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Abstract: For multi-phase separation, developing high-performance cyclone separators is highly
demanded. In this study, different divergent or convergent insertion pipes bFelow the vortex finder
are employed to improve the separation performance. The impacts of insertion pipe geometrical
configurations on the flow characteristics, pressure drop, and separation efficiency are systematically
analyzed. The results reveal that the employed insertion pipe can significantly affect the static
pressure distribution inside the cyclone. A longer insertion pipe length and larger tilt angle result in
a wider central low-pressure area and smaller overall static pressure. The divergent insertion pipes
increase pressure loss, while the convergent insertion pipes augment pressure loss. A larger insertion
pipe length significantly impacts the axial velocity distribution. For divergent insertion pipes, the
maximum central axial velocity increases with increasing tilt angles and then decreases. For small
particles (dp ≤ 5 µm), a convergent insertion pipe exhibits a better separation performance. When the
particle diameter dp ≥ 5 µm, divergent insertion pipes with larger angles and lengths can significantly
decrease the pressure drop while guaranteeing satisfied collection efficiency. When L = 75 mm and
θ = 60◦, the pressure drop is reduced by 7.8%. This study may contribute to rationally designing high
performance cyclone separators and also paves ways for improving the existing cyclone separators.

Keywords: cyclone separator; axial velocity; insertion pipes; collection efficiency; pressure drop

1. Introduction

With a simple structure and low maintenance cost, cyclone separators are widely
applied in industrial two-phase/multi-phase separations such as liquid–gas separation in
the natural gas exploitation process [1,2] and solid–liquid separation in the fluidized bed
coal combustion [3,4]. Multi-phase separation is achieved by the centrifugal force [5,6]. In
cyclone separators, the rotating turbulence field inside the cyclone is rather complex [7,8].
Simulations based on Reynolds stress and large eddy models were shown to accurately
simulate the flow characteristics in the cyclone separators [9–14]. Compared to the large
eddy models and direct numerical simulation(DNS), the Reynolds stress presents less
demand on computational resources and satisfied accuracy, which is widely employed to
numerically describe the complex flow characteristics inside the cyclone separators [15].
However, the Reynolds stress model can only provide the average information concerning
the turbulence and cannot simulate too complex vortex motion. Griffiths [16] concludes that
the RNG k-εmodel can better describe the anisotropy of the turbulent field characteristics
using a comparative analysis with experiments. Dang et al. [17] proposed a new method
to simulate cyclone separators that can simultaneously decrease computational time and
enhance accuracy for CFD simulations.

For cyclone separators, pressure loss, as well as separation efficiency, are the main
performance indicators that should be addressed [18–20]. Much attention was drawn to
augment their performance. The inlet size is one of the important factors affecting its
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performance [21–23]. Elsayed et al. [24] studied different cyclone separators of various
inlet sizes, revealing that the larger inlet size of the cyclone separator contributes to the
reduction in the pressure drop. The inlet width presented a much more dominant impact
than the inlet height. Horvath et al. [25] simulated the axial velocity variation under
different geometric configurations. Qian et al. [26] investigated different inlet cross-section
types and pinch angles. The pressure drop was minimized when the inlet cross-section
angle was 45◦. Tan et al. [27] revealed that the larger particle diameter contributes to the
separator via experiments and numerical simulations, respectively. However, Liu [28] et al.
claimed that there exists a critical diameter, leading to the maximum separator efficiency.
Ehsan et al. [29] found that the baffles have a major effect on improving the separation
efficiency and turbulence intensity. In addition, Ehsan et al. [30] also studied the effect of the
number of inlets and the cyclone cone wall roughness on the swirling flow characteristics
and separation efficiency of the cyclone.

The cylinder and the vertebrae are also important components of the cyclone separa-
tors, and their length, diameter, angle, and other geometric dimensions act dominantly in
determining the pressure drop and separation efficiency [31]. Lee et al. [32] revealed how
the cylinder diameter impacts the particle collection efficiencies and flow characteristics.
Brar et al. [33] revealed that a vertebral length of approximately 6.5 times its diameter
can significantly augment the separation efficiency. Demir et al. [34] revealed that the
friction loss is low at a small vertebral height. Hamdy et al. [35] investigated the impacts
of vertebral length, showing that increasing the vertebral length could increase the back
flow below the vortex finder. Gimbun et al. [36] and Elsayed et al. [37,38] found that
changes in the dust discharge port diameter significantly altered separator performance.
Satyanand et al. [39] evaluated the effect of various geometrical shapes of the conical seg-
ment on cyclone performance, and they predicted the performance of different models
using the Reynolds stress model considering two pressure-strain options.

