − 0.0014 X32 + 0.0000099 X1X2X3 |
D + H | 82.9 | 10.23 − 1.38 X1 + 0.10 X2 + 2.67 X3 + 0.0513 X12 − 0.003 X1X2 − 0.07 X1X3 + 0.0000046 X22 − 0.002 X2X3 + 0.0028 X32 + 0.000045 X1X2X3 |
NeHe | 82.4 | −32.62 − 0.27 X1 + 0.08 X2 + 1.49 X3 + 0.0273 X12 − 0.002 X1X2 − 0.035 X1X3 + 0.0000029 X22 − 0.0011 X2X3 + 0.0017 X32 + 0.000022 X1X2X3 |
Ngn | 76.8 | 126.47 − 3.70 X1 + 0.01 X2 − 0.49 X3 + 0.0284 X12 − 0.0003 X1X2 + 0.007 X1X3 + 0.0000030 X22 − 0.00023 X2X3 + 0.0018 X32 + 0.0000023 X1X2X3 |
Agn | 73.5 | 14.26 − 0.88 X1 + 0.03 X2 + 0.66 X3 + 0.0187 X12 − 0.0007 X1X2 − 0.02 X1X3 + 0.0000019 X22 − 0.00052 X2X3 + 0.0012 X32 + 0.00000979 X1X2X3 |
Dmt | 91.7 | −79.59 + 1.36 X1 + 0.08 X2 + 1.45 X3 + 0.0121 X12 − 0.0015 X1X2 − 0.04 X1X3 + 0.0000013 X22 − 0.0011 X2 X3 + 0.0043 X32 + 0.00002 X1X2 X3 |
Individual Polyphenol | Optimal Conditions | Optimal Value (mg/100 g Xt) | ||
---|---|---|---|---|
Tp (°C) | Ps (psi) | Et (min) | ||
protocatechuic acid | 41.9 | 3200 | 48 | 29.16 |
catechin | 62.8 | 1150 | 132 | 236.27 |
chlorogenic acid | 63.1 | 1150 | 131.9 | 447.08 |
coumaric acid | 41.9 | 3200 | 48.3 | 5.54 |
cinnamic acid | 63.1 | 1150 | 132 | 21.96 |
rutin | 63.03 | 3200 | 132 | 40.05 |
quercetin + luteolin | 41.9 | 3200 | 53.53 | 32.88 |
kaempferol | 62.9 | 1150 | 132 | 130.31 |
vanillic acid | 41.9 | 1150 | 132 | 136.38 |
ferulic acid | 41.9 | 3199 | 48.22 | 18.60 |
ellagic acid | 41.9 | 1150 | 131.43 | 14.63 |
diosmin + hesperidin | 63.03 | 3200 | 132 | 92.80 |
neohesperidin | 63.1 | 3200 | 131.99 | 31.98 |
naringenin | 41.9 | 3189 | 48 | 21.11 |
apigenin | 43.3 | 3200 | 48 | 11.74 |
diosmetin | 41.9 | 1186 | 132 | 26.65 |
Source | Individual Polyphenol p-Value | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ctn | ChAc | CuAc | Rtn | Q + L | VaAc | FeAc | EgAc | D + H | NeHe | Ngn | Apg | Dmt | CnAc | |
A | 0.1064 | 0.7692 | 0.5033 | 0.0770 | 0.0117 | 0.1508 | 0.0037 | 0.2016 | 0.0020 | 0.8514 | 0.0052 | 0.0009 | 0.0011 | <0.0001 |
B | 0.0079 | 0.3333 | 0.2405 | 0.0190 | 0.0024 | 0.8847 | 0.6914 | 0.0490 | 0.0059 | 0.0034 | 0.0305 | 0.2583 | 0.1661 | <0.0001 |
C | 0.0863 | 0.0005 | 0.0194 | 0.1405 | 0.4243 | 0.1559 | 0.0159 | 0.0004 | 0.0014 | 0.3868 | 0.8405 | 0.0640 | 0.0014 | 0.0077 |
AA | 0.0634 | 0.5317 | 0.0037 | 0.0054 | 0.1239 | 0.2007 | <0.0001 | <0.0001 | 0.0762 | 0.0120 | 0.0090 | 0.0116 | 0.0799 | 0.0000 |
AB | 0.1593 | <0.0001 | 0.0289 | <0.0001 | <0.0001 | 0.0041 | 0.6030 | 0.1270 | 0.0001 | 0.0130 | 0.5335 | 0.0988 | 0.0001 | 0.3248 |
AC | <0.0001 | 0.0114 | 0.0612 | <0.0001 | 0.0001 | 0.5742 | 0.0030 | 0.3208 | 0.0005 | <0.0001 | <0.0001 | 0.0133 | 0.0021 | <0.0001 |
BB | 0.1302 | 0.2798 | 0.0037 | 0.0054 | 0.0315 | 0.1875 | 0.0120 | 0.0756 | 0.1264 | 0.0120 | 0.0091 | 0.0117 | 0.0801 | <0.0001 |
BC | 0.0711 | 0.0388 | 0.7343 | 0.0002 | 0.0002 | 0.0148 | 0.0003 | 0.0690 | 0.0002 | 0.1832 | 0.0004 | 0.5946 | 0.0004 | 0.5573 |
CC | 0.8293 | 0.8682 | 0.0032 | 0.0047 | 0.4614 | 0.0195 | 0.0040 | 0.0012 | 0.1194 | 0.0106 | 0.0079 | 0.0103 | <0.0001 | 0.0158 |
ABC | <0.0001 | 0.0002 | 0.0002 | <0.0001 | 0.0560 | <0.0001 | <0.0001 | 0.0001 | 0.0001 | <0.0001 | 0.4944 | 0.0003 | <0.0001 | 0.0015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avilés-Betanzos, K.A.; Scampicchio, M.; Ferrentino, G.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Capsicum chinense Polyphenols Extraction by Supercritical Fluids Using Response Surface Methodology (RSM). Processes 2023, 11, 2055. https://doi.org/10.3390/pr11072055
Avilés-Betanzos KA, Scampicchio M, Ferrentino G, Ramírez-Sucre MO, Rodríguez-Buenfil IM. Capsicum chinense Polyphenols Extraction by Supercritical Fluids Using Response Surface Methodology (RSM). Processes. 2023; 11(7):2055. https://doi.org/10.3390/pr11072055
Chicago/Turabian StyleAvilés-Betanzos, Kevin Alejandro, Matteo Scampicchio, Giovanna Ferrentino, Manuel Octavio Ramírez-Sucre, and Ingrid Mayanin Rodríguez-Buenfil. 2023. "Capsicum chinense Polyphenols Extraction by Supercritical Fluids Using Response Surface Methodology (RSM)" Processes 11, no. 7: 2055. https://doi.org/10.3390/pr11072055
APA StyleAvilés-Betanzos, K. A., Scampicchio, M., Ferrentino, G., Ramírez-Sucre, M. O., & Rodríguez-Buenfil, I. M. (2023). Capsicum chinense Polyphenols Extraction by Supercritical Fluids Using Response Surface Methodology (RSM). Processes, 11(7), 2055. https://doi.org/10.3390/pr11072055