Research on a New Method of Track Turnout Identification Based on Improved Yolov5s
Abstract
:1. Introduction
2. Materials and Methods
- Replacing the yolov5s backbone with PP-LCNet to reduce the parameter count and achieve lightweight improvement;
- Employing BiFPN for feature fusion, integrating features from different spatial resolutions, and addressing the accuracy loss associated with the lightweight model;
- Utilizing the EIoU loss function instead of the original regression loss function to address the problem of mismatched predicted and ground-truth bounding boxes and improve convergence speed.
2.1. Yolov5s Structure Analysis
2.2. Yolov5s Backbone Network Lightweight Improvements
2.3. Improvement of Yolov5s Feature Fusion Method
2.4. Yolov5s Regression Loss Function Optimization
3. Results and Discussion
3.1. Datasets and Experimental Platforms
3.2. Experimental Data Processing
- Randomly select four different training images.
- Concatenate these four images together in a specific order to form a new training image. Typically, the four images are divided into two rows, with the left two images forming the top half and the right two images forming the bottom half.
- Calculate the width and height of the composite image.
- Adjust the bounding boxes within the new image. For each bounding box, convert its coordinates to be relative to the top-left corner of the new image and scale them according to the scaling factor of the new image.
- Apply other data augmentation operations, such as random scaling, translation, flipping, etc.
3.3. Experimental Environment and Evaluation Index
- (1)
- CPU: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60 GHz
- (2)
- GPU: NVIDIA A800 PCIe
3.4. Loss Function Comparison
3.5. Comparative Experimental Analysis of the Performance of Improved Lightweight Networks
3.6. Performance Comparison Experiments of Different Models
3.7. Ablation Experiments
3.8. Experimental Analysis of the Application Effect Verification of the New Method of Turnout Identification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, Y.; Lin, Z.; Li, H.; Li, J.; Huang, Y.; Huang, X. Research on Automatic Cleaning System for the Grooved Track of Tram Line. Urban Mass Transit. 2022, 25, 61–65. [Google Scholar] [CrossRef]
- Xiong, Q.; Zhang, M.; Huang, N.; Cao, J.; Xie, Y. Design of Automatic Detection System for Trough-Type Track Turnout of Modern Tram. Mod. Inf. Technol. 2022, 6, 156–160. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, Y.; Yang, X.; Du, M.; Li, X. Computer vision algorithms and hardware implementations: A survey. Integration 2019, 69, 309–320. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef] [PubMed]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Liu, W. Railway Obstacle Detection Algorithm Based on Deep Neural Network. Ph.D. Thesis, Beijing Jiaotong University, Beijing, China, 2016. [Google Scholar]
- Yilmazer, M.; Karakose, M. Railway Condition Monitoring and Fault Detection Based on YOLOv4. In Proceedings of the 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sakheer, Bahrain, 20–21 November 2022; pp. 439–443. [Google Scholar]