The vortex finder also impacts cyclone separator performance [40,41]. El-Batsh [42]
revealed that cyclone separator performance is mainly impacted by the finder diameter
rather than the finder length. Tan et al. [43] found that satisfied separation efficiency
could be achieved when the vortex finder diameter was controlled at 0.3–0.5 D where
D is the cylinder diameter. Hoekstra [44] concluded that the maximum tangential veloc-
ity and pressure drop gradually decrease with increasing finder diameters. In addition,
Hugi et al. [45] revealed that under some situations of particle size distributions, employing
vortex finders is unnecessary.

Although performance improvement and optimization of the cyclone separator were
extensively studied in the previous literature, the separation performance of ultra-fine
particles is still far from satisfied. Since the escape of particles is through the vortex
finder at the upper end of the cyclone, optimizing the vortex detector can greatly improve
the separation performance of the separator. In this study, unlike the optimized vortex
detector shapes in previous studies, different divergent or convergent insertion pipes
below the vortex finder were constructed to improve the internal flow characteristics
and, thus, increase the separation efficiency. The Reynolds stress turbulence model is
employed to describe the rotating turbulence field inside the cyclone. The pulsation
velocity in all the flow directions has a significant impact on the movement velocity of
small particles. To fully grasp the influence of these factors on the turbulence and pulsation
velocity, the discrete random walk (DRW) is applied for particle tracking [46,47]. The
impacts of different divergent or convergent insertion pipes on the flow field characteristics,
separation performance, and pressure loss were systematically analyzed. The undermining
mechanisms are discussed. Finally, some useful conclusions are drawn. This study may
contribute to rationally designing high performance cyclone separators and also pave the
way for improving the existing cyclone separators.
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2. Model Description
2.1. Geometrical Characteristics

As depicted in Figure 1, the reverse-flow cyclone with a volute inlet is employed for
the numerical simulation. The sizes of the cyclone separator are based on Ref. [15]. The
relevant modeling parameters of the studied cyclone separator are presented in Table 1.
Different divergent or convergent insertion pipes are attached below the vortex finder. The
divergent or convergent insertion pipes are characterized by the angle (θ) and length (L).
The length L is set at 25, 50, and 75 mm, respectively; and the angle θ varies from −30 to
60◦. θ = 0◦ or L = 0 mm in the study refers to the original configuration without installation
of the insertion pipes, as shown in Figure 2b. θ > 0◦ indicates the insertion pipe is divergent;
θ < 0◦ represents that the insertion pipe is convergent. Figure 2a,c show the shape of the
insertion pipes with θ = 30◦ and −15◦ at the length L = 50 mm, respectively.
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Figure 1. Geometrical diagram of the reverse-flow cyclone separator.

Table 1. Dimensions of the cyclone separator.

Parameter Value

Cyclone diameter, D (mm) 300

Length of the inlet, b (mm) 73

Height of the inlet, a (mm) 176

Parameter of the vortex finder

S (mm) 276

De (mm) 95

L (mm) 25 50 75

θ (◦) −30 −15 30 60
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2.2. Computational Fluid Dynamics Model
2.2.1. Reynolds Stress Model

Although the simulation accuracy of a large eddy simulation is better, it requires too
many computational resources. Considering the simulation computational cost and the
accuracy of the simulation, the Reynolds stress model (RSM) is employed in the simulation.
The SIMPLE algorithm is used for dealing with the pressure–velocity coupling; the PRESTO
scheme is employed for dealing with the pressure gradient; and the QUICK differential
format is applied to handle the other physical items [15].

The time-averaged conservation equations are applied to describe the rotating turbu-
lence field inside the cyclone separator [48]:

∂ui
∂xj

= 0 (1)

ρui
∂ui
∂xj

= − ∂P
∂xi

+
∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj

∂xi

)]
−

∂ρu′iu
′
j

∂xj
(2)

where ui and uj are the mean velocities; ρu′iu
′
j is the Reynolds stress caused by turbulent

pulsations.
The RSM model is a turbulence model based on each anisotropy, without using

Boussinesq’s assumptions, that is suitable for solving strong cyclonic flows inside the
cyclone separator.

∂

∂t

(
ρu′iu

′
j

)
+

∂

∂xk

(
ρuku′iu

′
j

)
= DT ,ij + DL ,ij + Pij + Gij +∅ij − Fij − εij + Suser (3)

where DT ,ij represents the diffusive transport term, which is calculated as:

DT ,ij = −
∂

∂xk

(
ρu′iu

′
ju
′
k + P′

(
σjku′k + σiku′j

) )
(4)

The term DL ,ij in Equation (3) represents the molecular viscous diffusion term, which
is given by:

DL ,ij = µ
∂

∂xk
u′iu
′
j (5)
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Stress Pij is given by:

Pij = −ρ

(
u′iu
′
k

∂uj

∂xk
+ u′ju

′
k

∂ui
∂xk

)
(6)

The term Gij represents the buoyancy generation term:

Gij = −ρβ
[
gi
(
ujθ
)
+ gj(uiθ)

]
(7)

The pressure strain correlation ∅ij is given by:

∅ij = P

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(8)

The system rotation generation term Fij is:

Fij = 2ρΩk

(
u′ju
′
jεikm + u′iu

′
mε jkm

)
(9)

The dissipative εij is:

εij = 2µ
∂u′i
∂xk

∂u′j
∂xk

) (10)

The near-wall velocity is calculated by [49]:

UC1/4
µ k1/2

τw/ρ
=

1
κ

ln(Ey∗) (11)

y∗ =
ρC1/4

µ k1/2y
µ

(12)

The relevant parameters can be seen in Refs. [44,50].

2.2.2. Discrete Phase Model

Due to the low concentration of particles in this simulation, the discrete phase model
(DPM) is applied in the present simulation. Due to the small particle diameter and the
pulsating velocity of the gas flow in all directions, this can have a direct effect on the particle
motion. Considering the effect of gas turbulence and pulsation velocity on particle motion,
the discrete random walk model was chosen to track the particles. The model equations
used are summarized as follows:

Tee equations for mass and momentum conservation of the gas phase are given by:

∂
(
ρgεg

)
∂t

+∇·
(
ρgεgug

)
= 0 (13)

∂
(
ρgεgug

)
∂t

+∇·
(
ρgεgugug

)
= −∇P + µεg∇2ug + ρgεgg− S (14)

S =
∑ FD

V
(15)

mp

→
dup

dt
= mp

→
u − →up

τr
+ mp

→
g
(
ρp − ρ

)
ρp

+
→
F (16)
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where F is the sum of the particle swaying forces acting inside the grid cell. mp is the
particle mass; τr is the particle residence time, which is given by:

τr =
ρpd2

p

18u
24

CdRe
(17)

2.3. Boundary Conditions

The inlet gas is methane at room temperature and pressure. The velocity inlet of
15 m/s is employed. The hydraulic diameter and turbulence intensity at the inlet are
calculated from Equations (18) and (19).

DH =
4× S

C
(18)

I = 0.16×
(

ρgDHVin

µ

)−0.125
(19)

where S is the flow cross-sectional area; C is the inlet wetted perimeter; ρg is the in-
let gas density; µ is the inlet gas viscosity; DH is the hydraulic diameter; and I is the
turbulence intensity.

The exit boundary condition is set to outflow and the inlet to velocity boundary
condition. A no-slip boundary is employed on other boundaries. In the calculation, a
steady-state simulation is used first, followed by transient simulation to obtain a stable
flow field, thus, reducing the convergence difficulty and improving the accuracy. When
performing the DPM iteration, the bottom of the cyclone is set to trap, and the other
boundaries are set to reflect. The particles are liquid droplets with diameters ranging from
0.1~10 µm.