- He, S.; Liu, S.; Fang, Y.; Liu, J.; Huang, H.; Liu, W. Scene recognition and distance detection method of railway turnout. Comput. Integr. Manuf. Syst. 2022, 28, 1823–1834. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Jocher, G.; Stoken, A.; Chaurasia, A.; Borovec, J.; Kwon, Y.; Michael, K.; Changyu, L.; Fang, J.; Skalski, P.; Hogan, A.; et al. ultralytics/yolov5: v6. 0-YOLOv5n’Nano’models, Roboflow Integration, TensorFlow Export, OpenCV DNN Support. Available online: https://zenodo.org/record/5563715#.Y3LvP3ZBxdh (accessed on 15 July 2023).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Xie, E.; Song, X.; Zang, Y.; Wang, W.; Lu, T.; Yu, G.; Shen, C. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8440–8449. [Google Scholar]
- Wang, L.; Cao, Y.; Wang, S.; Song, X.; Zhang, S.; Zhang, J.; Niu, J. Investigation into recognition algorithm of Helmet violation based on YOLOv5-CBAM-DCN. IEEE Access 2022, 10, 60622–60632. [Google Scholar] [CrossRef]
- Cui, C.; Gao, T.; Wei, S.; Du, Y.; Guo, R.; Dong, S.; Lu, B.; Zhou, Y.; Lv, X.; Liu, Q.; et al. PP-LCNet: A lightweight CPU convolutional neural network. arXiv 2021, arXiv:2109.15099. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Luo, S.; Yu, J.; Xi, Y.; Liao, X. Aircraft target detection in remote sensing images based on improved YOLOv5. IEEE Access 2022, 10, 5184–5192. [Google Scholar] [CrossRef]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Du, F.J.; Jiao, S.J. Improvement of lightweight convolutional neural network model based on YOLO algorithm and its research in pavement defect detection. Sensors 2022, 22, 3537. [Google Scholar] [CrossRef] [PubMed]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 1–25 July 2018; pp. 116–131. [Google Scholar]
Method | P (%) | R (%) | [email protected] (%) | Params (M) | GFLOPs | FPS |
---|---|---|---|---|---|---|
yolov5s(baseline) | 69.15 | 63.43 | 57.42 | 7.02 | 15.9 | 93.46 |
yolov5s_EfficientLite | 67.24 | 58.35 | 53.01 | 3.77 | 7.4 | 78.74 |
yolov5s_MobileNetv3 | 67.28 | 59.16 | 53.64 | 3.53 | 6.1 | 81.30 |
yolov5s_Shufflev2 | 66.68 | 57.50 | 53.21 | 3.18 | 5.9 | 111.11 |
yolov5s_PP-LCNet(improved) | 68.90 | 63.83 | 55.07 | 3.32 | 6.2 | 99.01 |
Method | P (%) | R (%) | [email protected] (%) | Params (M) | GFLOPs | FPS |
---|---|---|---|---|---|---|
yolov5s(baseline) | 69.15 | 63.43 | 57.42 | 7.02 | 15.9 | 93.46 |
PBE-YOLO(Ours) | 71.41 | 65.54 | 60.06 | 3.24 | 6.2 | 99.15 |
Yolov3 | 65.18 | 55.20 | 51.86 | 61.52 | 155.3 | 74.63 |
Yolov3-tiny | 63.54 | 53.20 | 50.49 | 8.67 | 12.99 | 212.77 |
Yolov4 | 66.05 | 58.35 | 52.90 | 60.43 | 131.6 | 54.95 |
Yolov4-tiny | 62.72 | 58.35 | 51.45 | 3.06 | 6.409 | 169.49 |
Methods | P (%) | [email protected] (%) | Params (M) |
---|---|---|---|
yolov5s(baseline) | 69.15 | 57.42 | 7.02 |
yolov5s + PP-LCNet | 68.90 | 55.07 | 3.32 |
yolov5s + PP-LCNet + BiFPN | 70.89 | 58.15 | 3.24 |
yolov5s + PP-LCNet + BiFPN + EIoU(PBE-YOLO) | 71.41 | 60.06 | 3.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Lv, J.; Tian, H.; Li, Z.; Liu, X.; Xie, Y. Research on a New Method of Track Turnout Identification Based on Improved Yolov5s. Processes 2023, 11, 2123. https://doi.org/10.3390/pr11072123
Chen R, Lv J, Tian H, Li Z, Liu X, Xie Y. Research on a New Method of Track Turnout Identification Based on Improved Yolov5s. Processes. 2023; 11(7):2123. https://doi.org/10.3390/pr11072123
Chicago/Turabian StyleChen, Renxing, Jintao Lv, Haotian Tian, Zhensen Li, Xuan Liu, and Yongjun Xie. 2023. "Research on a New Method of Track Turnout Identification Based on Improved Yolov5s" Processes 11, no. 7: 2123. https://doi.org/10.3390/pr11072123
APA StyleChen, R., Lv, J., Tian, H., Li, Z., Liu, X., & Xie, Y. (2023). Research on a New Method of Track Turnout Identification Based on Improved Yolov5s. Processes, 11(7), 2123. https://doi.org/10.3390/pr11072123