2.4. Grid Independence Analysis

The original cyclone separator is selected as an example. Different tested hexahedral
grid numbers (700,000, 1,100,000, 1,480,000, and 1,880,000) are involved. Figure 3 depicts the
variation in separator efficiency with particle diameter under different mesh numbers. The
maximum difference of collection efficiency in cyclone between 700,000 and 1,100,000 mesh
numbers is near 20%. The maximum difference of collection efficiency between 1,100,000
and 1,480,000 1,880,000 mesh numbers is less than 5%. The grid number of 1,100,000 is
employed here, which is enough to guarantee convincing results. This meshed model of
the cyclone separator is indicated in Figure 4.
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2.5. Model Validation

In order to verify the accuracy of the numerical method, the simulation results were
compared with the experimental data [44]. As shown in Figure 5, the pressure drop of
the cyclone separator was compared at different inlet velocities. The simulation results
are slightly larger than the experimental data overall. However, the overall error is not
significant, which validates the model employed in present study.
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3. Results and Discussion
3.1. Pressure Drop Analysis

Figure 6 shows the static pressure distribution in the middle section of the cyclone
separator under different divergent or convergent insertion pipes. It can be seen that the
static pressure gradually decreases along the radial direction from the wall to the center.
Furthermore, a clear low-pressure area appears in the center of the cyclone. This is because
the gas phase in the cyclone creates an accelerated vortex motion from the outer wall to the
center. As the gas phase gradually approaches the center, its static pressure is continuously
transformed into dynamic pressure.



Processes 2023, 11, 2061 8 of 18

Processes 2023, 11, x FOR PEER REVIEW 8 of 19 
 

 

the divergent insertion pipe of L = 70 mm and θ = 60°, the cyclone has the widest central 
low-pressure area, and the radial pressure gradient is also the smallest. 

 
(a) (b) (c) 

Figure 6. Static pressure contours of cyclone separators with different divergent or convergent 
insertion pipes. (a) L = 75 mm θ = −30°; (b) L = 0 mm; (c) L = 75 mm θ = 60°. 

Figure 7 shows the static pressure distribution of the cyclone separator at different 
divergent insertion pipe lengths for θ = −15°. Near the vortex finder, there is a low-
pressure core area with the lowest pressure in the cyclone separator. As the length L 
increases, the static pressure in this area becomes smaller; The central low-pressure area 
within the cyclone is narrower, while the overall static pressure of the cyclone is greater. 

 
(a) (b) (c) 

Figure 6. Static pressure contours of cyclone separators with different divergent or convergent
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As can be seen from Figure 6, the presence of the divergent or convergent insertion
pipes significantly affects the static pressure distribution. Compared with the original
configuration, the overall pressure in the cyclone with the convergent insertion pipe of
L = 75 mm and θ = −30◦ is higher. The static pressure distribution is more symmetrical
with the narrowest low-pressure zone in the center. The asymmetry of static pressure
distribution is most obvious in the original configuration. In the cyclone separator with
the divergent insertion pipe of L = 70 mm and θ = 60◦, the cyclone has the widest central
low-pressure area, and the radial pressure gradient is also the smallest.

Figure 7 shows the static pressure distribution of the cyclone separator at different
divergent insertion pipe lengths for θ =−15◦. Near the vortex finder, there is a low-pressure
core area with the lowest pressure in the cyclone separator. As the length L increases, the
static pressure in this area becomes smaller; The central low-pressure area within the
cyclone is narrower, while the overall static pressure of the cyclone is greater.

Figure 8 shows the static pressure distribution of the cyclone separator at different
divergent insertion pipe lengths for θ = 30◦. Near the vortex finder, there is a low-pressure
core area with the lowest pressure in the cyclone separator. As the length L increases, the
static pressure in this area also becomes smaller; The central low-pressure area within the
cyclone is shortened. Near the outlet of the vortex finder, there also exists a low-pressure
core area, which disappears at a greater length.

Figure 9 shows the pressure drop variation in the cyclone separator under different
divergent or convergent insertion pipes. When the length L of the insertion pipes remains
unchanged, the pressure drop of the cyclone separator gradually decreases with the increase
in the angle θ. When θ = 30◦ and 60◦, the pressure drop of the cyclone separator is lower
than that of the case without the insertion pipe. The pressure drop reduction for L = 25 mm
is not as obvious as that for L = 50 mm and 75 m. The pressure drop of the cyclone separator
is significantly higher when θ =−30◦ and−15◦; At the same angle θ, the longer the insertion
pipe length L, the larger the pressure drop of the cyclone separator. At θ > 0◦, the presence
of the divergent insertion pipe will expand the intersection of the cylindrical region to the
vortex finder. The longer the length, the larger the expanded area, which can effectively
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reduce the pressure loss in this area. However, when the length L is too long, it will impede
the downward rotational motion of the vortex in the cylindrical region and increase the
flow resistance. Therefore, the pressure drop at L = 75 mm is not significantly smaller
than that at L = 50 mm; when L = 75 mm and θ = 60◦, the pressure drop is reduced by
7.8%. On the contrary, when θ < 0◦, the presence of the convergent insertion pipe increases
the pressure loss from the cylindrical body to the vortex finder. The longer the length L,
the smaller the intersection of the cylindrical region to the vortex finder, which leads to a
greater pressure loss.
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Figure 9. Pressure drop as a function of tilt angle and length under different divergent or convergent
insertion pipes.

3.2. Axial Velocity

Figure 10 shows the axial velocity distribution at the Y = −420 mm and Y = −750 mm
cross-sections of each cyclone separator, where Y is the Y-axis coordinate and the coordinate
axis arrangement can be seen in Figure 1. The vertical axis is the ratio of axial velocity to
inlet velocity, and the horizontal axis is the ratio of the radial position and the cross-section
radius. As can be seen from Figure 10, the axial velocity distribution presents the inverted
V-shaped distribution. The maximum axial velocity is located at the center of the cyclone
separator. As can be seen from Figure 10, the cyclone flows downward near the separator
wall, while the fluid flows upward near the central part. The reason is that the two-phase
fluid from the inlet into the separator, according to the flow channel, to form a downward
cyclonic flow. When reaching the vertebra, the fluid generates acceleration due to the
change in vertebral angle. The different densities of the components produce different
acceleration, resulting in differences in speed, and the acceleration of the solid particles is
greater. Finally, due to the negative pressure effect of the vortex, a negative pressure zone
is created in the central part of the separator, which guides the low density components
upwards. Compared to the original configuration without insertion pipes, the maximum
axial velocity is augmented with insertion pipes installed. The effect of the insertion pipe
on the axial velocity distribution is mainly reflected in the central upward flow region.
The effect is relatively small for the outer downward flow region. A smaller angle of the
insertion pipe leads to a larger central axial velocity, such as θ = −30◦, −15◦, and 30◦. For
the divergent insertion pipes, the maximum central axial velocity increases with increasing
tilt angles and then decreases. When θ = 60◦, the axial velocity tends to be relatively small.
As the insertion pipe length L increases, the impact on the axial velocity distribution is
more obvious, which is reflected in not only the overall increase in axial velocity but also
the more obvious asymmetry of axial velocity distribution.
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3.3. Particle Separation

Figure 11 depicts the particle movement in the cyclone separator for different particle
diameters for the original cyclone separator. At a particle diameter dp = 0.1 µm, some
particles escape from the vortex finder orifice, and the particles have a short residence time
inside the cyclone. However, at the particle diameter dp = 10 µm, all particles reach the
dust removal port, and the collection efficiency reaches 100%. After the particles enter the
cyclone from the inlet, the particles are rotated inside the cyclone by centrifugal force under
the airflow and gravity. The larger the particle diameter dp and the greater the gravity of
the particle, the greater the corresponding centrifugal force. The particles are more likely
to collide with the wall and fall to the bottom of the cyclone and be captured. Therefore,
the collection efficiency increases with the increase in particle diameter. Small particles
are carried by the airflow more easily as they are subject to less centrifugal force. They
keep rotating with the airflow in the cyclone and eventually run out of the cyclone with the
airflow or are finally captured. The interaction forces between particles ensure that there
are a few particles in the cyclone separator to form a long period of circular motion.
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Figures 12 and 13 depict the particle movement in the cyclone separator under dif-
ferent particle diameters for cyclone separators with convergent and divergent insertion
pipes. The same phenomenon exists. The number of escaped particles decreases with the
increasing particle diameters. Compared to the original cyclone separator, the divergent
insertion pipe can significantly decrease the particle resistance time under the situations
of small and large particle diameters. However, the particle resistance time can be always
obviously reduced under the studied range of the particle diameters.

Figure 14 shows the variation in separation efficiency with particle diameter under
different insertion pipes. When the particle diameter dp ≥ 5 µm, the difference in the
collection efficiency between the different separator configurations is rather small. The
influence of the insertion pipes on the collection efficiency is weakened. The collection
efficiency is above 95%. At the insertion pipe length L = 25 mm, the difference in the
collection efficiency is relatively small due to the short insertion pipe. However, when
θ = 60◦, for particle diameter 1 µm ≤ dp ≤ 5 µm, the collection efficiency is significantly
lower than in other situations. The larger the tilt angle, the larger the area of the lower
side of the vortex finder, which augments the possibility of particle escape. For divergent
insertion pipes of L = 50 mm and 75 mm, the collection efficiency is lowered when θ = 30◦

and θ = 60◦ due to the enlarged area of the lower side of the vortex finder. It is worth
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noting that under the divergent insertion pipes with L = 25 mm and L = 50 mm, the
lowest collection efficiency occurs at θ = 60◦, while when L = 75 mm, the lowest collection
efficiency occurs at θ = 30◦. For divergent insertion pipes (θ < 0◦), the collection efficiency
of the cyclone separator can be improved, especially under small diameter particles. The
collection efficiency increases with increasing length and tilt angles. The most obvious
collection efficiency improvement is achieved when L = 75 mm and θ = −30◦, where the
area of the lower side of the vortex finder is the smallest. In terms of collection efficiency and
pressure drop, for small particles dp ≤ 5 µm, a convergent insertion pipe of L = 75 mm and
θ = −30◦ exhibits better separation performance. When the particle diameter dp ≥ 5 µm,
the divergent insertion pipes with larger angles and lengths can significantly decrease the
pressure drop while guaranteeing satisfied collection efficiency.
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4. Conclusions

In this study, different divergent or convergent insertion pipes below the vortex finder
were constructed to improve separator performance. The impacts of different divergent
or convergent insertion pipes were systematically analyzed. The following conclusions
were obtained.

1. The insertion pipe can obviously affect the inside static pressure distribution inside.
A longer insertion pipe length and larger tilt angle lead to wider central low-pressure
areas and a smaller overall static pressure.

2. The installed convergent insertion pipe increases the pressure loss, while the installed
divergent insertion pipe augments the pressure loss. When L = 75 mm and θ = 60◦,
the pressure drop is reduced by 7.8%.

3. With the insertion pipe installed, the maximum axial velocity is enhanced. A larger
insertion pipe length contributes to the impact on the axial velocity distribution. For
the divergent insertion pipes, the maximum central axial velocity increases with
increasing tilt angles and then decreases.

4. For small particles dp ≤ 5 µm, a convergent insertion pipe of L = 75 mm and θ = −30◦

exhibits a better separation performance. When the particle diameter dp ≥ 5 µm, the
divergent insertion pipes with larger angles and lengths can significantly decrease the
pressure drop while guaranteeing satisfied collection efficiency.
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Nomenclature

D Cyclone diameter, mm
De Vortex finder diameter, mm
a Inlet height, mm
b Inlet length, mm
h1 Cylindrical body height, mm
h2 Cylindrical height of expansion chamber, mm
h3 Cone height of expansion chamber, mm
H Cyclone height, mm
B Cone-tip diameter, mm
Bs Dipleg diameter, mm
Ds Expansion chamber diameter, mm
L Insertion pipe length, mm
θ Insertion pipe angle, ◦

ui, uj, uk Mean velocities, m/s
ρ Density, kg/m3

DT,ij Diffusive transport term
DL,ij Molecular viscous diffusion term
Pij Stress generation term
Gij Buoyancy generation term
фij Pressure strain correlation term
Fij System rotation generation term
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εij Dissipative term
k Turbulent kinetic energy at a node near the wall, J/kg
y* Fixed distance between node and wall, dimensionless
y Distance of a point near the wall from the wall, m
κ Karman number, dimensionless
Cµ, E Stress constants
U Average velocity of the fluid near the wall, m/s
τw Shear stress at the wall, Pa
mp Particle mass, kg
F Sum of the particle swaying forces acting inside the grid cell, N
τr Particle residence time, s
dp Particle diameters, µm
S Flow cross-sectional area, m2

C Inlet wetted perimeter, m
µ Inlet gas viscosity, Pa·s
I Inlet turbulence intensity, %
DH Inlet hydraulic diameter, m
Subscripts
g gas
p particle
i, j, k (=1, 2, 3) components in the Cartesian coordinate system
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